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ABSTRACT

Introduction of lightweight materials for different structural members of aerospace,
marine, civil and automobile sectors are being made possible by utilizing nano rein-
forcements and addition of porosity in the bulk composite. Cylindrical curved panel
structures are extensively utilized in different engineering applications owing to their
better structural stability characteristics. Stability and dynamic behaviour analysis of
these lightweight cylindrical panel structures is essential for the satisfactory design. In
general, the buckling and dynamic characteristics of these panels are mostly studied
under uniform edge load (UEL) conditions. However, the panels are exposed to non-
uniform and partial edge loads in practical situation. Hence, the prediction of buckling
and free vibration characteristics of the panels under different non-uniform edge loads

(NELSs) will help the designers in avoiding the failure of these structures.

The buckling and free vibration characteristics of different nano composite panels
namely, GPL reinforced porous, GPL reinforced porous core sandwich, CNT and GOP
reinforced cylindrical panels under NELs are calculated using semi analytical method
in the present study. Considering a higher order shear deformation theory, Hamilton’s
principle is used to formulate the governing differential equations and buckling and
free vibration solutions are obtained by employing the semi analytical method based
on Galerkin’s approach. Initially, the membrane stress resultants due to the applied
edge loads are represented through Airy’s stress function expansion. Then the stress
resultants are evaluated through the minimisation of strain energy. Followed by this,
equations of motion are obtained based on Hamilton’s principle and the stress resultants.
The Eigen value problems of buckling and free vibration are solved using the semi

analytical method.






Buckling and free vibration characteristics of graphene nano platelets (GPL) rein-
forced porous cylindrical panel under the influence of NELs is studied first. The dis-
tribution of GPL and porosity is varied in a layer wise fashion through the thickness.
The effective mechanical properties are calculated using extended rule of mixture to-
gether with Halpin-Tsai micromechanics model and open-cell metal foam properties. It
is found that the type of NEL greatly influences the critical buckling load of the cylin-
drical panel. Further, the critical buckling load and natural frequency varies with a

particular combination of porosity and GPL distributions.

Next, a sandwich cylindrical panel with GPL reinforced porous core and metal fac-
ing sheets is analyzed. The effective mechanical properties are obtained by using prop-
erties of open cell foams and Halpin—Tsai micro mechanical model. Effects of nature of
in-plane edge load, distribution of porosity and GPL, porosity coefficient, GPL loading,
core to total thickness ratio are analyzed in detail. It is found that for the panel with
high core thickness, even for the higher amount of porosity, the buckling resistance and
free vibration frequency can be improved by properly tailoring the graded distribution
of both the GPL and pores. Furthermore, a significant variation in buckling load and
free vibration frequencies is observed with respect to the type of in plane loading. Re-
markable change in buckling mode and free vibration mode shape (with increase in the
load intensity) is observed for panels having higher aspect ratio. The sandwich cylin-
drical panel with a core having a distribution of less porosity and high GPL content at
the extreme surfaces provides maximum buckling strength and free vibration frequency

value.

Next, buckling and free vibration characteristics of agglomerated carbon nanotubes
(CNTs) reinforced nano cylindrical panels are studied considering nonlocal elasticity
theory. Effective material properties of the agglomerated CNT reinforced composite
are obtained using a two-parameter micro-mechanics model while Eringen’s non-local

theory is used to account the size effect. A comprehensive study is carried out to an-






alyze the influence of various degrees of agglomeration (complete, partial), nature of
edge load , and non-local effects on the buckling and free vibration response of CNT
reinforced nano cylindrical panel. The results revealed that non-local size effect leads to
areduction in stiffness and thus reduces buckling and dynamic characteristics. It is also
observed that critical buckling load varies with type of in plane load. The reduction in
natural frequency with increase in the edge load intensity is different for different type

of NEL.

Finally, the buckling and free vibration characteristics of graphene oxide powder
(GOP) reinforced cylindrical panels are studied. Influence of loading of GOP quan-
tity, nature of grading of GOP, nature of non-uniform and partial edge loads on critical
buckling coefficient and fundamental frequency and mode shapes are investigated. It is
noted that the buckling and vibration characteristics are sensitive to the nature of GOP
grading, GOP loading and nature of variation in edge loads. Furthermore, the funda-
mental buckling mode is not always the typical (1, 1) mode instead of that (2, 1) mode
is observed as the buckling mode according to the variation in aspect ratio and nature of
edge loads. It is found that near critical buckling load, the fundamental vibration mode
changes to (2,1) from (1,1) for parabolic and partial edge loading cases for the panels

with aspect ratio higher than 1.3.

KEYWORDS: Cylindrical Panel, Non-uniform Edge Loading, Buckling,

Porosity, Nano composite, Functional grading
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CHAPTER 1

INTRODUCTION

1.1 Introduction

Thin walled cylindrical panels are extensively used as structural members in high speed
rail, automotive, aerospace and marine industries. These curved cylindrical panel struc-
tures, due to the presence of curvature, provides higher in plane load resistance com-
pared to flat panels thereby gaining practical significance. When these cylindrical pan-
els are subjected to edge compressive loads, a sudden change in shape can happen at
a certain level of load and this phenomenon is known as buckling. By definition,for a
structural element, the sudden change in present state of equilibrium to unstable from
stable happens at a particular value of load known as buckling load (Jones 2006). In
other words, the sudden change of equilibrium state to a distinctive stable configuration
from former stable configuration happens at the buckling load whether or not followed
by a large deformation (Jones 2006). Imagine the cylindrical panel like structural ele-
ments of an aircraft, ship or high-speed train changes its shape suddenly while in ser-
vice. These sudden shape changes can cause change in dynamic performance leading
to high fuel consumption, passenger discomfort or even failure. Hence, the buckling

phenomenon is undesirable and need to be analysed for better design of structures.

The free vibration characteristics namely, natural frequency and mode shapes of
structural members are properties of the system established by distribution of mass and
stiffness (Thomson 2018). The consideration of natural frequency is important due to
the fact that whenever an excitation frequency matches with the natural frequency, res-
onance will happen. The resonance is the condition in which the amplitude of vibration

becomes dangerously high. Consider the practical situation in which an automobile or



an aircraft cylindrical panel member is excited by external load at natural frequency.
The resulting high amplitude of vibration causes noise, passenger discomfort or even

failure.

The prime source of compressive edge loadings in the cylindrical panel is by the
process of load bearing/transfer. However, these edge loadings vary in magnitude along
the length or width of the cylindrical panel due to the process of load distribution and
lead to non-uniform distribution of loads. For instance, the wings of the aircraft and
stiffened plates in ship structures are practical examples in which structures are sub-
jected to non uniform edge loads (Hamedani and Ranji 2013). The in plane stresses
developed due to these edge loads induces buckling and may change the free vibration
characteristics of the cylindrical panel structure. In literature, however most of the stud-
ies are carried out by assuming uniform edge load (UEL) assumption. The important
aspect of structures subjected to compressive edge loads is that the presence edge loads
alters the stiffness resulting in changes of natural frequency. Thus analysis of free vi-
bration characteristics of structures under the influence of the non-uniform edge load

(NEL) is very important.

1.1.1 Types of Edge Loads

The cylindrical panel structures, are typically exposed to different types of edge load-
ings such as : uniform, trapezoidal, triangular, partial tension, parabolic, reverse sinu-
soidal, increasing parabolic, partial edge loadings as shown in Figure 1.1. In actual
operating conditions, highly localised stresses are developed in structures due to high
speed and high temperature which will lead to different non uniform edge loads (Ad-

hikari et al. 2020).

For a cylindrical panel structure in service, the loads leading to buckling are applied
by adjoining free-body. The uniform edge loading is an exception to different type

of loads since relative stiffness determines the elastic forces between free-bodies (Jana



Uniform Edge Load (UEL) and Non Uniform Edge Load I (NEL-I)

c) d)
g)

a) b)

Non Uniform Edge Load II (NEL-II)

i

h)

a) Unifrom Loading e) Parabolic Loading

b) Trapezoidal Loading f) Reverse sinusoidal Loading
c¢) Triangular Loading g) Increasing Parabolic Loading
d) Partial tension Loading h) Partial Edge Loading

Figure 1.1: Different types of edge loads

and Bhaskar 2006). Shariyat and Asemi (2014), reported that generally the edge loads
applied by surrounding elements on plate or cylindrical panel regions are non-linear
in nature. Thus, consideration of different non-uniform edge loadings is important for

complete understanding of the buckling and free vibration behaviour.

1.1.2 Light Weight Cylindrical Panels

Cylindrical panel members used in various engineering applications can be made light
in weight to facilitate the energy savings (less fuel consumption) and ultimately less
environmental impacts (less emissions). The question of light weight cylindrical panel
structures being asked by researchers over the years is answered by using thin walled
structures with preferably stiffer materials. By using stiffer materials, the light weight

structural members are made possible without compromising the stiffness. The nano



composites and porous nano composites are emerged as solutions to this problem by
making use of the material property at the nano levels to achieve better strengths to the

bulk composite.

1.1.3 Nanocomposites

Nanocomposites can be defined as multiphase materials made up of a matrix phase
and atleast one nano-filler phase to achieve a combination of properties of its indi-
vidual phases (Safdari and Al-Haik 2018). Several nano-scale reinforcements such as
carbon nano tubes (CNT), graphene nano platelets (GPL) and graphene oxide powder
(GOP) can be used together with metal matrix or polymeric matrix to obtain excep-
tional mechanical properties. Nano composites have additional benefits such as con-
trolled anisotropy and tailorability of mechanical properties (Dzenis 2008). The nano
composites can be prepared with the development of advanced manufacturing methods
to incorporate nano scale reinforcements in the matrix and used with proper structural
design in several applications. Thus low cost lightweight alternative structures with

exceptional properties can be obtained with nano reinforcements.

There are possible issues associated with nano composites such as problems in dis-
persion, alignment, achievable volume fraction of reinforcement, bonding and inter-
faces of composites. These issues will lead to degradation of mechanical properties of
the composite. The nano composites are widely used in fuel efficient cars, aerospace,
auto-mobile and sporting goods. Thus the consideration of agglomeration associated

with the dispersion of nano composites is necessary.

Some confined and small sized structures would actually benefit from the perfor-
mance enhancement and tailorability provided by nano composites because of the small
size. These include structural elements in NEMS/MEMS (nano- and microelectro me-

chanical systems) and thin walls present in foams (Safdari and Al-Haik 2018).



1.1.4 Graphene Nano Platelets (GNP) Reinforced Composites

The graphitic materials extracted from a single layer of graphene to platelets of 100nm
thickness are included in the definition of graphite nano platelets (Young et al. 2012).
Figure 4.1 shows the molecular model of a single graphene layer. The graphite nano
platelets are produced by different methods including ball milling, ultrasonication and
by microwave radiation exposure to graphite intercalated with acid. The availability
of GNP as a single layer graphene nano platelets (GPL) has gained much interest in
the scientific community. The single layer of graphene has exceptional mechanical
properties as reported by indentation experiment: Young’s modulus = 1000 + 100 GPa
by Lee et al. (2008) and estimated using theoretical approach as 1050 GPa by Liu ez al.
(2007).

Figure 1.2: Graphene-1 layer molecular model (Young et al. 2012)

The interest in the development of GPL reinforced composites is due to several rea-
sons. The prime reason being its ability to impart better load carrying capacity even
with very low concentrations (Rafiee et al. 2009; Liu et al. 2013). Additionally, im-
provement in other properties such as thermal conductivity, barrier nature and electrical
conductivity is an advantage. The possible issues associated with the GPL composites
are, non-uniform dispersion of GPL in the matrix are poor exfoliation, restacking oc-

currence and poor interface bonding. These issues can cause a significant reduction in



mechanical properties. Even though there are possible issues associated with GPL, it
can be used with ease as reinforcements of thin walls of open cell foams so that higher

strengths can be obtained with lower concentrations.

1.1.5 Graphene Oxide Powder (GOP) Reinforced Composites

Graphene oxide by definition is the oxidised form of graphene which is found as a com-
bination of individual graphene oxide sheets. The preparation of graphene oxide is done
by different methods but the method proposed by Hummers Jr and Offeman (1958) is
the efficient one which uses a water free mix of potassium permanganate, concentrated
sulphuric acid and sodium nitrate to treat the graphite. The mechanical properties of
GOP are lower compared to GPL due to several reasons such as the replacing of sp?
with sp? bonding and changes in the structure due to oxidation. The equivalent Young’s
modulus of graphene oxide is 480 GPa as predicted by Suk ef al. (2010). However,
there are several advantages associated with usage of GOP such as its availability in
large quantities because of the scalability of manufacturing process, ability to form bet-
ter interfaces with polymer matrix because of the presence of functional groups and
ease of dispersion and exfoilation in the matrix (Young et al. 2012). The graphene ox-
ide has major advantage in terms of preparation of composites that it can be exfoilated
using water and the nano-composites can be prepared using water soluble polymers.
Another method is by in-situ polymerisation of the polymer matrix. With epoxy resins,
intercalative polymerisation can be achieved for producing nano composite with en-
hanced properties (Young et al. 2012). Thus graphene oxide can be used together with

polymeric matrix to produce advanced lightweight composites.

1.1.6 Carbon Nano Tube (CNT) Reinforced Composites

The CNTs are found as cylindrical rolled up form of graphene sheets. The CNTs are

generally classified as (1) single walled nano tubes where a single layer of graphene



is to form the cylindrical roll, (2) multi walled nano tubes where multiple concentric
rolled cylinders with 0.34 nm interlayer spacing is found. The CNTs are widely man-
ufactured by methods such as laser ablation, CVD (chemical vapour deposition) and
arc evaporation methods (Mittal et al. 2015). The excellent mechanical properties of
CNTs (Yakobson and Avouris 2001; Qian et al. 2002; Reich et al. 2008) such as high
Young’s modulus, high tensile strength, and low density and enhancement of mechani-
cal properties of bulk composite on addition of CNT (Coleman et al. 2006; Qian et al.
2000; Haggenmueller et al. 2000; Velasco-Santos et al. 2003) is already reported in the

literature.

The problem of uniform dispersion is associated with CNTs due to Van-der-Waals
forces, high aspect ratio, and low bending stiffness. The CNTs tend to bundle together
and it is called as agglomeration. Thus CNT agglomeration tend to reduce overall
mechanical properties considerably. CNTs can be utilised with ease in nano/micro
electromechanical systems to enhance their mechanical performance. However, the
consideration of size effects is important in the design of nano scaled structures. In
general, when comparable characteristic lengths exist, the classical continuum theories
(2D & 3D) becomes non applicable. Various non-classical continuum theories contain-
ing material length scale parameters have been proposed over the years. The non-local
elasticity theory (Eringen 1972, 1983, 2002) is the widely used one, which specifies
that the stress at the point of consideration accounts not only for strain at that point but

also for strain at all points in the domain.

1.1.7 Porous Nano-Composites

The metal foams are identified as an advanced class of materials with high stiffness to
weight ratio, high energy absorption capabilities and very low density. The closed cell
foams and open cell foams are the two class of foams available. In open cell foams, the
cells are only interconnected not closed but in closed cell foams, cells are enclosed by

thin walls (Ashby et al. 2000).



Along with these advantages, however, there are some limitations associated with
metal foams such as loss in stiffness due to the presence of porosity. The loss in stiffness
can be regained by the addition of nano reinforcements which will maintain the inherent
advantages such as light weight nature. Due to the specific advantages, the porous nano
composites can be utilized in high speed rail applications (high damping and improved
stiffness), aerospace applications (light weight and high stiffness), floor panels (high
stiffness and light weight), and also as automobile energy absorbing panels (Smith ez al.

2012; Li et al. 2018).

1.1.8 Porous Nano-Composite Sandwich Material

Porous nano composite sandwich is a material having metal face sheets and GPL re-
inforced porous core which has potential applications in marine, aerospace and auto
mobile industries (Banhart 2005; Banhart ez al. 2019). Compared to conventional sand-
wich panels where core and face sheets are glued together, the metallic nature of porous

nano composite sandwich is an advantage.

1.2 Literature Review

1.2.1 Introduction

The focus of the thesis is the analysis of buckling and free vibration response of cylin-
drical panel reinforced with nano reinforcements under the influence of NELs. The
review is organised with GPL reinforced structures first, followed by CNT reinforced
structures then by GOP reinforced structures. The literature review is organised in such
a way that buckling studies under uniform and non-uniform edge loading is discussed
first. This is followed by free vibration characteristics with and without the influence of

uniform and NELs.



1.2.2 Buckling Analysis Under Uniform and Non Uniform Edge
Loads

1.2.2.1 Isotropic and Laminated Composites

Leissa and Kang (2002) studied free vibration and buckling characteristics of plates
under different boundary conditions subjected to different linearly varying NELSs using
power series solution method. They established the usage of power series method for

the buckling and free vibration analysis of plates under different boundary conditions.

Kang and Leissa (2005) presented an exact method for buckling analysis of rectan-
gular plates subjected to linearly varying NELs using power series. Their solutions are
non applicable for a non-general non-uniform edge loading conditions other than that

of linearly varying edge loads.

Panda and Ramachandra (2010) investigated buckling characteristics of isotropic
and laminated composite plates under different NELs using Galerkin’s method. They
proposed a more general method of solution for obtaining buckling characteristics of

plate structures.

Hamedani and Ranji (2013) analysed buckling characteristics of stiffened plates
subjected to NELs using finite element method.They found that critical buckling load

is influenced by the type of edge loading.

Dey and Ramachandra (2014) studied the influence of partial edge loadings for
post buckling and dynamic instability of composite cylindrical panels using Galerkin’s
method. It is observed that the partial edge loading applied in longitudinal direction

leads to behaviour of cylindrical panel as an imperfect panel.

Abolghasemi et al. (2019) analysed buckling characteristics of an isotropic plate
with a hole subjected to uniform and non-uniform (parabolic and sinusoidal) edge load-
ings using analytical method. They observed that buckling characteristics are influenced

by the type of edge loading.



Adhikari and Singh (2020) investigated the dynamic instability of laminated com-
posite plate subjected to NELs using finite element method. The instability behaviour
of composite plate varies in such a way that highest impact is for parabolic loading

followed by sinusoidal loading then by reverse sinusoidal loading.

Watts et al. (2021) studied buckling and dynamic instability characteristics of lam-
inated composite and isotropic plates subjected to NELs using element free Galerkin
method. They observed that the critical buckling load of trapezoidal plate depends on

the type of edge loading.

1.2.2.2 Porous Cellular Materials

Pollien et al. (2005) demonstrated production of functionally graded porous structures
with graded porosity. The study indicate that lightweight graded beams exhibit more

promise in the stand point of load-limited design.

Magnucka-Blandzi (2008) investigated buckling characteristics of circular porous-
cellular plate using Galerkin’s method. They demonstrated decrease in critical buckling

load with increase in porosity of the plate.

Thang et al. (2018) studied buckling characteristics of porous metal foam plates
subjected to UEL using an analytical method. They observed that increase in porosity

leads to reduction in critical buckling load due to loss in the structural stiffness.

Wang and Zhang (2019) analysed buckling characteristics of porous metal foam
plates subjected UEL using Galerkin’s method. The observed the variation in critical
buckling load with respect to the changes in the porosity distribution through the thick-

ness.

Li et al. (2019d) studied buckling characteristics of GPL reinforced porous arches
using analytical methods. Their study reveals that the increase in porosity content re-

duces the critical buckling load. They also observed that the increase in GPL content
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increases the critical buckling load significantly.

Toan Thang et al. (2020) investigated buckling and post buckling characteristics
of metal foam cylindrical shells under uniform edge compression using Galerkin’s
method. They observed a reduction in critical buckling load with increase in poros-

ity in the cylindrical panel.

1.2.2.3 Graphene Nano Platelet (GPL) Nano-Composites

Liu et al. (2018) studied buckling characteristics of GPL reinforced cylindrical shells
using analytical methods. The results of the study indicate that the distribution of in-

creasing concentration of GPL towards extreme surfaces improves the critical buckling

load.

Ebrahimi and Barati (2018) analysed free vibration analysis of single layer graphene
sheets subjected to NELs using Galerkin’s method. They have considered the strain gra-
dient elasticity theory to include the influence of non-local and strain-gradient effects.

It is observed that the natural frequency reduces with increase in the edge load intensity.

Song et al. (2018) investigated bending and buckling analysis of GPL reinforced
plates using analytical method. A notable influence of GPL reinforcement pattern,

weight fraction on the bending and buckling response is established.

Gunasekaran et al. (2020a) studied buckling characteristics of GPL reinforced com-
posite plates subjected to uniform and NELs using analytical method. They reported

that the buckling characteristics is influenced by the type of edge loading.

Wang et al. (2022a) analysed buckling characteristics of shear deformable graphene
reinforced plates subjected UELs using multi-term Kantorovich-Galerkin approach.
They shown that the distribution in which graphene concentration is more at the ex-
treme surfaces gives higher buckling strength. Further, the increase in concentration of

graphene leads to an increase in the buckling load.
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1.2.2.4 Porous Nano-Composites

Yang et al. (2018) studied buckling characteristics of GPL reinforced porous plates
under UEL using Chebyshev-Ritz method. The study reveals that the distribution of

porosity and GPL has remarkable influence on the buckling characteristics of the plate.

Zhou et al. (2019) analysed non linear buckling characteristics of GPL reinforced
porous cylindrical shells subjected to uniformly distributed pressure using Galerkin’s
method. They observed that buckling characteristics is depend on the average size of

pores, GPL weight fraction and thickness of GPLs.

Shahgholian et al. (2020) investigated buckling characteristics of GPL reinforced
porous cylindrical shells using Rayleigh-Ritz method. It is observed that increase in
density and size of pores leads to a reduction in critical buckling load. On the other
hand, an increase in weight fraction of GPL leads to an improvement in overall buckling

capacity.

Anamagh and Bediz (2020) studied buckling and free vibration characteristics of
porous GPL reinforced plates subjected to UEL using spectral Chebyshev method.
From the study, it is observed that the increase in amount of porosity reduces the stiff-
ness and thus the buckling load, while increase in amount of GPL increases the critical

buckling load.

Shakir and Talha (2022) investigated dynamic response of functionally graded GPL
reinforced porous spherical panels under blast loading using finite element method. The

influence of GPL and porosity on the dynamic response is established in detail.

1.2.2.5 Porous Nano Composite Sandwich Material

Li et al. (2018) studied dynamic buckling analysis of GPL reinforced porous core sand-
wich plate using Galerkin’s method. Based on the study, the influence of porosity, GPL

content on the dynamic stability of the sandwich plate is established.
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Yaghoobi and Taheri (2020) analysed buckling characteristics of sandwich plate
with GPL reinforced porous core subjected to UEL using an analytical method. Based
on the study, it is shown that presence of GPL improves the buckling capacity for high

core to total thickness ratio than compared to smaller core to total thickness ratio.

Adhikari et al. (2020) studied buckling characteristics of porous FGM plates sub-
jected to UEL and NELs using finite element method. It is shown that the critical
buckling load is significantly influenced by the type of edge loading. Further, changes

in buckling mode shape also observed as a function of the type of the edge load.

Tao and Dai (2021) analysed post buckling characteristics of functionally graded
GPL reinforced porous cylindrical shell panels using isogeometric analysis (IGA). The
study reveals that increasing GPL in the core leads to increase in post buckling strength.
On the other hand, increasing porosity in the core reduces the buckling strength. Fur-
ther, the distribution in which the pores are not found on the extreme surfaces enhances

the buckling strength.

1.2.2.6 Carbon Nano Tube (CNT) Nano-Composites

Kiani (2017) studied buckling analysis of CNT reinforced composite plates subjected to
parabolic edge loading using Chebyshev-Ritz method. The distribution of stress resul-
tants are calculated using minimisation of membrane strain energy. Then, Ritz method

is employed by considering Chebyshev polynomials to obtain the buckling parameters.

Thang et al. (2017) investigated non-linear buckling characteristics of CNT rein-
forced plates subjected to UEL by using Galerkin’s method. They observed a variation
in buckling characteristics with increase in CNT reinforcement. They also observed
significant changes in buckling behaviour according to the graded distribution of CNTs

through the thickness.

Phung-Van et al. (2017) analysed free vibration characteristics of CNT reinforced

nano plates by considering non-local elasticity theory using isogeometric analysis. They
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observed a reduction in natural frequency of the plate with increase in non local param-

eter.

Jiao et al. (2019) analysed buckling characteristics of CNT reinforced plates using
differential quadrature method (DQM) subjected to different partial edge loads. Their
study reveals that the buckling characteristics are sensitive to partial edge load distribu-

tion.

Chakraborty et al. (2019) studied buckling and post buckling characteristics of CNT
reinforced cylindrical panels subjected to UEL and NELs using Galerkin’s method.
They observed a non-linear equilibrium post buckling path when linearly varying non-
uniform edge loading is applied. However, for the parabolic and partial edge loading

conditions, continuous deformation path is observed.

Thang et al. (2019) analysed non-linear buckling characteristics of CNT reinforced
cylindrical shells subjected to UEL using Galerkin’s method. They observed a signifi-

cant change in buckling characteristics according to the type of CNT distribution.

Daghigh et al. (2020) studied buckling characteristics of CNT reinforced composite
plates considering non-local elasticity theory using analytical method. They observed a

decrease in the critical buckling load with increase in non-local parameter.

Naghsh et al. (2021) investigated buckling characteristics of polymeric core sand-
wich plates with CNT reinforced face-sheets subjected to uniform and different linearly
variying edge loads using spline finite strip method (SFSM). They observed the influ-

ence of edge load becomes significant when the ratio between width and length is small.

1.2.2.7 Graphene Oxide Powder (GOP) Nano-Composites

Zhang et al. (2020) analysed buckling characteristics of graphene oxide powder (GOP)
reinforced polymer beams under edge compression. Their study indicate that increase

in GOP weight fraction improves critical buckling load of composite beams.
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Ebrahimi et al. (2021) studied buckling characteristics of GOP reinforced shells
using Galerkin’s method. They observed that the increase in GOP weight fraction sig-

nificantly improves the buckling characteristics of the shell.

1.2.3 Free Vibration Analysis
1.2.3.1 Isotropic and Laminated Composites

Mantari et al. (2011) proposed a higher order shear deformation theory for the free
vibration analysis of composite and sandwich shells. They demonstrated the accuracy
of the proposed higher order theory for the free vibration analysis of composite and

sandwich shells by comparing with results of different theories.

Hosseini-Hashemi et al. (2015) investigated free vibration response of nano plates
considering non-local elasticity theory using an analytical method. They observed a

decrease in natural frequency with increase in non-local parameter.

Sayyad and Ghugal (2019) analysed the free vibration response of laminated com-
posite and sandwich spherical shells using an analytical method. They proposed a gen-
eralised higher order shell theory and compared it with available theories to ascertain

its efficiency.

Gunasekaran et al. (2020b) studied free vibration and acoustic characteristics of
an isotropic plate subjected to different edge loads using an analytical method. They
observed a reduction in free vibration frequency with the increase in magnitude of the

edge loading.

Arefi (2020) investigated vibration characteristics of piezoelectric nano shells con-
sidering nonlocal elasticity theory using Galerkin’s method. He observed that increase

in nonlocal parameter leads to a reduction in natural frequency of the nano shell.
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Moayedi et al. (2021) analysed free vibration characteristics of laminated cylindri-
cal shells by considering non-local stress and strain gradient theory using generalized
differential quadrature method element method (GDQEM). The influence of non-local

parameter and length scale parameter on the natural frequency is analysed in detail.

1.2.3.2 Porous Cellular Materials

Chen et al. (2016) analysed free and forced vibration characteristics of functionally
graded beams using numerical method. They observed that variation of fundamental

frequency with porosity occurs according to the porosity distribution.

Akbag (2017) investigated the thermal effects on vibration characteristics of func-
tionally graded beams with porosity using finite element method. They observed a vari-
ation in vibration characteristics with porosity parameter and temperature according to

the type of porosity distribution.

Wu et al. (2018) investigated free vibration characteristics of functionally graded
beam structures using finite element method. They established the influence of porosity

on the free vibration frequency of the porous beam.

Zhao et al. (2019) studied the free vibration characteristics of porous metal foam
plates using improved Fourier series method (IFSM). They observed that the frequency
of the porous plate depends primarily on the type of porosity distribution and amount

of porosity.

Xue et al. (2019) analysed free vibration characteristics of porous foam plates with
variation of porosity along the thickness and in-plane directions using isogeometric
analysis method. The influence of different distribution of porosity and amount of

porosity on the free vibration characteristics is analysed in detail.

Ramteke (2019) studied free vibration characteristics of porous plates using finite

element method. He established the influence of porosity coefficient and distribution of

16



porosity on the free vibration response of the plate.

Wang et al. (2019) investigated free vibration characteristics of porous shells using
Rayleigh-Ritz method. The results of the study indicate that the influence of porosity
on the natural frequency of the cylindrical shell is significant. It is also shown that the

influence of porosity on the natural frequency depends on different distributions.

Wang and Zhao (2019) studied free vibration characteristics of metal foam core
sandwich beams using Chebyshev collocation method (CCM). From the study, the in-
fluence of different porosity distributions on the free vibration characteristics of sand-
wich beam is established. The influences of core to total thickness ratio and amount of

porosity on the natural frequency of the sandwich beam are analysed in detail.

Li et al. (2019a) analysed vibration characteristics of porous cylindrical shell using
Rayleigh-Ritz method. The results indicate that porosity coefficient and distributions

influence the vibration frequency of the cylindrical shell.

Li et al. (2019b) studied free vibration characteristics of porous spherical shells
using Ritz method. The study reveals that the nature of grading and amount of porosity

have a significant influence on the free vibration frequency.

Teng and Wang (2020) analysed non-linear free vibration characteristics of graphene
reinforced porous plates using an analytical method. From the study, it is shown that
hardening or weakening phenomenon according to the increase in porosity depends
upon the porosity distribution. Further, increase in weight fraction of GPL leads to an

increase in non-linear natural frequency.

1.2.3.3 Graphene Nano Platelet (GPL) Nano-Composites

Feng et al. (2017) analysed non-linear free vibration characteristics of GPL reinforced
composite beams using Ritz method. They observed significant improvement in natu-

ral frequency by the addition of GPL. The distribution pattern of GPL in which high
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amount of GPL at the extreme surfaces provides the better natural frequency values.

Song et al. (2017) investigated free and forced vibration characteristics of GPL re-
inforced plates using an analytical method. They established the influence of amount of

GPL and distribution on the free vibration characteristics of the plate.

Wang et al. (2018) studied free vibration characteristics of GPL reinforced doubly
curved shells using an analytical method. They observed that the increase in small

amount of GPL result in significant improvement in natural frequency.

Van Do and Lee (2020) analysed free vibration characteristics of GPL reinforced
curved panels using the isogeometric analysis. They observed notable influence of GPL
weight fraction and its grading pattern of reinforcement on the free vibration character-

istics.

1.2.3.4 Porous Nano-Composites

Pourjabari et al. (2019) studied free and forced vibration characteristics of GPL rein-
forced porous cylindrical nano shells using an analytical method. They have used a size
dependent theory to model the nano shell. Based on the study, it is shown that increase

in porosity, GPL and length scale parameter leads to an increase in natural frequency.

Barati and Zenkour (2019) analysed the free vibration characteristics of GPL rein-
forced porous nano composite shells using Galerkin’s method. The results of the study
indicate that GPL, porosity distribution and porosity coefficient has an evident influence

on the natural frequencies.

Wang et al. (2019) studied free vibration characteristics of graphene foams using
Chebyshev-Ritz method. Based on the study, it is shown that increase in foam coeffi-
cient leads to reduction in natural frequency. It is also shown that foam distributions

have a significant influence on the free vibration characteristics.
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Rahimi ef al. (2020) investigated free vibration characteristics of porous GPL re-
inforced composite cylindrical shell using semi analytical method. From the study, it
is shown that the distribution of porosity and GPL has an important influence on the

natural frequency.

Amir et al. (2022) analysed non-linear free vibration characteristics of functionally
graded porous cylindrical panels finite element methods. They investigated the influ-
ence of porosity distributions on the non-linear vibration characteristics of cylindrical

panels.

1.2.3.5 Carbon Nano Tube (CNT) Nano-Composites

Hedayati and Aragh (2012) analysed free vibration characteristics of CNT reinforced
sectorial plates considering agglomeration using generalised DQM. Based on the study
it shown that agglomeration phenomenon influences the natural frequency of the plate.
Further, it is observed that agglomeration parameter has less influence for symmetric

distribution compared to uniform and asymmetric distributions of CNTs.

Yas et al. (2013) studied free vibration characteristics of CNT reinforced cylindrical
panels using DQM. The influence of CNT volume fraction and its distribution pattern

on the free vibration characteristics of cylindrical panel is analysed in detail.

Tornabene et al. (2016) investigated vibration characteristics of CNT reinforced
composite laminated doubly curved shells using generalised DQM. They demonstrated
that addition of CNTs improves the stiffness of structure and thus the natural frequency.
They also shown that influence of CNT is remarkable when CNTs are uniformly dis-

tributed.

Kamarian et al. (2016) studied free vibration characteristics of conical shells rein-
forced with agglomerated CNTs using generalised DQM. The effect of the agglomera-

tion parameters on the free vibration frequency is established by the study.
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Nguyen et al. (2018) analysed free vibration characteristics of CNT reinforced shell
panels using non-uniform rational B-Spline (NURBS) functions. They observed im-
provement in natural frequency of the shell panel with increase in volume fraction. It is
also observed that the improvement in frequency with volume fraction is highly depen-

dent on the distribution pattern of CNTs.

Ansari et al. (2019) investigated free vibration characteristics of CNT reinforced
plates with arbitrary shapes using DQM. The results presented shows that the natural
frequency increases with increase in volume fraction of CNT. The results also revealed
that the nature of CNT distribution pattern has a significant influence on the natural

frequency.

Dindarloo and Li (2019) studied free vibration characteristics of CNT reinforced
cylindrical shell panels by considering non-local elasticity theory an using analytical
method. They observed that the increase in non-local parameter decreases the natural

frequency of the cylindrical panel.

Ghasemi et al. (2019) analysed vibration characteristics of CNT reinforced cylin-
drical shells considering the agglomeration effect using an analytical method. They
demonstrated that an agglomeration parameter has significant influence on the free vi-
bration frequency. Further, it is also shown that increase in mass fraction of CNTs leads

to an increase in natural frequency of the shell.

Daghigh and Daghigh (2019) investigated free vibration behaviour of CNT rein-
forced plates considering non-local elasticity theory and analytical methods. The influ-
ences of non-local parameter, volume fraction of CNT on the free vibration character-

istics are analysed in detail.

Bisheh and Civalek (2020) studied vibration characteristics of CNT reinforced cylin-
drical panels subjected to hygrothermal loading using an analytical method. They re-
ported that increasing the amount of CNT as reinforcement improves the natural fre-

quencies of the cylindrical panel. They also observed that an increase in temperature or
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moisture reduces the natural frequency of the cylindrical panel.

Civalek et al. (2022) analysed buckling and free vibration characteristics of CNT
reinforced laminated composite plates subjected to UEL using discrete singular convo-
lution method. The study reveals that lower aspect ratio of the plate and increase in

volume fraction of CNT leads to increase in buckling and free vibration characteristics.

Cheshmeh et al. (2022) studied buckling and free vibration characteristics of CNT
reinforced plate using analytical method and the DQM. From the study, it is inferred
that the increase in CNT volume fraction increases the natural frequency. Further, the
influence of CNT distribution pattern on the buckling and free vibration characteristics

is also presented.

1.2.3.6 Graphene Oxide Powder (GOP) Nano-Composites

Ebrahimi et al. (2019) studied free vibration characteristics of GOP reinforced com-
posite beams using Galerkin’s method. They observed that increase in GOP weight
fraction increases the natural frequency of the composite beam. They also established

the influence of GOP weight fraction on the free vibration characteristics.

Ebrahimi et al. (2020) analysed free vibration characteristics of GOP reinforced
plates subjected to thermal loads using an analytical method. They observed that the
variation in free vibration frequency with increase in GOP weight fraction is different
for room temperature and elevated temperature cases. However, for some distributions

the vibration frequency is observed to be increasing with the temperature.

Wang et al. (2020) investigated the free vibration characteristics of GOP reinforced
beams using Ritz method. They observed that the addition of small amounts of GOP
improves the natural frequency. They also suggested that by placing more amount of
GOPs on top and bottom fibres, higher stiffness and thereby higher natural frequency is

observed.
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Wang et al. (2022b) studied vibration characteristics of GOP reinforced curved
beams using an analytical method. The study reveals that a low level of reinforce-
ment leads to much high improvement in vibration frequency of the curved beams.
Further, GOP reinforcements and diameter to thickness ratio has a high influence on the

vibration frequency.

1.2.4 Closure

Many researchers have studied buckling and free vibration characteristics of structures
subjected to UEL over the years. However, very limited amount of studies are carried
out by considering non-uniformly varying edge loads. From the literature survey, it is
found that the type of edge loading, aspect ratio of the cylindrical panel, distribution of
material properties through the thickness significantly influence the buckling and free

vibration characteristics of the cylindrical panel.

Most of the studies of structures subjected to NELs are carried out using numerical
methods such as finite element method, differential quadrature method and isogeomet-
ric method etc. The semi-analytical method is used in limited amount of studies and it
has an ease of computation for finding the buckling and free vibration when subjected

to non-uniform edge loads more accurately.

The development of nano composite structures which are light in weight helps in
reduction of emissions and fuel savings. Introducing nano reinforcements enhances
structural stiffness of the thin-walled structures significantly without much increase in
overall weight. The weight of the component can be reduced by introducing the poros-
ity. However, the porosity tends to reduce the stiffness of the structure. In that case
further improvement in stiffness can be achieved by using nano reinforcements. For
light weight cylindrical panel structures, the literature review reveals that the distribu-
tion and amount of porosity, distribution and amount of nano reinforcements, non-local

effect and agglomeration phenomenon significantly influences the buckling and free
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vibration characteristics.

1.3 Objectives and Scope of Study

Because of the rapid development of light weight nano-composite cylindrical panels,
it is important to study the buckling and free vibration characteristics for better under-
standing and design of these structures. From the literature survey, it is evident that the
nature of edge loading significantly influences the buckling and free vibration charac-
teristics. The main objective is to investigate the influence of non-uniform edge loads

(NELSs) on the buckling and free vibration characteristics of cylindrical panels.

Similarly, the usage of nano composites with porosity and nano reinforcements
requires careful analysis of weight fraction and distribution of nano reinforcements,
amount and distribution of porosity in cylindrical panel and sandwich cylindrical panel.
Furthermore, the influence of porosity pattern, amount of porosity on the core to total
thickness ratio also need to be analysed. Further, the possible issues associated with the
nano reinforcements such as agglomeration and consideration of size effects also need

be analysed. The following objectives are formulated based on the above discussion:

* To implement a semi-analytical method for buckling and free vibration behaviour

of cylindrical panels subjected to different types of NELs.

* To study the buckling and dynamic behaviour of GPL reinforced porous cylindri-

cal nano-composite panels and sandwich panels subjected to different NELs.

* To investigate buckling and free vibration behaviour of CNT reinforced cylindri-
cal panels under NELs considering the agglomeration of CNTs and based on the

non-local elasticity theory.

* To analyze the buckling and free vibration response of graphene oxide powder

(GOP) reinforced cylindrical panel under NELs.
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1.4 OQutline of the Thesis

The first chapter of the thesis includes the brief introduction and literature review. In
the following chapters, the methodology, validation and followed by results and dis-
cussion are presented. In the final chapter, conclusions and outcomes of the present
research work is presented. The remaining chapters details are explained in the sections

following.

Chapter 2 details the methodology followed for buckling and free vibration of a
cylindrical panel under NELs. The generalised formulation of governing differential
equations is discussed first. Followed by that semi analytical solution procedure includ-
ing pre-buckling analysis is discussed in detail. The solutions obtained are validated

with different published results.

Chapter 3 details the buckling and free vibration characteristics of an GPL rein-
forced porous cylindrical panel under NELs. The semi analytical method is used to
carry out the analysis of the influence of amount and distribution of porosity, amount
and distribution of GPL, aspect ratio and type of edge loading on the buckling and free

vibration characteristics.

Chapter 4 examines buckling and free vibration response of a sandwich cylindrical
panel having GPL reinforced foam core and aluminium face sheets subjected to uniform
and different NELs. The influence of amount and distribution of porosity, amount and
distribution of GPL, core to total thickness ratio, aspect ratio and type of edge loading
on the buckling and free vibration behaviour of sandwich cylindrical panel is presented

in detail.

Chapter 5 details the non-local buckling and free vibration studies of agglomerated
CNT reinforced cylindrical panel subjected to NELs. The CNT reinforced cylindrical
panel is analysed for the influence of non local parameter, type of edge loading, degree

of agglomeration on the buckling and free vibration response.
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Chapter 6 presents the investigation of buckling and free vibration response of
graphene oxide powder (GOP) reinforced cylindrical panel structures under the influ-
ence of NELs. The influence of amount and distribution of GOP, type of edge loading,

aspect ratio on the buckling and free vibration characteristics is analysed in detail.

In chapter 7, important findings and conclusions are summarized.
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CHAPTER 2

METHODOLOGY

2.1 Introduction

From the previous chapter, the literature review, motivation and scope for the study
is established. In this chapter, methodology followed for buckling and free vibration
analysis of cylindrical panels subjected to different types of non-uniform edge loads
(NELs) is described. A semi analytical method based on Galerkin’s technique is imple-
mented which has the ability to predict the buckling and free vibration characteristics of
the panel under the influence of NELs accurately with the help of a higher order shear
deformation theory. Two sets of non-uniform edge loads namely, non-uniform load I
(NEL-I) and non-uniform load II (NEL-II) are considered in the present work. In the
case of non-uniform load I, the variation of edge load is linear while in non-uniform

load II case the variation of edge load is not linear.

2.2 Analysis Approach

Semi-analytical method is used to find the buckling and free vibration characteristics
of the cylindrical panel under the influence of NELs. Three different types of edge
loadings namely, uniform, type I non-uniform edge loadings, type II non uniform edge
loadings are considered. The analysis approach followed in the present work is given
in Figure 2.1. The stress distribution developed due to UEL and NEL-I coincides with
edge loading pattern so the panel does not experience any pre-stress in directions other
that of loading. Hence, the pre-buckling stress evaluation is not carried out when the

panel is subjected to these loadings. On the other hand, the stress distribution developed
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Uniform and
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Non-uniform
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Y
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Characteristics
Under edge load
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Characteristics

Figure 2.1: Flow chart of the present work

due to NEL-II is calculated using pre buckling analysis because of the presence of all
in plane stress components. After the evaluation of stress distribution developed as a
results of edge loads, buckling characteristics are obtained by solving the eigen value
buckling problem. Similarly, free vibration characteristics are estimated by solving free

vibration eigen value problem.

2.3 Formulation

The derivation of governing differential equations of the cylindrical panel under various
NELs is described in this section. Schematic of the cylindrical panel considered, with

details of geometric configuration and coordinate system used is shown in Figure 2.2.
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The displacement field considering a higher order shear deformation theory is:

b

Figure 2.2: Geometry and coordinate system of the cylindrical panel studied.

u<x7yyz7t) UO(x>y7t) W wz(xayat)
v(,y,2,t) ¢ = (1+ Fvo(z,y,t) ¢ — 2 %’;“) +1'(2) § ¥y(z,y,t)
w(%y»«%t) wO(xaya t) 0 0

(2.1)
where, ['(z) = z — %Z—i is the Reddy’s shear deformation theorem (Reddy 2000) and
Yu(z,y, 1), ¥y (z,y,t) are rotations of the cross-section about y and x axis respectively.
ug, Vg and wy denotes the displacement of the mid plane along x, y, z directions respec-
tively, and u, v, w are the displacements of point of interest within the cylindrical panel.

The relations connecting in plane, transverse strains and displacement is outlined as:

. oug 2w 9
TT oz Ox2 oz
={ v 4w \ _ QPwg | 1 9vg Oy nl
Eyy o 2 Bt R +TI'(2) 5 +€
Qug | dug 10v _ 90%wg Ips | Oy
Vay oy T ox Ror — 2ondy 3y T e
(2.22)
r}/zz C wﬁ
= 220G (2.2b)
4
Vyz y
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where, € denotes the non-linear strain components given as

2 2 T
nl __ ow, ow Jwg dw
“-{i(w) 1) (2] e

The stress-strain relation of the cylindrical panel is established considering a layered

structure as follows:

(k) r q (k) y (k)
Ozz Qu @iz O 0 0 €z
Oyy Q2 Q22 O 0 0 €yy
Tyz =10 0 Qu 0 O Yyz (2.4)
Tez 0 0 O Q55 O Yaz
Ty ) L 0 0 0 0 QGG_ \szy)

Qi; are stiffness matrix coefficients and defined as follows:

Qu = Q= 1332

Qes = Qs5 = Qua = G(2) (2.5

Q12 =Qn = 1/1]_382

Hamilton’s principle is applied to obtain the governing differential equations of the

cylindrical panel
JZ(OK +6U — 6V)dt =0 (2.6)

where, 0 - variational operator, 6V - work done by the external forces, U - strain en-

ergy, and 0 K - kinetic energy.

h/2 b ra " v w
f;tlg {p f—}i/z Io s <%5U + %51} + %%510) dxdydz
+ fff/tiz fob foa(am&m + 0yy0€yy + Toy0Vay + Toz0Vez + Tyzéyyz)dxdydz} =0

2.7
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The in-plane force and moment resultants of the cylindrical panel are defined as:

h .
Nyy ¢y M, 05§ Mg, = [2 <1,z,z— g;;) Oyy ¢ 42 (2.8)
Nzy Miy Ma‘csy

Q$Z % ZZ TIZ
o[~ T (1 — 4m> dz (2.9)
yz

Tyz

Inertia coefficients of the cylindrical panel are defined as:
h
(I, Iy, I3) = f% p(1,2,2%)dz

1 4 23 4 23 4 2 (210)
(o) = [ (- 470,56 — 420, (- 47) s

w

Introducing stress resultants and inertia coefficients in Equation 2.7, takes the following
form:
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M2y 9svq I8Ys a5y dwq 95 Hwq 95
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TRt e T My, M T+ N,y oy oz T Ny oz + Qo20thg + Qy201y

o FPug 3wg 0%y Bug *wg 93, Bvg 9*wg
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3y 93 52w 2y 3w 92
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2.11)
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The governing partial differential equations can be written by equating dug, dvg, dwy,

d¢, 01 coefficients to zero given as:

ANy 3Ngm _ Il Pug 1'2 83 wo + 1'4821L'm

By EEa oz0t? a1 : dug
ON, ON, aMb I I 52 I. \ 83
oo s 2 (2 28 ) — (nv2h+ ) %o - (R k) B
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+<[4+R> e : v
22 Mb, o2Mb, | 9°Mb, N, 9 w w
5t + 2%+ Tt — T | G Naw + G Ny

0 [ dw AT Ow AT 3 vg
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4 83 2
_I3 8221522 + [5 3yg;yz + Il 6350 : 5’(1}0
a o 3’[UQ T
1(\9/[; + 8y Qacx - [4 atQ [5 graf? + IG daz/; 5¢J’)
oMy Mz, 3 92
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(2.12)
and,
N, = Noy — ngy
Ny, Nyy — nyy

Using Equations 2.4, 2.8 and 2.12 and neglecting non-linear terms the governing differ-

ential equations can be re-written as:

8ug 5 Az &
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The different coefficients are defined as follows:
h
(Aij, Bij, Dij, Eij) = fi Qij(1,2,2%, 2 — 12)dz
(2.15)

h 2 ) 2

The governing differential equations and different coefficients presented in this section
provides a general frame work of the buckling and free vibration studies conducted
throughout the study. However, in subsequent chapters changes relevant to the particu-

lar study are presented. The properties of materials used in the thesis is summarised in
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Table 2.1: Different materials and properties used in the present study

SI No Matrix Reinforcement
Copper GPL
1 | E, = 130GPa, v,,, = 0.34 Egpr = 1.01TPa, vepr, = 0.186
Pm = 8960kg,/m? pep1=1062.5 £
Aluminium Alloy GPL
2 Em=683 GPa, I/m=0.34 EGPL = 101TPa, vgpr = 0.186
pm=2689.8£% pepr=1062.5 £
PmPV SWCNT
3 FE,=2.1 GPa, v,,=0.34 Hills moduli(GPa): p,=1, =10, k,=30, m,=1, n,=450
pr=1150%% pcrr=1400 £ vgp;, = 0.186
Epoxy GOP
4 | Bn=30GPa,v, =0.34 Egop = 444.8GPa, vgop = 0.165
Pm=120025 paop = 10904
Table 2.1.

2.4 Solution Procedure

In the present work, buckling and free vibration studies are carried out in different
steps. Firstly, pre-buckling analysis is performed to obtain the stress distribution due
to applied non-uniform edge load (NEL). After evaluating all the in-plane stress resul-
tants, the buckling parameters (critical buckling load and its mode shape) are obtained
by solving the linear eigen value problem. Later, free vibration parameters (natural fre-
quencies and the corresponding mode shapes) under the influence of NELs are obtained
by solving the associated eigen value problem. The free vibration of the panel is per-
formed as a function of the buckling load, i.e., by varying the magnitude of the edge
load from zero to the buckling load. The semi-analytical method used in the present
work is adopted from the literature because of its simplicity and ease of application
with sufficient accuracy. However, there is no solution available in the open literature
for the analysis of different nano filler reinforced and sandwich cylindrical panels sub-
jected to different types of non-uniform and partial edge loads using the semi-analytical

method. The computational challenge is that when analysing loads such as partial edge
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loads, which is a discontinuous edge load the load need to be converted to continuous
form using Fourier series approximation. Detailed procedure of all the steps are given
in sections follows. Various types of edge loads considered in the present work are

presented in Figure 2.3. They are defined as follows:

1. Uniform edge load (UEL)
N, = Ny (2.16)

2. Non-uniform edge Load-I (NEL-I)

Ny = No[l —n(3)] 2.17)

(a) 7 =0.5; Trapezoidal loading
(b) n =1; Triangular loading

(c) n = 1.5; Partial tension loading

3. Non-uniform edge Load-II (NEL-II)
(a) Parabolic loading

N, = 4Np¥[1 — (¥)] (2.18)

N, =Ny <§> (ﬂL) (1 — sin %) (2.19)

(¢) Increasing parabolic loading
N, = No% (2.20)
(d) Partial edge loading

N, = N, <2w+;dl) + 300 2 (sin 22 — gin 2L ) ¢og 2”%) (2.21)
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Where d; and d, are distances from the origin for partial edge loading as presented

in 2.3.

i) Uniform Loading
b

0
Non Uniform Edge Load - I

ii) Trapezoidal Loading iii)Triangular Loading iv) Partial Tension Loading
b b

B —’

——
B -
-

ol

Non Uniform Edge Load -11

b b_ b_

0 o 0 o 0 .
v) Parabolic Loading vi) Reverse Sinusoidal vii) Increasing Parabolic
= Loading .oading

b

=

0
viii) Partial Edge Loading

Figure 2.3: Different types of loadings considered

2.4.1 Pre-Buckling Analysis

The in-plane stress resultants (14, 1y, n4y) varies according to the nature of variation
of the given NEL. For the uniform and NEL-I, the resulting membrane stress distribu-
tion coincides with the nature of edge load pattern (Panda and Ramachandra 2010). On
the other hand, the stress distribution does not coincide with the load pattern for the
NEL-II as already discussed. Hence it is important to calculate the pre-buckling stress

state to obtain the critical buckling load (Panda and Ramachandra 2010) for the panels
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exposed to NEL-II. Hence a pre buckling analysis is carried out before buckling and
free vibration analysis for such load cases. Only the in-plane stress components are
considered for this purpose as the transverse shear strains are equal to zero before the

buckling. Strain energy associated with the pre-buckling state is given by:

O€za
b ra
ou = .fO fO {nmw Ny n:py} 5€yy dxdy (2.22)

0YVay

In terms of Airy’s stress function, the resultants are given as:

_ 9% _ o _ _ 092
Nyy = W,?’LII = 6—y2,nzy = _81_8y (223)

The components of strain are expressed in terms of stresses by the following expression:

Exa @11 Q12 0 Ngx
€yy (= |2 a2 O Ty (2.24)
’ny 0 0 Q66 nxy
where,

— Ay . —__An

a1 A11Age—A2, a22 A11Ag—A2, (2.25)

Q1o = — Ao - 1

12 AnAp—A3, o 66T Ay

Substituting Equations 2.24 and 2.23 into 2.22 the strain energy equation can be re

written as:

6u = fob foa(allN,yy(SN,yy + CI,QQN@IdN,IZ + algN,IzéNﬂy + a12N7yy6N,zz
+apeR 40N 4, ) drdy

(2.26)
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Approximate values of stress resultants are obtained by assuming the stress function

(N(z,y)) in a series form given as:

N(z,y) = Ro(y) + (22 — ax)?(y* — by)?(co + 17 + coy + 322 + caxy + c5y?)
2.27)

The function Ry (y) of the stress function for NEL-II can be written as:

1. Parabolic loading
Yo —y) (2.28)
2. Reverse sinusoidal loading

2 2
N, = N, (;) (W a 2) <%+ <% sin 7%’)) (2.29)

3. Increasing parabolic loading

Y
No = No— 2.30
0 0652 (2.30)
4. Partial edge loading
gy “in 27md2 . 2mndy, ., TNy
Ny = No( + né_l 2n37r3 — sin 2 ) sin 5
(2.31)

Substituting the corresponding value of Ny in Equation 2.27 the stress function is
obtained. Then, the stress function is substituted in Equation 2.26 and minimized with

respect to the constants (cy, c1, c2, €3, C4, C5) given as:

du _n . Ou_qg . Ou_qg. Ou_n. Ou_qng. Ou _
%_07 361_0’ BCQ_O, 603_0’ 304_0’ 8( =0 (2.32)

The constants (cg, ¢1, ¢2, C3, C4, C5) are evaluated from the resulting algebraic equations

and stress resultants are obtained using Equation 2.26.
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2.4.2 Semi-Analytical Procedure

The displacement and rotations of the cylindrical panel is approximated by various

approximate displacement functions satisfying the corresponding boundary conditions.

The approximated displacement functions are then substituted into the differential equa-

tions and reduced with the help of Galerkin’s method to an eigen-value problem. The

boundary conditions and corresponding displacement functions are given as: For the

simply supported boundary condition:

w0:v0:0 TUO:UQZO

b s _ b __ s __ _

Displacement fields are given as:

l m

up(r,y) = ; ; U,se™! cos(%x) sin(%y)
l m - o

— iwt .z
vo(z,y) = ; ; V,se sm(;x) cos(Ty)

l m

Ve (2, y) ;;%Me cos( - x) sin( ; )
l m

it . TT ST
1/’7; (.ZC, y) = Z Z ¢y7>selwt sm(;f) COS(TZ/)
r=1 s=1

l m

it . T ST
wo(z,y) = Z Z W,se™" Sln(;x) sm(Ty

r=1 s=1

)

Similarly, fully clamped(CCCC) boundary condition is specified as:

wOZUOZUOIO U)OIUO:UO:O
r=a,0 ; y=>5,0
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(2.34)

(2.35)

(2.36)

(2.37)

(2.38)

(2.39)



The following displacement fields are assumed for satisfying the above boundary con-

dition: z
= Z Z " cos( m) sin(%y) (2.40)
- r7r ST
— 241
E::Z:: "sin( - —x) cos( 2 Y) (2.41)
L& rT ST
x 9 = xTrs iwt I i — 242
Ue(,y) 2 ;¢ e™" cos( , x) sin( 2 Y) (2.42)
L& rmw ST
= Z Pyrse™ sin(—x) cos(7y) (2.43)
a
r=1 s=1
( l m .
: 1 sin(&,./2) r 1
Z W,.e“" cos&, <E - —) + —————>cosh¢&,. | — — =
—~ = a 2 sinh(&,./2) a 2
y 1) sin(§/2) (y 1>
cosés| 2 — = | + ———=—%cosh&| = —= | (r,s=2,4,6)
wolz,y) = <b 2 sinh(&,/2) b 2
where, &, are the roots obtained from tan (%) + tanh <%> =0
and, &, are the roots obtained from tan <%) + tanh <%> =
) (2.44)
( l m .
ot 1 sin(&,./2) x 1
S Wt (£ 1)+ G g (2
— = a 2 sinh(§,./2) a 2
. Y 1> sin(&s/2) (y 1)
sin;| = — = | + ——=—=-cosh&|=—=] (r,s=1,3,5)
wo(z,y) = (b 2 sinh(&s/2) b 2
where, &, are the roots obtained from tan <%> — tanh (%) =0
and, & are the roots obtained from tan <%) — tanh <§5) =0
\

(2.45)
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The substitution of displacement approximations in Equations 2.14a-2.14e and applying

Galerkin’s method, the following eigen value problems are obtained as:

K] — NCT[KG}} {dt} —0 ; Buckling (a)
(K] — w?[M] {dt} =0 ; Free vibration without pre-stress (b)
<[K | — N, [KG]> — WA M ]} {dt} =0 ; Free vibration with pre-stress (c)

(2.46)
Here [K] denotes stiffness matrix, [/{] denotes geometric stiffness matrix and N,
specifies the critical buckling load. Also, [M] denotes the mass matrix and w? is the
eigen value, its square root is the circular natural frequency. For the pre-stressed vibra-
tion problem, the value of natural frequencies at various fractions(é = 0.1, 0.2, 0.3.....1)
of critical buckling load (/V,,.) are obtained by solving the eigen value problem given by

Equation 2.46 (c).

2.5 Validation

In this section, the accuracy of the present approach in predicting buckling and free
vibration characteristics of cylindrical panels subjected to NELs is demonstrated by the
comparison of the present results with results available in the literature. Thus, this sec-
tion establishes the accuracy of the generalised frame work followed in present work
in predicting the buckling and free vibration characteristics. The validation studies
presented in this section are corresponding to an isotropic material. However, the com-
parison of the results is also presented in the subsequent chapters with respect to the

material analyzed in that chapter.
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Table 2.2: Comparison of critical buckling load | Ny = N, (%=); D = E—’TS> of a
SSSS square isotropic plate under different NELSs.

Loading type
Method Uniform Trapezoidal Triangular Partial Parabolic Reverse Increasing
tension sinusoidal  parabolic
Present 3.9980 5.3307 7.9960  13.2087  5.2564 8.2610 6.4515
Adhikari et al. (2020)  3.9978 5.3158 7.8075 13.5046  5.2395 8.1514 6.0713
Difference [%] 0.005 0.27 2.35 22 0.32 1.32 5.89

2.5.1 Buckling Load Calculation

Buckling results of a cylindrical panel under different edge loadings is not available
in open literature for the comparison of solutions of present approach. So, a simply
supported isotropic plate under different NELs analyzed by Adhikari et al. (2020) is
considered for the validation. The solutions for the plate is obtained using the current
solutions derived for the cylindrical panel, by setting R— oco. Table 2.2 depicts the
comparison of critical buckling load (No = Ncr(%)> of a simply supported isotropic
plate obtained using present formulation with Adhikari ef al. (2020). Buckling analysis
under different NELs of a simply supported isotropic plate has been investigated by
Adhikari et al. (2020) using the FEM. The material properties used in this analysis are
E=1 G Pa, v=0.3.The difference between results (Table 2.2) of present semi-analytical

and FEM is due to the difference in methodology followed for the estimation of pre-

buckling stresses due to the NELSs.

Table 2.3: Buckling load | Ny = N, (%);D = %) validation for an isotropic

plate simply supported (SSSS) at its ends under partial edge loading.

Present Kumar et al. (2016) Singh er al. (2022)
29.99 29.97 30.15

i
1

Similarly, Kumar et al. (2016) and Singh et al. (2022) investigated buckling be-

haviour of a square isotropic plate (¢=0.3 and £=200 GPa ; #=1 and %:100) having

simply supported boundary condition using analytical methods subjected to partial edge

loading. The critical buckling load values are compared in Table 2.3 for partial edge
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load case.

2.5.2 Free Vibration Frequency Calculation

To validate the free vibration results obtained using the present approach, the non-
dimensional natural frequency (Q = wn(% %) of an isotropic cylindrical panel
(v=0.34 and E=3 GPa, p = 1200 :T%) subjected to different boundary conditions ob-
tained using the present formulation is verified with the results reported by Van Do and
Lee (2020). The free vibration response of an isotropic cylindrical panel is analyzed
by Van Do and Lee (2020) using isogeometric method formulated based on Reddy’s
HSDT. Excellent agreement between present results and Van Do and Lee (2020) results

are observed.

Table 2.4: Comparison of non-dimensional fundamental frequency <Q =

wn(% £2) | of an isotropic cylindrical panel (3 = 1, # = 20 and R = 10m) with

Van Do and Lee (2020)

R Boundary Condition
@ SSSS CCCC
Van Do and Lee (2020) Present Van Do and Lee (2020) Present
5 6.3163 6.3162 11.3115 11.1835
10 6.0826 6.0825 10.8810 11.0357
20 6.0226 6.0225 10.7705 10.9984
50 6.0057 6.0055 10.7393 10.9879
100 6.0032 6.0031 10.7348 10.9864

2.6 Closure

A detailed discussion about the methodology adopted to carry out the buckling and free
vibration analysis of cylindrical panels subjected to different NELs is presented. The
detailed steps involved in the buckling and free vibration analysis is given as a flow

chart. For certain type of NELs (NEL-II), the determination of stress distribution is car-
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ried out first. By using a higher order shear deformation theory and considering non-
linear strains, the governing differential equations are derived using Hamilton’s prin-
ciple. The governing differential equations are solved by considering semi-analytical
method based on Galerkin’s method. The methodology developed is used for obtaining
buckling and free vibration characteristics of cylindrical panels discussed in the chap-

ters following.
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CHAPTER 3

FREE VIBRATION-BUCKLING ANALYSIS ON
GPL-POROUS CYLINDRICAL PANEL

3.1 Introduction

A detailed study carried out on the buckling and free vibration characteristics of GPL
reinforced porous cylindrical panel under different NELs is presented in this chapter.
When thin curved panels made of GPL reinforced porous advanced composite mate-
rials are subjected to compressive loads, failure may occur due to buckling. These
compressive loads may not be always uniform and are at times turned to NELSs in actual
practical circumstances. In the presence of NELs the pre-buckling analysis is carried
out to calculate the in-plane stress resultants. Thereafter, a semi analytical approach is
adopted using Galerkins method to study the buckling and dynamic behaviour of GPL

reinforced porous cylindrical panels under different type of NELs.

3.2 Modelling of GPL-Porous Cylindrical Panel

The cylindrical panel considered has graded distribution of both GPL and pores through
the thickness. Three different GPL graded patterns namely, GPL 1, GPL 2, and GPL 3
and three different types of functionally graded porosities namely, porosity distribution
(PD) A, B and, C are considered in this research. Alternate naming for different distri-
butions for better understanding is given in Table 3.1. Schematic diagram of different
GPL patterns examined in the current study is shown in Figure 3.1. In Figure 3.1, dark

colour represents a layer with high amount of GPL and white colour represents pure



a) GPL pattern 1 b) GPL pattern 2

c) GPL pattern 3

Figure 3.1: Different GPL patterns

Table 3.1: Alternate naming for different distributions

S1No. Pattern/Distribution Alternate Name
1 GPL-1 Symmetric Increasing GPL Pattern
2 GPL-2 Symmetric Decreasing GPL Pattern
3 GPL-3 Uniform GPL Pattern
4 PD-A Symmetric Decreasing Porosity Distribution
5 PD-B Symmetric Increasing Porosity Distribution
6 PD-C Uniform Porosity Distribution

matrix while other colours shows layers with in between amount of GPL. From Figure
3.1, it is noted that the GPL pattern 3 has same amount of GPL, i.e., constant volume
fraction of GPL (Vpy,) through out the thickness. For GPL pattern 1, Vo py, is high at
top and bottom layers and reduces to zero at the middle layer while, GPL pattern 2 has

Vepr, zero at top and bottom layers and increases to maximum at the middle layer.

The schematic representation of the different porosity patterns are shown in Figure
3.2. In porosity distribution A (PD-A): the amount of pores at the centre of the panel is
more and at the surfaces it is less, in porosity distribution B (PD-B): the amount of pores
at the centre is less and at the surfaces it is more and porosity distribution C (PD-C):
the amount of pores is same across the thickness of the panel. The effective material

properties associated with the different porosity distribution patterns given by Yang

46



a) Porosity distribution A (Symmetric 1)

¢) Porosity distribution C (Uniform)
0
s

D¢
X

Ty

Figure 3.2: Different porosity distributions

et al. (2018) are shown in Table 3.2. Variation of material properties including Young’s
modulus (E), shear modulus (G) and density (p) according to the nature of various

porosity distributions are given in Figure 3.3. In Table 3.2, o/, E’, G’ represents the

-h2 High /2 | Low -h/2 | Constant

b2 ] High W2 [Tow h/2

a) Porosity distribution A b) Porosity distribution B ¢) Porosity distribution C

Figure 3.3: Variation of material properties for different porosity distributions

effective density, Young’s modulus, and shear modulus of GPL reinforced cylindrical
shell panel without porosity respectively. Using extended rule of mixture and Halpin-

Tsai micro mechanics model, the effective material properties of FG-GPL reinforced
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Table 3.2: Variations of material properties for different types of porosity distributions

Porosity

Distribution ol2) E(z) G(z)
PD-A P11 — e cos(FE)] E'[1 — ey cos(F2)] G'[1 — egcos(F2)]
PD-B Pl —e,(1—cos(FF))]  E'[l —ep(l —cos(57))] G'[1 — eg(1 — cos(F7))]
PD-C plat Fa Ga

shell are defined as given in Equation 3.1.

¢ = Vaprparr + (1 = VapL)pm
B =3 <1+§§PL77§PLVGPL)Em + % <1+£€VPLW§VPLVGPL>E

8 1-nGFPLVepL 1-nGFVepL

(3.1
v =Vaprvarr + (1 = Vapn)Vm

G = E’

2(14+v")

In which, F,, is the Young’s modulus of the composite matrix material. While, Vgpr,
parL, Vapr represents volume fraction, density and Poisson’s ratio of the reinforce-
ment(GPL) and p,,, v,, are density and Poisson’s ratio of the composite matrix material.

n@PL  nGFL are parameters represented by:

77GPL _ Ecpr—Em
— T . 1 ¢GPLp
L EGPLJFéL PLEm (3 2)
77GPL _ __Ecgpr—Em
— T . 1 ¢GPLp
w EGPL+€WPLEm

where, Fgpy, represents Young’s modulus of reinforcement(GPL) layer and parameters

EGPL ¢CPL are related to dimensions of GPLs defined as:

é‘GPL _ 2lgpr
L

tepr (3 3)
GPL __ 2wgpL
w tapL

where, tqapr, lapr, Wapr are the average thickness, length, width of GPL platelets.

The volume fraction of reinforcement(GPL) Vi p;, for the different graded patterns
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of GPL is expressed as follows:

Via[l — cos(5%)] GPL Pattern 1
Vapr(z) =V, cos(5%) GPL Pattern 2 (3.4)

Vi GPL Pattern 3

where, V,,, Vj, and V;. (i = a, b, c) are high values of volume content as given below.

The value ¢ = a, b, c corresponds to porosity distribution A, B, C.

Vi, Sy 25 Vi, Spoy 22K

Vie = v Ve = —/—/————
R o cos(TR)] ' iy L
P h P
(3.5)
v, — Ve S 2
! > b1 %,L) cos(r—zk‘)
in which,
Lo (3.6)
Zp = §+%—; ,k=1,2,3....,n
Here, V%5, denote total volume fraction of GPLs and it is given by
Foo_ AcpLpm 7
VGPL " Agprpmtparr—AcPLPGPL 3.7)

In Table 3.2, e, €, and « are porosity coefficients which are used to specify the changes

/
me

in Young’s modulus and shear modulus with porosity while density coefficients e,,, e
and o* are used to specify the effect of porosity on density of the composite. For open
cell foams, Young’s modulus, E, is related to density (Gibson and Ashby 1982, 1999)

as:
2
z E(z
<§> _ B (3.8)

It is assumed that mass of the panels having different porosity pattern is equal as (Yang
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Table 3.3: Porosity coefficients for different distributions

PD-A PD-B PD-C
€o €, «
0.1 0.1738 0.9361
0.2 0.3442 0.8716
0.3 0.5103 0.8064
0.4 0.6708 0.7404
0.5 0.8231 0.6733
0.6 0.9612 0.6047

et al. 2018; Wang and Zhang 2019). This assumption leads to the following equations:

h Tz
» _ 2T = e (1 — cos(22))d=
Jo' " /1—egcos(52)dz = (3.9)
h2 e
o Vadz

Based on Equation 3.9, the values of e{, and « for the given value of ¢ are calculated and
given in Table 3.3. The relation between density co-efficients (e, €,,, @*) and porosity

co-efficients (e, €, &) using Equation 3.8 are given as:

o — 1—4/1—eq cos(5Z)

m o cos(52)

;o 1— 1766(17005(%))
A (3.10)
af = /o

3.3 Validation of the Material Modelling

To validate the material modelling of GPL reinforced porous cylindrical panel, the di-
mensionless fundamental frequency (2 = wna(\/% )) of GPL reinforced porous nano
composite plate having $=1, $=20, Agpr = 1.0wt%, ey = 0.5, analyzed by Yang et al.
(2018) is compared with the results obtained using the present approach. Here, [* and
A* are values of I and A;; corresponding to pure matrix material. The solutions for the

plate is obtained using the current solutions derived for the cylindrical panel, by setting
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R— o0. The results are presented in Table 3.4 and the present results match well with

Yang et al. (2018).

3.4 Free Vibration and Buckling Characteristics for GPL-

Porous Cylindrical Panel

The free vibration and buckling behaviour of porous cylindrical panel reinforced with
functionally graded-GPL (FG-GPL) is presented in this section. Influences of differ-
ent combinations of porosity distributions and GPL patterns as given in Table 3.5 on
buckling and vibration properties are analysed. CCCC-all edges clamped, SSSS-all
edges simply supported and CSCS - two opposite edges clamped and other two edges
simply supported starting from left edge are the three different boundary conditions
considered for the free vibration analysis. The effect of three different radius ratio
(% = 5,10, 20) on buckling and vibration behaviours is also presented. The func-
tionally graded-porous-GPL (FG-P-GP)L reinforced cylindrical shell consists of copper
(E,, = 130GPa, p,, = 8960kg/m?, v, = 0.34) as matrix and GPL (Egp; = 1.01TPa,
papr=1062.5 %, wgpr = 1.5pum, lgpr, = 2.5um, tgpr = 1.5nm, vgpp = 0.186) as

reinforcement.

3.4.1 Buckling Studies

The buckling analysis is conducted on a square (3 = 1) cylindrical panel with a thick-
ness ratio of § = 20 under different NELs. The cylindrical panel is simply supported at
its edges. Initially, the panel is assumed to have a fixed porosity and weight fraction of
GPLs (eg = 0.4, Agpr, = 1.0wt%). The results are tabulated for different NEL condi-
tions. Buckling analysis is also carried out for different values of porosity coefficients
and GPL weight fractions. The buckling coefficient defined as Ny = N,, <ﬁ) 18

used to represent the buckling results.
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Table 3.5: Different combinations in distributions of porosity and GPL

Porosity Distribution GPL pattern Combination Notation

GPLP-1 GPLP-1-PD-A
PD-A GPLP-2 GPLP-2-PD-A
GPLP-3 GPLP-3-PD-A
GPLP-1 GPLP-1-PD-B
PD-B GPLP-2 GPLP-2-PD-B
GPLP-3 GPLP-3-PD-B
GPLP-1 GPLP-1-PD-C
PD-C GPLP-2 GPLP-2-PD-C
GPLP-3 GPLP-3-PD-C

Influences of porosity pattern, grading of GPL and radius ratio of simply supported
cylindrical panel (e = 0.4; Agpr = 1.0wt%) on buckling coefficient under different
NELs are presented in Table 3.6. It is observed that there is a reduction in buckling
coefficients with increase in radius ratio due to the reduction in structural stiffness with
increase in radius ratio as anticipated. It is notable that the buckling coefficients varies
for different combinations of porosity distributions and GPL patterns.This happens due
to the alteration in structural stiffness because of combined effects of grading of GPL
and porosity. It can be observed that the highest buckling coefficient is obtained for
GPLP-1-PD-A case for all the type of loading conditions. Thus, higher volume content
of GPL and less amount of pores at the extreme surfaces enhances structural stiffness
of the cylindrical panel. On the other hand, lowest buckling coefficient is obtained
for GPLP-2-PD-B case. So, less volume content of GPL and more amount of pores
at the extreme surfaces reduces structural stiffness of the cylindrical panel. The most
important result deducted from Table 3.6 is that the buckling load varies with the type of
loading and highest buckling load is obtained for partial tension loading. The presence
of small amount of tensile load in the case of partial tension loading is the reason for
the increased buckling coefficient value. Further, lowest buckling coefficient value is
observed for uniform loading followed by parabolic loading then trapezoidal and then
triangular loading. The reason for this is explained as follows: for uniform loading,

the entire edge is subjected to maximum load whereas in the case of all other type of

53



loadings, some part of the geometry is only subjected to a maximum load. Similarly,
in the parabolic loading case the variation of load is parabolic and the middle portion
of the edge is subjected to maximum load hence, the buckling load is less compared to

trapezoidal and triangular loads.

Figure 3.4 depicts the variation in buckling coefficients with the porosity coefficient
for different types of NELs. In Figure 3.4, the solid, dotted and dash dot lines repre-
sents buckling coefficients for porosity distribution cases PD-A, B, C respectively. It is
noteworthy that the there is a reduction in buckling coefficient with increase in porosity
coefficient for all the loading conditions. This is anticipated as the increase in poros-
ity coefficient (increase in amount of pores in the panel) leads to a reduction in both
shear modulus and Young’s modulus of the porous FG-GPL cylindrical panel as ob-
served from Table 3.2. It is noteworthy that for a given GPL distribution, the reduction
in buckling coefficient with increase in porosity coefficient is high for PD-B and least
for PD-A. This can be attributed to reduction rate in structural stiffness of the panel
with increase in porosity co-efficient for PD-B and PD-A porosity patterns. Thus, grad-
ing pattern of pores is an important factor which influences the buckling strength of a
porous cylindrical panel. For the maximum amount of porosity (e, = 0.6) considered,
highest buckling coefficient is observed for GPLP-1-PD-A. It should be noted that with
the presence of more amount of pores (e, = 0.6), the reduction in buckling coefficient is
very less for PD-A than the other distributions. This is due to the presence of large size
pores at the middle for PD-A distribution with increase in porosity coefficient which
leads to enhancement of bending stiffness of the cylindrical panel compared to other
porosity patterns. Further more, higher buckling strength is observed for GPLP-3-PD-
A than GPLP-1-PD-B and GPLP-1-PD-C even though GPLP-1 has better strength than
GPLP-3.

In Figure 3.5, the change in buckling coefficients of the porous FG-GPL cylindrical
panel is presented for various values of weight fraction of GPL. The solid, dotted and

dash dot lines represents buckling coefficients for GPL distribution patterns GPLP-1,
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Figure 3.4: Buckling coefficients (

ite cylindrical panel under SSSS boundary condition(a/b=1, a/h=20, Agp; = 1.0wt%,
R=20): effect of porosity coefficient

2, 3 respectively. According to Figure 3.5, it is identified that there is a considerable
increase in buckling coefficient with the increase in GPL weight fraction for the all
the loading conditions. This is due to excellent reinforcement capability of graphene

nano platelets. It is also observed that for a given porosity distribution, the variation

56



in buckling coefficient is high for GPLP-1 and least for GPLP-2. Thus, reinforcement
patterns significantly affects the buckling strength of porous FG-GPL cylindrical panels.
The most important result deducted from Figure 3.5 is that at high GPL weight fraction
content, the highest buckling strength is observed for GPLP-1-PD-A panel. This is due
to the presence of less amount of pores and high content of GPL at the extreme surfaces
for GPLP-1-PD-A. It is also observed that at high GPL weight fraction, GPLP-1-PD-
C provides a buckling strength higher than GPLP-2-PD-A and GPLP-3-PD-A. This is
because GPLP-1 imparts a high amount of strength with increase in weight fraction of

GPL.

Figure 3.6 shows the buckling coefficient variation for FG GPL reinforced porous
panel with changes in aspect ratio () corresponding to all the loading conditions. From
Figure 3.6, it is recognized that with the increase in aspect ratio, the transition of buck-
ling mode from (1,1) to (2,1) happens. This transition in buckling mode is observed for
the same aspect ratio irrespective of type of loading and grading of GPL and porosity.
It is also observed that, the highest buckling coefficient for the given aspect ratio is ob-
served for GPLP-1-PD-A. Furthermore, the variation of buckling load with aspect ratio

(#) becomes insignificant for aspect ratios higher than 2.5 (§ > 2.5).

3.4.2 Free Vibration Studies

The effect of NEL on the fundamental vibration frequency of functionally graded GPL
reinforced porous cylindrical panel is presented. The cylindrical panel with same geo-
metrical parameters of the GPL reinforced porous panel considered for buckling anal-
ysis is used for free-vibration studies also. The cylindrical panel analysed has § = 1
and a thickness ratio of 7 = 20. The natural frequency is presented after being non-

. . . 2
dimensionalized as Q = w,,(5-/&>).

Table 3.7 consists of dimensionless natural frequency values of functionally graded

GPL reinforced porous cylindrical panel without NEL for different values of radius ra-
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effect of graphene grading

tio (% = 5, 10, 20). It is noteworthy that the dimensionless natural frequency reduces as
the radius ratio % increases. It is also noted that the natural frequency values changes
with different combinations of porosity and GPL pattern. This happens due to the dif-

ferences in bending stiffness of panels with different combinations of porosity and GPL
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Figure 3.6: Buckling coefficients (%E%) for GPL reinforced porous nano compos-

ite cylindrical panel under SSSS boundary condition(a/b=1, a/h=20, ¢, = 0.4, R=20):
effect of aspect ratio

pattern. It is also recognized that the natural frequency of FG-P-GPL reinforced cylin-
drical panel changes with the type of boundary conditions. The CCCC (clamped at all
edges) boundary condition notes the maximum value of natural frequency and mini-

mum corresponds to SSSS (all edges simply supported).
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Figure 3.7: Non-dimensional frequency (2 = wn(“,—f, /%’7")) for GPL reinforced porous

nano composite cylindrical panel under different boundary condition(§ = 1, § = 20,
Acpr = 1.0wt%, ey = 0.4, g = 20): effect of porosity coefficient

Figure 3.7 shows the effect of porosity coefficient on non-dimensional natural fre-
quency for different boundary conditions. In Figure 3.7, PD-A, B, and C are represented
by the solid, dash and dotted lines respectively. It is important to note that the increase in
porosity coefficient causes only a slight decrease in natural frequency for PD-A. How-
ever, notable decrease in natural frequency is observed in the case of PD-B and PD-C
cases. This is because of the identical reduction of both bending stiffness and density in
the case of PD-A. On the other hand, reduction of stiffness is more in the case of PD-B
and PD-C. Furthermore, higher natural frequency value is observed for GPLP-1-PD-A
case compared to the other cases. This can be attributed to synergistic effect of grading
pattern of GPL and porosity on stiffness of the panel. Since the variation in natural
frequency is same for all the boundary conditions, for the sake of brevity, results are

presented only for SSSS boundary condition after this point.

Influences of combination of grading pattern of GPL and porosities and nature
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Figure 3.8: Effect of compressive load on the non-dimensional frequency (2 =

a2

Wi (%4 /g—:”n)) for GPL reinforced porous SSSS nano composite cylindrical panel for
all the type of loadings.

of NEL on fundamental natural frequency of FG-P-GPL reinforced cylindrical panel
with increase in the load intensity are given in Figure 3.8 and Figure 3.9 respectively.
The nano composite cylindrical panel (a/b=1, a/h=20, Agp;, = 1.0wt%, eq = 0.4,
% = 20)with simply supported boundary condition is considered for this study. Re-

sults are presented for all the type of non-uniform edge loading conditions. It can be
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Figure 3.9: Effect of type of edge load on the on-dimensional frequency (2
\ /g—z)) for GPL reinforced porous SSSS nano composite cylindrical panel

observed that with increase in intensity of the NEL, the fundamental frequency of func-
tionally graded GPL reinforced porous panel decreases. In Figure 3.8, the changes in
natural frequency are presented for different combinations of GPL patterns and porosity
distributions. It is noted that the reduction of natural natural frequency to zero happens
at very low load for GPLP-2-PD-B combination. This is expected as the structural stiff-
ness is very low for the same. Figure 3.9 presents the variation in non-dimensional
fundamental frequency for different type of edge loading conditions. It may be noted
that with increase in amplitude of applied load, the rate of reduction of fundamental
frequency is more for uniform loading. The most important result from the Figure 3.9

is that the natural frequency reduction is highest for parabolic loading in the case of



non-uniform edge loadings. It is been observed that free vibration mode shape remains

same as (1,1) for all the loading conditions with increase in edge load.

3.5 Closure

Buckling and free vibration characteristics of FG-P-GPL reinforced cylindrical shell
panel subjected to uniform and different NELs are investigated. To obtain the solutions,
semi analytical method based on higher order shear deformation theory is used. Ex-
tended rule of mixture together with modified Halpin-Tsai micromechanics model is
used to obtain the material properties of FG-P-GPL reinforced cylindrical panel. The
influence of different NELs, radius of curvature, and porosity coefficient on buckling
and free vibration behaviour of panels is presented. From the results, it is observed that
the type of NEL greatly influences the critical buckling load of the panel. The partial
tension loading yields the highest critical buckling load while the uniform edge loading
leads to lowest critical buckling load. The non-dimensional buckling loads and natu-
ral frequencies varies as per the combination of porosity and GPL distributions. The
maximum buckling strength and free vibration resistance is observed for GPLP-1-PD-
A panel. The buckling and free vibration responses are influenced by changes in the
porosity coefficient and porosity grading pattern. The maximum reduction in stiffness
is observed for porosity distribution B while porosity distribution A has minimum re-
duction in stiffness. The critical buckling mode of functionally graded GPL reinforced

porous panel is influenced by the change in aspect ratio.
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CHAPTER 4

FREE VIBRATION-BUCKLING ANALYSIS ON
GPL-POROUS SANDWICH CYLINDRICAL PANEL

4.1 Introduction

From the previous chapter, it is seen that buckling and free vibration behaviour of cylin-
drical panel is influenced by the type of edge loading. The influence of distribution of
porosity and GPL, amount of porosity and GPL on the buckling and free vibration char-
acteristics are established. The usage of porous-GPL core sandwich cylindrical panel
under NELs is analysed next. Buckling analysis of the FG-Porous-GPL core sandwich
panel under different important parameters (radius ratio, core to total thickness ratio,
porosity coefficients and GPL weight fraction) is presented first followed by the free

vibration analysis.

4.2 Modelling of Sandwich Cylindrical Panel with GPL-

Porous Core

4.2.1 Mathematical Material Modelling

The porous functionally graded-GPL (FG-GPL) core sandwich cylindrical panel con-
sidered for the analysis is shown in Figure 4.1. The geometry of the cylindrical sand-
wich panel is defined by R-radius, h-thickness, a-length along x direction, b-length
along y direction. The thickness of the FG-GPL reinforced porous core is denoted as

h¢, while the thickness of the top and bottom face sheets are given as hy, and hyy, re-



Table 4.1: Naming for different distributions

S1No. Pattern/Distribution Alternate Name

1 U-PD Uniform Porosity Distribution

2 D-PD Symmetric Decreasing Porosity Distribution

3 I-PD Symmetric Increasing Porosity Distribution

4 U-GPL-P Uniform GPL Pattern

5 I-GPL-P Symmetric Increasing GPL Pattern

6 D-GPL-P Symmetric Decreasing GPL Pattern
spectively.

Figure 4.1: Cylindrical sandwich panel with porous FG-GPL core

The core of the sandwich panel is assumed to have both varying porosity and GPL
distribution through the thickness. Three types of porosity distributions U-PD, D-PD
and [-PD are considered in the present study are shown in Figure 4.2. U-PD denotes uni-
form porosity, D-PD denotes decreasing porosity distribution where porosity decreases
from centre to the surfaces and I-PD denotes increasing porosity distribution where
porosity increases from centre to the surfaces. Three GPL distributions such as U-GPL-
P, I-GPL-P, D-GPL-P considered are shown in Figure 4.3. For U-GPL-P the amount of
GPL is constant through out the thickness, for I-GPL-P the amount of GPL increases
from centre to the surfaces while it reduces from centre to surface for D-GPL-P. The

naming for easy reference is provided in Table 4.1.
The effective material properties such as density p.(z), Young’s modulus E.(z),
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a) Uniform porosity distribution(U-PD) b) Decreasing porosity distribution(D-PD)

C) Increasing porosity distribution(I-PD)

Figure 4.2: Metal foam core with different types of graded porosity

a) Uniform GPL pattern (U-GPL-P) b) Increasing GPL pattern (I-GPL-P)

¢) Decreasing GPL pattern (D-GPL-P)

Figure 4.3: Core with different types of GPL patterns

Poisson’s ratio v,(z) and shear modulus G.(z) of the sandwich core are given as (Yang
et al. 2018)
pc(z) = peEd(z)
E.(2) = B2 (2
() = BE(2) )
ve(z) = Ve

GC(Z) = GeEe(z)

Where, =,;(z) and =.(z) are functions representing variation of density and elastic prop-
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erties with respect to porosity gradation given as (Yang et al. 2018; Wang and Zhang
2019):

(

ot U-PD
Za(z) =91 —epn cos(7%) D-PD (4.2)
I —e,(1—cos(5%)) I-PD
« U-PD

Ze(z) = 41— egcos(%2) D-PD (4.3)

Here, o, e,,, and ¢/, are mass density coefficients and «, ey, €, are porosity coefficients.
The relation between mass density and porosity coefficients for open cell foams (Gibson

and Ashby 1982, 1999) is given as:

2
c(2) | _ Ee(2)
O »

using Equation 4.4, the relationship between mass density and porosity coefficients are

given as:

(a*)? =«

2
1—epncos(F?) ] =1—epcos(Z
( ) o cos(2) s

(1-enr- cos(%»f — 1 (1 - cos(%))

The relationship between different porosity coefficients is obtained considering the
equivalence of mass of panels with different porosity distribution as (Yang et al. 2018;

Wang and Zhang 2019). The resulting equation is given as:

0h/2 \/Tcos(%)dz = Oh/ 2 Vadz
oh/2 V1 —egcos(32)dz = oh/2 V1 — eI = cos(57))dz

(4.6)
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Table 4.2: Porosity coefficients for different distributions

U-PD D-PD I-PD
« €o €y
0.9361 0.1 0.1738
0.8716 0.2 0.3442
0.8064 0.3 0.5103
0.7404 0.4 0.6708
0.6733 0.5 0.8231
0.6047 0.6 0.9612

The values of « and e, calculated from Equation 4.6, and are presented in Table 4.2.
It is assumed that the GPLs are distributed in three different forms through the thick-
ness namely, U-GPL-P, I-GPL-P and D-GPL-P. The volume content of GPL varies for

different GPL distribution patterns as:

VGPL(Z) = Sij-I(Z) (47)

Where, 71(z) is a function denoting the variation of volume fraction with GPL pattern

given as:
1 U-GPL-P
T(z) = { [1 — cos(2)] I-GPL-P (4.8)
cos(%%) D-GPL-P

and s;; represents the high values of volume content of GPL. In s;;, where j rep-
resents particular pattern of GPL while i represents particular pattern of porosity. The
total volume fraction of GPL(V/2}, ) is calculated by Equation 4.9 and by using that the

relations of s;7, s;; and s;p are given as:

T Agprpm 4.9
VGPL AgprLpm+pcrL—AGcPLPGPL (4.9)
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( n (Z[)
VC’Z;PL Zl*l £ /
gy — — P - -
sip = —ELE=L U-GPL-P
Zl:l o

p(z)
VGTPL Zlnzl ==

Sip = 2 Y __  I-GPL-P
L o B —cos(TL)] (4.10)
VdpL T, 28
Sip = ;TLM;S(;_ZL ; D-GPL-P
= P h
in which,

4.11)
5 = (—}L + =+ %),1 =1,2,3...n
In Equation 4.1, p., E., v., G. denotes the effective density, Young’s modulus, Pois-
son’s ratio, and shear modulus respectively of cylindrical shell panel reinforced with
GPL. The effective properties utilizing Halpin-Tsai micro mechanics model and ex-

tended rule of mixture (Rafiee ef al. 2009; Tjong 2013) are specified in Equation 4.12.

pe = (1= Vapr)pm + Varrperr

E _ 5 1+f€VPLT7g/PLVGPL E + 3 1+£EPLT7EPLVGPL El
=z| —Ferto—— N\ —=ept—7
¢ 8 10§ VarpL mot8 1-nGFPEVapr

(4.12)
Ve = (1 = Vapr)Vm + Vaprverr
_ __FEe
Ge = 2(1+ve)
Here, Vopr, pm and pgpr denotes volume content of GPL, density of the metal
matrix and density of the GPL respectively. F,, and F¢py, represents Young’s modulus

of the metal matrix and GPL. £¢PF, £GP and n¢PF | niFPT are parameters given as:

gGPL — _Fapi—n . ¢GPL _ Ygrr nGPL — _Eapi—Fn . (GPL _ 2uary
L Eqpr+E¢TPEE, 7 5L tgpr, 7 W Egpr+EGFtEm 7 SW tepL
(4.13)

while, vgpyr, vy, represents Poisson’s ratio of GPL and metal matrix and wgpr, topr,

lgpr, are the average width, thickness, length of GPL.
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4.2.2 Inertia and Stiffness Coefficients
The inertia and stiffness coefficients of sandwich cylindrical panels are calculated as
the summation of coefficients for core and face sheets.

The stress strain relation of porous FG-GPL core layer of cylindrical panel is estab-

lished considering a layered structure as follows:

(k) (k) (k)
ol Q% 0 €xa
o5, 0 = 1Q% Q% 0 €yy (4.14a)
Tzcy 0 0 ngﬁ Vay
C C
T, = 2
Yz Q44'7y (4 14b)

c _ NC
Tez = Q55’7ZZ

i(; are stiffness matrix coefficients of the core are defined and given as:

C _ N0 _ Bz . Q2 = Ve Ec(z)

n=&»n=1y2 (o)

QGCG = %:Q%:GC(Z)

(4.15)

Also, for the top and bottom face sheet layers the stress-strain relations are given as:

Uajcc;r: Qfl Q{Q 0 €z
afy 0= QL Q) 0| {ew (4.16a)
Tajrcy 0 0 ng Pyﬂfy

ayi
Ty = Q- (4.16b)

Tifz = Q£5’Y$Z

71



Q{j are stiffness matrix coefficients of the core are defined and given as:

f J— f — E’n’l . — Em
Qu = QQQ = T wm)? Q2 = me

; ; ; 4.17)
Qis = Q55 = Quu = Gn(2)
The in plane force resultants of the sandwich cylindrical panel are defined as:
Neo | | M2 M; ol
b s 2h +hy 1 4 23 f d
Nyy ’ My b M _f—h 7Z7Z_§ﬁ Uyy z
NIZI MQI:) M;,y Txf
T ol
Ty T:{y
(4.18)

Similarly, the moment resultants of the sandwich cylindrical panel are defined as:

f
xrz — sz
R (1 —4z ) e
z T Ty
@ C?’ ; (4.19)
P Trz b 22 Tra
+f (1—4 > ; dz+f%2_hf<1—4h—2> ; dz
Tyz Tyz

Thus, different coefficients for a sandwich cylindrical panel are defined as follows:

;h+h' z b z
(AZJ7BZ]) ngv E ) fTh ! Qij(la 272272 - %ﬁ)dz + f h Qz](l 2, Z y 2 T %h_z)dz
h

“n 2 2
(F%Jleij ) ‘fTi = Qij(’z('z_gz_)’ <Z_%£ ’ <1_4£> )d’z

(4.20)
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Hthy 9
(I, 1o, I3) = [ 377 pin(1, 2, 2%)dz
2

h_p. h
2~ f 2 2 2
+f’2h+h,f pc(l,z,z )d2+f%_hf pm(lazaz )dZ

2
(I, I5, Is) = f;w P <z — 4z 2(z - 15), (z - %Z—?) )dz 421
w i (e thae- 4. (- 18) e
2
+IE (24— g (- 43) )os
The sandwich cylindrical panel modelling requires the consideration of different coef-
ficients in the governing differential equations as per the above discussion and using

these coefficients, buckling and free vibration characteristics are analyzed as discussed

in section 2.

4.3 Validation of Sandwich Material Modelling

Validation of material modelling of a sandwich plate is presented in this section. Since
no results for a porous GPL core sandwich cylindrical panel is available, by keeping
the radius of curvature as infinite (R— o0) in the present formulation, the sandwich
plate results are compared. The critical buckling coefficient value <Ncr(ﬁ)> of
a sandwich cylindrical panel subjected to UEL calculated using the present approach
is compared with the results of Yaghoobi and Taheri (2020) as shown in Table 4.3.
Yaghoobi and Taheri (2020) used Navier’s method based analytical solutions to obtain
the critical buckling load values of porous GPL core sandwich plate. It can observed
that critical buckling value obtained using present investigation are in good agreement

with Yaghoobi and Taheri (2020).
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4.4 Free Vibration and Buckling Characteristics for GPL-

Porous Sandwich Cylindrical Panel

The buckling and free vibration characteristics of porous FG-GPL sandwich cylindrical
panel under the influence of various important parameters are presented in this section.
In the present study, core and face sheets of the sandwich cylindrical panel are made of

aluminium alloy with material properties given as (Yaghoobi and Taheri 2020):
pm=2689.8%, v, =0.34, E,,=68.3 GPa

The material properties of the GPL reinforcement are given as (Yaghoobi and Taheri

2020):

,OGPL:1062-5 %, wagpL = 1.5,[1,1’11, lGPL = 2.5,u,m, tapr = 1.5nm, vgpr = 0186,

EGPL = 1.01TPa

In the present study, various boundary conditions are considered with ’S’ denot-
ing simply supported boundary and *C’ denoting clamped boundary. The total thick-
ness of the sandwich cylindrical panel is maintained as 10 mm throughout the study.
Throughout the study unless otherwise mentioned the following geometric properties

are assumed: ¢ =1, e, = 0.4, Agp = 1wt%, Z—::O.S and £ = 20.

4.4.1 Buckling Studies

To start with, the buckling analysis is conducted on a square (7 = 1) sandwich cylindri-
cal panel under simply supported (SSSS) boundary condition with a fixed porosity(e, =
0.4) and GPL weight fraction(Agp;, = 1wt%) with core to total thickness ratio (Z—i=0.8).
For convenience purposes, the critical buckling load is expressed as buckling coefficient

. . \7 i b2
given as: Ny = Ncr(m)

The buckling coefficient value of the sandwich cylindrical panel under different

NELs and radius ratio is analyzed and presented in Table 4.4. From Table 4.4, it is
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seen that buckling load decrease substantially with increase in radius ratio as antici-
pated. This is due to reduction in structural stiffness with increase in radius ratio. It
is also observed that the buckling coefficient changes with different types of porosity
and GPL distribution patterns. For any given NEL case, highest buckling coefficient
value is observed for the sandwich having the core with D-PD porosity and I-GPL-P
pattern of GPL distribution. The increased amount of GPL and the least presence of
pores towards top and bottom of the sandwich cylindrical panel enhances the buckling
coefficient value. Similarly, for any given NEL case, lowest buckling coefficient value
is observed for the sandwich having the core with I-PD porosity and D-GPL-P pat-
tern of GPL distribution. The presence of large amount of pores and reduced amount of
GPL towards top and bottom of the sandwich cylindrical panel is the reason for reduced
buckling coefficient value. Furthermore, for any given type of core analyzed, highest
buckling coefficient value is observed for the partial tension loading (Case d) while the
lowest value is observed for uniform edge loading (Case a). This is due to the presence
of a small amount of tensile load for partial tension loading. A part from the uniform
compressive loading, parabolic edge loading has the reduced buckling coefficient value.
This can be explained by considering the fact that parabolic edge compression has the
highest load at the center of the cylindrical panel. It is interesting to note that increasing
parabolic loading has lower buckling coefficient value than triangular loading. This is
due to the fact that for increasing parabolic loading, higher intensity of load is present

towards one edge compared to triangular loading.

In order to analyse the effect of core to total thickness ratio on buckling capacity
of sandwich cylindrical panel with different distribution of GPL and porosity pattern,
three different core to total thickness ratio (% = 0.4,0.6,0.8) are considered. Fixed
porosity(e, = 0.4) and GPL weight fraction(Agp;, = 1wt%) and radius ratio (% = 20)
are considered for this study. Table 4.5 illustrates the buckling coefficient value of a
sandwich cylindrical panel under different edge loading with respect to core to total
thickness ratio. To have a better understanding, a graphical representation of varia-

tion of buckling coefficient with change in core to total thickness ratio (Z—j) for uniform
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Figure 4.4: Variation in buckling coefficient value with core to total thickness (Z—j) of
GPL reinforced porous sandwich cylindrical panel subjected to uniform edge load under
SSSS boundary condition(% = 1, ¢, = 0.4, Agpr, = lwt%, & = 20)

loading condition is presented in Figure 4.4.1t is observed that increase in core to to-
tal thickness ratio has a positive effect on certain combinations of GPL and porosity
distribution. For instance, with increase in core to total thickness ratio the presence of
decreasing porosity distribution (D-PD) in a sandwich cylindrical panel enhances the
buckling coefficient value irrespective of GPL pattern. This is due to the high influence
of D-PD porosity pattern in enhancing the stiffness with increase in core to total thick-
ness ratio. Similarly, an enhancement in buckling coefficient value is observed for the
core with U-PD porosity pattern and I-GPL-P pattern of GPL with increase in core to to-
tal thickness ratio. It can be attributed as the influence of increased distribution of GPL
towards top and bottom side and high GPL content. Moreover, it is also observed that
buckling coefficient value decreases for all other combinations of porosity pattern and
GPL distribution. This is due to decrease in stiffness with increase in size of the core.

Further, highest buckling coefficient value is observed for the core with D-PD porosity
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pattern and I-GPL-P pattern of GPL for the core to total thickness ratio (’;—:) of 0.8. This
is expected as both D-PD and I-GPL-P patterns increases the structural stiffness of the
cylindrical panel and so does the buckling coefficient value. Highest buckling coeffi-
cient value among different type of loading is observed for uniform loading and lowest

value is observed for partial tension loading as expected.
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Figure 4.5: 3D surface plots of buckling coefficient of sandwich cylindrical panel indi-
cating the effect of GPL weight fraction and core to total thickness ratio under uniform
loading (Case-a) (a)porosity coefficient(ey)=0.2 (b)porosity coefficient(ey)=0.6
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Figure 4.6: 3D surface plots of buckling coefficient of sandwich cylindrical panel indi-
cating the effect of GPL weight fraction and core to total thickness ratio under trape-
zoidal loading (Case-b) (a)porosity coefficient(ey)=0.2 (b)porosity coefficient(ey)=0.6

To study the synergistic influence of GPL weight fraction and core to total thickness
ratio ( Z—:) on the buckling response of porous GPL core sandwich cylindrical panel, 3D
surface plots are presented in Figures 4.5, 4.6, 4.7. These figures show the transition
of buckling coefficient value with GPL weight fraction and core to total thickness ratio

for uniform, trapezoidal and parabolic respectively. In these figures, Sub-figure (a) and
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Figure 4.7: 3D surface plots of buckling coefficient of sandwich cylindrical panel indi-
cating the effect of GPL weight fraction and core to total thickness ratio under parabolic
loading (Case-e) (a)porosity coefficient(eq)=0.2 (b)porosity coefficient(ey)=0.6

(b) corresponds to two different porosity coefficient value given as (a) ey = 0.2, (b)
eg = 0.6. By careful examination of Sub figures 4.5(a), 4.6(a), 4.7(a), it is inferred that
at high values of GPL the increase in core to total thickness ratio have a positive impact
on the buckling coefficient value. This is expected as the presence of high amount of

GPL enhances the stiffness of the sandwich cylindrical panel. On the other hand, at
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low GPL content the increase in core to total thickness ratio has a negative impact on
the buckling coefficient value for most of the cases. This is due to reduction in stiffness
with increase in core to total thickness ratio. Accordingly, one can observe by analyzing
Sub-figures 4.5(b), 4.6(b), 4.7(b) (porosity coefficient ey = 0.6) that even when high
GPL content is present, increase in core thickness reduces the buckling coefficient value
for most of the cases. This can be explained as the stiffness of the sandwich is governed
by porosity of the core over GPL content. The only exceptions are D-PD & U-GPL-
P and D-PD & I-GPL-P for which at high GPL content, stiffness of porous sandwich
cylindrical panel is governed by GPL content instead of porosity. This is due to the

presence of efficient D-PD porosity distribution in common.
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Figure 4.8: Variation of buckling coefficient of GPL reinforced sandwich panel under
SSSS boundary condition subject to uniform edge loading(e, = 0.4, Agpr, = 1wt%,
Z—f:O.S and % = 20): effect of aspect ratio

Next, the buckling coefficient of porous GPL core sandwich cylindrical panel under
uniform load with respect to aspect ratio (%) is illustrated in Figure 4.8. It is observed
that buckling coefficient value decreases considerably with increase in aspect ratio upto
1, afterwards an increase in value is observed till $=1.4. Beyond $=1.4, buckling coef-

ficient value again decreases and so on. Accordingly, the buckling mode shape changes
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from (1,1) to (2,1) as shown in Figure 4.8. This is due to variation in structural stiffness
and pre-stress developed due to the applied load with increase in aspect ratio. More-
over, similar kind of variation in buckling coefficient is observed for the core with other
types of distributions also. Since there is no change in buckling coefficient with varia-
tion in aspect ratio for different porosity pattern and GPL distribution combinations, the
same analysis is not presented for other type of loadings. Figure 4.8, also reveals that
sandwich having a core with D-PD porosity variation and I-GPL-P pattern of GPL dis-
tribution has the maximum buckling coefficient value while the sandwich having a core
with I-PD porosity variation and D-GPL-P pattern of GPL distribution has the lowest

buckling coefficient as already explained.
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Figure 4.9: Variation of buckling coefficient of D-PD & I-GPL-P sandwich panel under

SSSS boundary condition subject to uniform, NEL-I (e, = 0.4, Agpr, = 1wt%, Z—ij.S

and § = 20): effect of aspect ratio

Variation of buckling coefficient value of D-PD & I-GPL-P sandwich cylindrical
panel subjected to different type I non-uniform edge loading with respect to aspect ratio
(3) is shown in Figure 4.9. Similar to the uniform loading, the shifting of buckling mode
shape from (1,1) to (2,1) happens at $=1.4. This can be explained as equal influence

of the linear loads to change the buckling mode shape. Furthermore, Figure 4.9 shows
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that the highest buckling coefficient value is for partial tension loading and lowest is for

uniform loading as already established in earlier discussions.
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Figure 4.10: Variation of buckling coefficient of D-PD & I-GPL-P sandwich panel
under SSSS boundary condition subject to uniform, NEL-II (e, = 0.4, Agpr, = 1wt%,
Z—j=0.8 and % = 20): effect of aspect ratio

Figure 4.10 demonstrates the variation of buckling coefficient value of D-PD & I-
GPL-P core sandwich cylindrical panel subjected to different type II non-uniform edge
loadings with respect to aspect ratio (7). The displayed results reveal that mode shifting
from (1,1) to (2,1) occurs at different ¢ ratio when the load variation is not linear. The
buckling mode shifts from (1,1) to (2,1) at § = 1.2 for parabolic loading case, ¢ = 1.4
for increasing parabolic loading and § = 1.7 for reverse sinusoidal loading. This is due
to the influence of different in-plane stress distributions in the case of non linear edge
loadings. However, the buckling mode shape under the different load cases in which
the load variation is not linear is same for ¢ = 1.2, it is (1,1) mode as shown in Figure
4.11. Accordingly, one can observe that at § = 1.6 the buckling mode shape for all cases
except reverse sinusoidal loading is (2,1) (double half wave) and for reverse sinusoidal

loading it is (1,1) (half wave) as depicted in Figure 4.12.
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Figure 4.11: Buckling mode of D-PD & I-GPL-P sandwich panel for aspect ratio
a/b=1.2 for uniform and different edge loads (Parabolic, Reverse Sinusoidal, Increasing
Parabolic.)

Before closing this section, it has been demonstrated that increase in core to total
thickness ratio has a positive impact on buckling response of sandwich cylindrical panel
for some cases of porosity distribution and GPL patterns. The increase in core to total
thickness ratio would actually lower the total weight of the sandwich panel with an
added benefit of increased buckling capacity. Thus, D-PD & I-GPL-P core sandwich
panel with a high core to total thickness ratio can improve the buckling performance of
sandwich cylindrical panel. Moreover, it has been established that changes in buckling
mode shape occurs at different ¢ ratio for different type of type II non-uniform edge
loading conditions. The question that arise now is the free vibration response of GPL

reinforced porous sandwich panel and will be discussed in the following section.

4.4.2 Free Vibration Studies

Free vibration results of porous FG-GPL core cylindrical panel under different non-
uniform edge loadings is presented in this section. The geometric properties used are
same as that considered in Section 4.4.1. Two different boundary conditions are used to
study the influence of bouundary conditions on the free vibration frequencies of sand-

wich cylindrical panel. Simply supported (SSSS) and fully clamped (CCCC) are the
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Figure 4.12: Buckling mode of D-PD & I-GPL-P sandwich panel for aspect ratio
a/b=1.6 for (a) Uniform (b) Parabolic (c) Reverse Sinusoidal (d) Increasing Parabolic.

two different boundary conditions considered. For convenience purposes, the natural

a2

frequency is expressed as non-dimensional frequency given as: ) = w,, (T é’ﬂ)

In Table 4.6, the non-dimensional fundamental frequency of GPL reinforced porous
sandwich cylindrical panel with different boundary conditions with respect to radius ra-
tio is presented. It is observed that the non-dimensional frequency reduces with increase
in radius ratio. This is expected as increase in radius ratio decreases the structural stiff-
ness and so does the natural frequency. The non-dimensional natural frequency tends to
vary with different porosity and GPL distributions. The highest natural frequency value
is observed for D-PD & I-GPL-P core sandwich cylindrical panel and lowest for I-PD

& D-GPL-P core sandwich cylindrical panel. This can be explained by considering low
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Table 4.6: Non-dimensional fundamental frequency of GPL reinforced porous sand-
wich cylindrical under different boundary condition(} = 1, e, = 0.4, Acpr = 1wt%,
Z—f:O.S) : variation with radius ratio (%)

SSSS CCCC
GPL  Porosity 2 2
5 10 20 5 10 20
U-GPL-P 12.4263 8.3578 6.9752 16.5264 13.1421 12.1469
I-GPL-P U-PD  12.5837 8.5904 7.2524 169198 13.6347 12.6786
D-GPL-P 12.3357 8.2220 6.8119 16.2973 12.8522 11.8325
U-GPL-P 12.5770 8.5558 7.2041 16.8675 13.5507 12.5831
I-GPL-P D-PD  12.8064 8.8263 7.5046 17.3416 14.0903 13.1499
D-GPL-P 12.4295 8.3799 7.0069 16.5596 13.1970 12.2099
U-GPL-P 12.3160 8.1020 6.6387 16.1168 12.5524 11.4869
I-GPL-P I-PD 12.3268 8.2490 6.8565 16.3332 12.9284 11.9236
D-GPL-P 12.3106 8.0319 6.5338 16.0136 12.3716 11.2759

porosity and increased GPL content towards top and bottom surfaces for D-GPL-P and
high porosity and reduced GPL content towards top and bottom surfaces for I-PD &
D-GPL-P sandwich cylindrical panel. Moreover, it is observed that there is an enhance-
ment in non-dimensional frequency with respect to boundary conditions for all type of

sandwich cylindrical panels.

Next, the influence of core to total thickness ratio (Z—j) on the non-dimensional fre-
quency of porous GPL core sandwich cylindrical panel is presented in Table 4.7. It
is observed that the non-dimensional frequency increases with increase in Z—Z ratio for
most of the cases. This can be explained by the combined effect of increase in struc-
tural stiffness due to GPL addition and reduction in mass due to presence of porosity.
The only two sandwich panels for which increase in ’,1—; ratio has a negative effect are
I-PD & U-GPL-P core and I-PD & D-GPL-P core sandwich panels. This is because of
the inability of GPL reinforcement in uniform and decreasing pattern to improve stiff-
ness for these two cases. The highest natural frequency value is observed for D-PD &
I-GPL-P core panel and lowest for [I-PD & D-GPL-P core panel at Z—::O.S. This is ex-
pected as D-PD & I-GPL-P core sandwich cylindrical panel can impart higher stiffness
with increase in core to total thickness ratio while the inverse is applicable for I-PD &

D-GPL-P core sandwich panel.
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Table 4.7: Non-dimensional frequency of GPL reinforced porous sandwich cylindrical
under different boundary condition(; = 1, ¢, = 0.4, Agpr = 1wt%, % = 20 : variation
with core to total thickness ratio(Z—j)

SSSS CCcC
GPL  Porosity 5 5
0.4 0.6 0.8 0.4 0.6 0.8
U-GPL-P 6.7583 6.8660 6.9752 11.7700 11.9574 12.1469
I-GPL-P U-PD 6.7923 6.9821 7.2524 11.8354 12.1804 12.6786
D-GPL-P 6.7388 6.7988 6.8119 11.7326 11.8283 11.8325
U-GPL-P 6.7874 6.9627 7.2041 11.8245 12.1409 12.5831
I-GPL-P D-PD 6.8278 7.0930 7.5046 11.8981 12.3848 13.1499
D-GPL-P 6.7617 6.8787 7.0069 11.7777 11.9836 12.2099
U-GPL-P 6.7211 6.7309 6.6387 11.6932 11.6893 11.4869
I-GPL-P I-PD 6.7420 6.8151 6.8565 11.7410 11.8633 11.9236
D-GPL-P 6.7113 6.6909 6.5338 11.6707 11.6066 11.2759

Variation in the non-dimensional frequency with increase in both GPL weight frac-
tion and core to total thickness ratio(ﬁ—:) is shown in Figure 4.13. 3D surface plots are
presented for better understanding with sub figures (a) and (b) denoting eqg = 0.2 and
eo = 0.6 respectively. In Figure 4.13, sub figure (a) reveal that at high GPL content in-

he

crease in 3 ratio leads to elevated non-dimensional frequency value for all the different

sandwich panels. This is explained as the influence of GPL to improve the sandwich
panel stiffness at low porosity level. Moreover, for the lower GPL content, the nature of
porosity distribution has the higher influence and sandwich panels with three porosity
distributions show significantly different response. For instance, the sandwich cylindri-
cal panel with decreasing porosity distribution (D-PD) shows an increasing frequency
value whereas, I-PD sandwich panel shows a decreasing nature of frequency. However,
not much change is observed for uniform porosity distribution. This is due to higher
influence of porosity pattern in the presence of low GPL content. Further, considera-
tion of sub figure (b) shows that at low GPL content, the non-dimensional frequency
reduces with increase in core thickness for all the type of distributions. This is because
of the reduction in the sandwich panel stiffness due to the presence of high amount of
porosity. Accordingly, for high GPL content increase in frequency is observed for the

core with some combinations of porosity and GPL distributions. Interestingly, it is also
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Figure 4.13: 3D surface plots of non dimensional frequency of sandwich cylindrical
panel indicating the effect of GPL weight fraction and core to total thickness ratio under
uniform loading (a)porosity coefficient(eq)=0.2 (b)porosity coefficient(ey)=0.6

observed that sandwich panel with decreasing porosity shows an increase in frequency
even at high porosity. This is because of the influence of D-PD porosity variation in im-
proving stiffness and high GPL content. U-PD & I-GPL-P core sandwich panel shows
an increasing buckling coefficient value with increase in Z—t ratio at high GPL content.

This can be attributed to the influence of high GPL content in improving stiffness.
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Figure 4.14: Variation of non-dimensional frequency with uniform compressive load
for GPL reinforced porous sandwich cylindrical panel under SSSS boundary condition
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Figure 4.15: Variation of non-dimensional frequency with compressive load of D-PD &
I-GPL-P sandwich panel under SSSS boundary condition subject to uniform, linearly
and non-linearly varying in-plane compressive loads.

To demonstrate the influence of gradually applied compressive load on the fun-
damental non-dimensional frequency of GPL reinforced porous sandwich cylindrical
panel, Figures 4.14 and 4.15 are plotted. Figure 4.14 shows the variation of the non-
dimensional frequency of a GPL reinforced porous cylindrical panel with increase in
UEL. The magnitude of UEL is increased in small steps of critical buckling load (0.1 N,
0.2Np, 0.3Nj.....1Ny) and corresponding variation in natural frequency is plotted. The
displayed results reveal that natural frequency reduces with increase in compressive

load for all the different GPL and porosity combinations and follows a similar reduc-
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tion path. The highest value of non-dimensional frequency and buckling coefficient is
observed for D-PD & I-GPL-P core sandwich panel and lowest for I-PD & D-GPL-P
core sandwich panel. Further, Figure 4.15 shows the reduction in fundamental natural
frequency of D-PD & I-GPL-P core sandwich cylindrical panel under different in-plane
loads. Interestingly, the natural frequency reaches to zero when applied load is equal to
the critical buckling load. More interestingly, the intensity of load required to reduce
non-dimensional natural frequency to a minimum value is different for different edge
loads. This is expected as increase in magnitude of the compressive loading reduces
the transverse stiffness of the structure and thus highly dependent on the distribution
of compressive load. For uniform loading, very small amount of compressive load is
required to reduce the frequency to a minimum value. Compared to linear loading, non-
linearly varying compressive load seems to be effective as non-linearly varying loading
induces stress resultants in more than one direction which has a clear influence on stiff-
ness reduction. The free vibration mode shape remains same as (1,1) with increase in

edge load for all the loading conditions.

4.5 Closure

The buckling and free vibration response of GPL reinforced porous sandwich cylindri-
cal panel subjected to different type of NELs was investigated. Different combinations
of porosity and GPL distributions for the sandwich core are considered. The Eigen value
problems of buckling and free vibration are obtained by utilizing a higher order shear
deformation theory and semi analytical method. The influence of different distributions
of GPL and porosity, core to total thickness ratio, radius of curvature, GPL weight frac-
tion, porosity coefficient on buckling and free vibration under uniform, NEL-I, NEL-II
is analyzed. From the parametric study, it is found that the sandwich cylindrical panel
with D-PD & I-GPL-P core has the maximum buckling resistance and better free vi-

bration frequency while the panel with I-PD & D-GPL-P core has the minimum. The
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critical buckling load is largely influenced by the type of NEL and uniform loading has
the minimum value while partial tension loading posses the maximum. The enhance-
ment in buckling resistance and free vibration frequency with core to total thickness
ratio depends on the amount of porosity in the core. In sandwich cylindrical panels
with low porosity coefficient, in the presence of high GPL content the buckling coeffi-
cient and free vibration frequency increases with rise in core to total thickness ratio. In
sandwich cylindrical panels with high porosity coefficient, in the presence of high GPL
content the variation of buckling coefficient and free vibration frequency depending on
porosity distribution and GPL pattern. The shifting of mode shape associated with crit-
ical buckling load from (1,1)(single half wave) to (2,1) (double half wave) occurs for
different value of aspect ratio for different types of non-uniform edge loads. The reduc-
tion of natural frequency with compressive load depends on the type of non-uniform
edge load. The low magnitude of edge load to reduce the natural frequency to mini-
mum is observed for uniform load while, large magnitude is required for partial tension

loading.
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CHAPTER 5

FREE VIBRATION-BUCKLING ANALYSIS ON CNT
REINFORCED CYLINDRICAL PANEL

5.1 Introduction

In the present chapter, buckling and free vibration behaviour of agglomerated CNT re-
inforced nano cylindrical panel under the influence of NELs considering the non-local
effect has been investigated. The presence of nano reinforcements in these nano scaled
structures helps in improvement of stiffness, however, consideration of size effects is
important to predict the results accurately. Further, the consideration of CNT agglom-
eration is important for predicting the buckling and free vibration characteristics of
structures under practical conditions. Therefore, critical buckling load and free vibra-
tion frequencies of agglomerated CNTs reinforced cylindrical shell panel subjected to

different kinds of NELs considering the size effect are investigated.

5.2 Non-Local Elasticity Modelling of CNT Reinforced

Cylindrical Panel

5.2.1 Mathematical Material Modelling

This section presents the constitutive equations for cylindrical panels reinforced with
CNTs considering its agglomeration effect as well as size effect. The effective mechan-
ical properties of cylindrical panels can be obtained by direct method if the CNTs are

dispersed uniformly throughout the matrix. However, CNTs are often not uniformly



distributed and tend to bundle together due to Van-der-Waals forces, high aspect ratio,
and low bending stiffness. The effective material properties of CNT reinforced com-
posites are given in Shi ef al. (2004) using a two-parameter micromechanics model.
The non-uniform distribution of CNTs in the matrix leads to the formation of spherical
bundles with different elastic properties of the surrounding material as shown in Figure

5.1.

CNT Bundle

Figure 5.1: CNT bundleing model with agglomeration

The total volume of CNTs (VTCN Ty in the RVE (representative volume element) is
given by:
‘/TCNT — V'Tm + V;bundle (51)

where, V?undle and V'™ represents the volume of CNTs inside the bundle and matrix
respectively. The agglomeration phenomenon is represented by two parameters as fol-
lows:

— Voundie d — Vrbundle
€=y and 7 = onr (5.2)

where, Viunaie, V' represents the volume of bundles in the RVE and total volume
of RVE respectively. The parameters € represents the volume fraction of bundles to
the total volume of the RVE and 7 represents the volume ratio of CNTs present in
the bundle to the total volume of CNTs in the RVE. In Equation 5.2, ¢ = 1 denotes

uniform distribution of CNTs in the matrix and decrease in e value denotes increase in
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agglomeration degree. When n = 1, all the CNTs are dispersed in inclusions and the

case of € = 1) denotes CNTs are uniformly dispersed in the cylindrical panel.

The ratio of volume of CNTs to the total volume is given as average volume fraction
(ry) as:
VCN T
Ty =~ (5.3)
The effective shear modulus (G,,,;) and bulk modulus (K ,,;) outside the bundles, and
the effective shear modulus (G;,,) and bulk modulus (/) of the bundles are given as
(Shi et al. 2004):

_ Tz;(nr_QGm,ﬁ’f‘)(l_n)
Gout = Gm + S=c—rotion) tra (= n)E] (5.4a)

— 7y (0r—3Kmar)(1—n)

Kout - Km + 3[l—e—ry(1—n)+7y(1—7) ] (54b)
— 7o (Nr—2Gm Br)n
Gi" - Gm + 2[e—ryn+ronSr] (540)
S Ty (6, —=3Kmar)n
Kzn - Km + 3le—=run+Tenar] (54d)
where,
Em
Gm = 310 (5.52)
_ 112 8Gmpr 8mr Gon (3K +4G)
=75 {3(7” =)+ Gmf;T t IR e A G ) A G (T G
(5.5b)
2(kr—1,) (2Gm+1r)
T 3G ) ]
_ 1| 4Gm+2ke+lr 4G (G (BKm+Gom)+GCom (3K m+7Gom )]
Br = 5[ 3(Gm+kr) + Gmtpr + G (3K m+Gm)+mr 3Km+7Gm) } (5.5¢)
JR— Em
Ko = 50250 (5.5d)
— 1 (Zk’r'+l7')(3K’VIL+2G7YL_IT')

Op =3 [”7’ + 2l + Grmthr } (5.5¢)
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_ 3(Km+Gm)+tkr—Ir
A () (5.5)

Here, k., ., m,, n, and p, denotes Hill’s Elastic moduli (Hill 1965) for the CNT re-
inforcement and G,,, F,,, vy, and K, represents the shear modulus, Young’s modulus,

Poisson’s ratio and the bulk modulus of the matrix phase.
The Mori-Tanaka model is used to calculate the effective material properties as:

€ (%—1)
B )} (5.6a)

K = Ko, |:1 +

1+ac(l—e) 7:3:—1

E< o 1)
Gout
G = Gout |:1 +

] (5.6b)
14Bc(1—€) C%’S;l)

_ 9KG
b= 3K+G (5.6¢)
_ 3K—2G
V= SK12G (5.6d)
where,
Qe = gty (5.7a)
__ 8—10vpy
Pe = 15i—veuy (5.7b)
and
— 3Kout_2Gout
Vout = 6K out+2Gout (58)

The variation in material properties K;,, K., X and Gy, Gou, G with variation in
agglomeration parameter 1 for partially agglomerated condition (¢ = 0.5) is given in
Figure 5.2. It is observed that with increase in amount of CNTs inside bundle (increase

in 7)) leads to reduction in both effective bulk modulus (K) and shear modulus (G) of
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cylindrical panel.
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Figure 5.2: The variation of material properties of a partially agglomerated (¢ = 0.5)
CNT reinforced cylindrical panel with increase in agglomeration parameter 7).

5.2.2 Nonlocal Elasticity Theory

When CNTs are dispersed uniformly in the matrix, the resulting composite panel is
considered as an isotropic material. However, at the scale of the intrinsic characteristic
length, the microstructural heterogeneity is present. Thus, non-local elasticity theory
(Eringen 1972, 1983, 2002) is applied which suggests the stress at a reference point is

dependent on the point and all other parts in the domain.

The constitutive equations for non-local elasticity(Eringen 1972) based on gradient

model is given as:

(7’ — o.n.l . [l.2v2(7"l (59)

where, ¢! and o™ denotes non-local and local stress respectively and V is the Lapla-
cian operator given as V? = a‘)—; + d"—; and non-local parameter is given by p. The
non-local parameter estimation using experiments for structures reinforced with CNTs
is not carried out yet (Hu et al. 2008), hence the present analysis is carried out with

assumed values. However, some experimental studies for estimating the length scale
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parameter using various non local theories are available in the open literature (Lei ef al.
2016; Li et al. 2019c; Xie et al. 2022). The general approach for estimation of non-local
parameter is by minimisation of least square error between experimental and theoretical

results (Lei et al. 2016).

The stress-strain relations considering non-local effect is given as:

; - -

Oga Qu Q12 O 0 0 €xx
Tyy Qiz @2 0 0 0 Eyy
1=V e =10 0 Qs 0 0 Vay (5.10)
Taz 0 0 0 Q55 0 Vaz
Tyz J i 0 0 0 0 Q44_ Vyz )
Q;; are stiffness matrix coefficients and defined as follows:
Qu = Qan = 1,El,2
Q2 = Qa1 = 177 (5.11)

QGG = QSS = Q44 =G

Using non-local elasticity theory the stress-strain relations are considered by incorpo-
rating the non-local parameter as discussed in this section. Using these equations, the
governing differential equations are formulated and buckling and free vibration param-

eters are calculated as discussed in Section 2.

5.3 Validation

In this section, the comparison of effective material properties, buckling and free vi-
bration results of agglomerated CNTs reinforced cylindrical panel obtained using the

present method with the results available in literature is presented.
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5.3.1 Verification of Material Properties Estimation

Firstly, the effective Young’s modulus reported by Bisheh ef al. (2020) is compared to
verify the correctness of micro mechanics model followed in the present work. Bisheh
et al. (2020) also used Mori-Tanaka micro-mechanics model to evaluate the effective
Young’s modulus. The matrix and CNT properties as given in Bisheh et al. (2020) are
adopted. For the matrix : F,,=1.9 GPa, v,,=0.3 and for SWCNT : n,= 450 GPa, k.=
350 GPa, m,= 1 GPa, p,= 1 GPa, and [,= 10 GPa. Table 5.1 presents the comparison
of Young’s modulus for the CNT reinforcement with complete agglomeration (n = 1).
It is found that the results are in good agreement. In Table 5.2, the effective Young’s
modulus reported by Bisheh er al. (2020) is compared with current results for partial
agglomeration condition (¢ = 0.5). The present results are in good agreement with the
results reported by Bisheh et al. (2020). Finally, in Table 5.3 the results for randomly
oriented CNTs (¢ = 1 = 1) in the matrix are compared with the results of Bisheh
et al. (2020). The comparison is done to check the equivalence of randomly oriented
and uniformly distributed CNTs (Bisheh and Wu 2019) in the matrix. The material
properties used are : For matrix: F,,=78 GPa, v,,=0.31 and SWCNT : n,= 1089 GPa,
k.= 271 GPa, m,= 17 GPa, p,= 442 GPa, and [,= 88 GPa. It is observed that the
present results matches well with the results reported by Bisheh ef al. (2020). This
also indicates the effectiveness of the proposed model to calculate the effective elastic

properties of the material analyzed.

5.3.2 Buckling Load Calculation

The estimation of the buckling load considering the non-local effect is validated by
comparing the present results with Hosseini-Hashemi er al. (2015) as shown in Table
5.4. An analytical method based on HSDT is used by Hosseini-Hashemi et al. (2015)
to obtain the results. The excellent agreement between references and present results

are obtained.
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Table 5.4: Comparison of buckling coefficients

Nera?
D

supported flat panels with Hosseini-Hashemi ef al. (2015)

> for CNT reinforced simply

7=1
% =0.1 g =0.01

Hosseini-Hashemi et al. (2015) Present Hosseini-Hashemi ef al. (2015) Present

HSDT SSDT HSDT SSDT

pnw=20 18.6861 18.8585 19.7281 19.7299
w=0.1 15.6057 15.7497 16.4916 16.4774
w=0.2 10.4408 10.5380 11.0136 11.0250
w=0.3 6.7200 6.7921 7.1030 7.1060

2
h En

Table 5.5: Non-dimensional frequency <Q = w, (% "—’")) for CNT reinforced sim-

ply supported flat panels with Phung-Van et al. (2017)

pn=15 w=4

Venr 7 Phung-Vaneral (2017) Present Phung-Van et al. (2017) Present
HSDT SSDT HSDT SSDT

10 2.044 2.0415 1.257 1.2554

0.11 20 2.477 2.4729 1.523 1.5207
50 2.688 2.6879 1.653 1.6529

10 2.123 2.1224 1.306 1.3052

0.14 20 2.637 2.6334 1.622 1.6194
50 2.909 2.9099 1.789 1.7894

5.3.3 Free Vibration Frequency Calculation

Natural frequencies of CNT reinforced plate considering the non-local effect presented

in Phung-Van et al. (2017) is considered since there is no study on the CNT reinforced

cylindrical panel. Isogeometric analysis based on HSDT is used in Phung-Van et al.

(2017) to obtain the free vibration frequencies. The comparison of the results in Table

5.5 indicate that both the results are in good agreement. Excellent agreements of the

presence solutions with reference solutions are observed which confirms the accuracy

of the semi analytical method.
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Table 5.6: Properties of matrix and CNT(Chakraborty et al. 2019; Shi et al. 2004)

Matrix(PmPV) Single Walled Carbon Nanotube (SWCNT)
E,,=2.1GPa, 1,=0.34, p,=1150% 1,=0.175, p,=14002%

Hills elastic moduli(GPa): p,=1, [,=10, k,=30, m,=1, n,=450

5.4 Free Vibration and Buckling Characteristics for CNT

Reinforced Cylindrical Panel

The numerical results for CNT reinforced nanocomposite cylindrical panel considering
agglomeration are presented in this section. The matrix is assumed to be poly{(m-
phenylenevinylene)-co-[(2,5-dioctoxy-p-phenylene) vinylene]}, known as PmPV, and
reinforcement is assumed to be single-walled carbon nanotubes (SWCNTs) and their
properties are listed in Table 5.6. In the numerical investigation, the following values

.a_qa
are used : 7 =1,7=20.

5.4.1 Buckling Analysis

The buckling analysis under different loads is performed on a square cylindrical panel
(3 = 1 having thickness ratio of (;; = 20). Three different type of CNT distributions
considered are: a) Uniformly distributed (¢ = n = 1), b) Partially agglomerated (¢ =
0.5,7 = 0.75), c¢) Fully agglomerated (¢ = 0.5,7 = 1). The schematic diagram of
different CNT distributions is presented in Figure 5.3. Firstly, the panel is assumed to
have a fixed volume fraction of CNT (r, = 0.1) and simply supported (SSSS) boundary

condition is considered. Three different radius ratios (% = 5,10, 20) are considered.

Table 5.7 presents the buckling coefficient, Ny = (Derb™ ) variation for different

T00p, h3
distributions of CNT and at different values of nonlocal parameter. It is observed that
cylindrical panel has high buckling strength for ¢ = 1 = 1 (uniformly distributed)
and the increase in agglomeration degree reduces the buckling strength. The lowest

buckling coefficient value is observed for e = 0.5, = 1(fully agglomerated). This is
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¢) Fully agglomerated (e =0.5, 1 =1)

Figure 5.3: Schematic representation of different level of agglomeration

expected as the increase in agglomeration leads to a decrease in stiffness of the struc-
ture. It is also observed that with the increase in non-local parameter, the buckling
coefficient reduces for all the values of radius ratio. Thus, the non-local effects must be
considered while estimating the buckling characteristics. It is also observed that with
the increase in radius, the buckling coefficient value reduces. This is due to the reduc-
tion of structural stiffness with the increase in the radius of the panel. It is found that
the buckling coefficient varies with the type of non-uniform edge loading. The highest
and lowest buckling loads are observed for partial tension loading and uniform loading
respectively. The presence of a small amount of tension in the loading pattern makes

partial tension loading less effective as discussed in the previous chapters.

Figure 5.4 is a graphical representation showing the variation of the buckling coef-
ficient with changes in the non-local parameter, radius ratio, and agglomeration. From
Figure 5.4 a) it is clear that buckling coefficient value for a particular radius ratio
(% = 5) and agglomeration degree (¢ = 1 = 1) reduces with increase in non-local

parameter value for all the loading conditions. This is expected as the non-local effect
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Table 5.7: Buckling coefficients (%) for CNT reinforced nano composite cylindri-

cal panel under SSSS boundary condition(a/b=1, a/h=20, r, = 0.1)subject to different
NELs

Dispersed uniformly Agglomerated partially Fully agglomerated
R/a (e=n=1) (e =0.5,7=0.75) (e=05n=1

p=0 p=01 p=02 pu=0 p=01 =02 p=0 p=01 p=02

Uniform Loading
5 03865 03228 0.2160 0.3502 0.2925 0.1957 0.1955 0.1633  0.1093
10 0.3575 0.2986 0.1998 0.3240 0.2706 0.1810 0.1811 0.1512 0.1012
20 0.3503 0.2925 0.1957 03174 0.2651 0.1774 0.1775 0.1482  0.0992

Trapezoidal Loading
5 05153 04304 0.2880 0.4669 0.3900 0.2609 0.2607 0.2177  0.1457
10 04767 03981 0.2664 0.4320 0.3607 0.2414 0.2414 0.2016  0.1349
20 0.4670 0.3900 0.2610 0.4232 0.3534 0.2365 0.2366 0.1976  0.1322

Triangular Loading
5 07730 0.6455 04319 0.7004 0.5849 0.3914 0.3911 0.3266 0.2185
10 0.7150 0.5972 03996 0.6479 0.5411 0.3621 0.3621 0.3024 0.2024
20 0.7005 0.5851 0.3915 0.6348 0.5302 0.3547 0.3549 0.2964 0.1983

Partial tension Loading
5 15459 12911 0.8639 1.4008 1.1699 0.7828 0.7821 0.6532 0.4370
10 14301 1.1943 0.7991 1.2959 1.0822 0.7241 0.7243 0.6049  0.4047
20 14011 1.1701 0.7829 1.2696 1.0603 0.7095 0.7098 0.5928 0.3966

is to reduce the buckling load value. Similarly, a reduction in buckling coefficient value
is observed with increase in radius ratio as shown in Figure 5.4 b) corresponding to
non-local parameter (1 = 0.1) and uniformly distributed CNT (¢ = 1 = 1). This is
because of the reduction in structural stiffness with the increase in radius ratio. Fig-
ure 5.4 c) shows the variation in buckling coefficient value with changes in degree of
agglomeration of cylindrical panel with radius ratio (}f = 5) and non-local parameter
(= 0.1). The buckling coefficient reduces with the degree of agglomeration for all the
loading conditions. This is due to the reduction in material properties as a result of CNT
agglomeration. It is also noted from Figure 5.4 that highest buckling coefficient value is
observed for partial tension load while lowest buckling coefficient value is for uniform
loading. This is due to the fact that in uniform loading the entire edge is subjected to
maximum compressive load whereas in partial tension loading, the edge is subjected to
a combined compressive and tensile load. The buckling coefficient values of trapezoidal

and triangular value are in between uniform and partial tension loading. The trapezoidal
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loading has a higher effective compressive loading on the edge compared to triangular

loading, thus variation in buckling coefficient value is well expected.

Figure 5.5 shows the effect of agglomeration parameter (e-volume fraction of bun-
dle) considering full agglomeration (all the CNTs are in the bundle) on the buckling
coefficient of cylindrical panel. The radius ratio(%) and ; maintained as 20 and volume
fraction of CNT(r,) is 0.2. It is observed that with the increase in the volume fraction of
bundle, the buckling coefficient increases for all the loading conditions. This is because
when all the CNTs are in bundles the increase in bundle size contributes to improved
dispersion of CNTs in the matrix. For the uniformly distributed CNT condition, i. e.,
e = 1, the highest value of buckling coefficient is obtained. There is a change in buck-

ling coefficient value with an increase in the volume fraction of CNT (r,) and non-local
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parameter (1) is observed. It can be observed that with the increase in agglomeration
parameter (¢), there is not much increase in buckling coefficient even though the volume
fraction of CNT(r,) is increased up to € = 0.5 which denotes complete agglomeration.
This is because of the agglomeration which can cause only a marginal improvement
in material properties. Further, as € increases beyond 0.5 distribution start to improve
and the influence of volume fraction will become more evident. It can be observed that
the increase in volume fraction causes a very high increase in buckling coefficient. For
instance, the rate of increase in buckling coefficient is very high for 7,=0.2 compared
to r,=0.1. This is expected as the increased amount of CNTs in the matrix enhances the
mechanical performance of the composite. One can also be observed that the non-local
parameter causes a similar reduction in the buckling coefficient in the buckling coef-
ficient for all the load cases. Furthermore, the effect of volume fraction of CNT (r,)
dominates the non-local effect when CNT distribution is uniform. As seen from Fig-
ure 5.5, the buckling coefficient value for r,=0.2 and ;z=0.2 is higher than r,=0.1 and
1=0.1. Even though the non-local parameter is higher in the first case, the dominating
effect of the volume fraction of CNT is the reason for the higher buckling coefficient

value.

The influence of partial CNT agglomeration (e = 0.5 and € < 717) on the buckling co-
efficient for various value of 7 are presented in Figure 5.6. The agglomeration changes
from fully agglomerated (¢ = 0.5 ,n=1)to uniformly distributed (¢ = 0.5 ,n=0.5). Simi-
lar to Figure 5.5 the effect of increased volume fraction of CNT dominates the non-local
effect as the CNT distribution becomes uniform. For instance, the cylindrical panel with
r,=0.2 and ©=0.2 provides better buckling strength than r,=0.1 and p=0.1 as CNT dis-
tribution tend towards uniform. This is due to the enhancement of material properties as
a result of increased CNT volume fraction. The highest buckling coefficient is observed
for e=n=0.5 and the lowest value is observed for ¢ = 0.5 and n=1. This is expected as
n=e=0.5 represents uniform distribution and € = 0.5 and n=1 denotes full agglomera-
tion. Thus it is evident that with the increase in agglomeration the buckling coefficient

reduces for all the loading conditions due to the reduction in material properties.
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Figure 5.5: Variation of buckling coefficient (Tooo7) considering complete agglomer-

ation (n = 1) with change in agglomeration parameter(e) for different CNT volume
fractions(v,)

Figure 5.7 presents the variation of the buckling coefficient for different values of ¢
and 7 as the non-local parameter is increased. It is evident that the buckling coefficients
reduce as the non-local parameter increases for all the different loading conditions. It
is observed that the uniformly distributed CNT case results in the highest buckling co-
efficient. This is due to enhanced material properties as a result of uniform distribution.
As seen from Figure 5.7, a drastic reduction of the buckling coefficient for uniformly

distributed case (¢

1 = 1)is observed as yu increases from 0.2. This is because of
the dominant influence of non-local parameter on the buckling coefficient value. It is
evident from the fact that for a high non-local parameter value, ¢+ = 1, the buckling

coefficient value becomes very less.

The variation of the buckling coefficient with the non-local parameter for partially

109



06 —=—v,=0.1, p=0.1 —=—v,=0.1, p=0.1
—o—v,=0.1, y=0.2

€ 2
2 5061 —+—v,=0.2, p=0.1
(&} ——
£ %—j 054 —v—v,=0.2, y=0.2
3 3
o O 044
S 2
(5‘! % 0.3+
m =]
04 002
a) Uniform Loading i ] 0.1 Lb) Trapezoidal Loading
05 06 07 08 09 10 05 06 07 08 09 10
n n
b —=—v=0.1, p=0.1 224 —=—v,=0.1, p=0.1
- - 20+ —o—v,=0.1, p=0.2
§ 2187 —4—v,=0.2, y=0.1
=4 £ 167 v,=0.2, p=0.2
[0} r
Q Q 1.4
o o
o o121
£ £ 10
ﬁ A"‘) 0.8 4
= 5 0.
@ @56
024 ) ! ] ) ) !
¢) Triangular Loading 04 Partial tension Loadin:
T T T T T
05 06 07 08 09 10 05 06 07 08 09 10
n n
Nerb?

Figure 5.6: Variation of buckling coefficient (Too07) considering partial agglomera-

tion (¢ = 0.5) with change in agglomeration parameter(n) for different CNT volume
fractions(v,)

agglomerated (¢ = 0.5) cylindrical panel under different loading conditions is shown
in Figure 5.8. It is observed that the highest buckling coefficient value is observed for
e =1n = 0.5 case, i. e., for the uniformly distributed CNT panel. With the increase
of non-local parameter, the buckling coefficient value reduces for all the cases. This
is expected as the non-local parameter value increases, its influence on geometric stiff-
ness increases which leads to the dominating effect such that buckling coefficient value

reduces drastically.
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Figure 5.7: Variation of buckling coefficient (lé\gzﬁs) considering full agglomeration

(n = 1) with change in non-local parameter(y) for different combinations of € and 7

5.4.2 Free Vibration Analysis

The non-dimensional fundamental frequency of agglomerated CNT reinforced cylin-

drical panel under different non-uniform edge loads is presented in this section. The

cylindrical panel having the dimensions (3 = 1,3 = 20, % = 5,10, 20) considered

for buckling analysis is considered for free vibration studies also. The volume frac-

tion of CNT is maintained as r, = 0.1 and free vibration frequency is presented in
2

non-dimensional form as = w, (7 /%2).
T

Non-dimensional frequency of CNT reinforced cylindrical panel considering ag-
glomeration effect under various radius ratio (% = 5,10, 20) for different values of
non-local parameter is presented in Table 5.8. Notably, the non-dimensional frequency

reduces with an increase in the degree of agglomeration. It is due to a reduction in
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Figure 5.8: Variation of buckling coefficient (N..b*/100p,h?®) considering partial ag-
glomeration (e = 0.5) with change in non-local parameter(u) for different combinations
of e and n

structural stiffness with the increase in the degree of agglomeration. It is also noted that
the increase in non-local parameter reduces the natural frequency. This is because of
the influence of non-local parameter in increasing the mass matrix coefficients without
altering the structural stiffness. It is also observed that the natural frequency changes
with boundary conditions and the highest value of frequency are observed in the CCCC
boundary condition, which is due to the presence of clamped edges in the fully clamped

boundary condition.

The variation of the non-dimensional natural frequency of CNT reinforced cylindri-
cal panel with changes in the local parameter is depicted in Figure 5.9. The first part (a)
denotes the reduction of the natural frequency with an increase in non-local parameter

for the SSSS boundary condition. This is due to the influence of the nonlocal parameter
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Table 5.8: Non-dimensional frequency (2 = wy(

a?

h

£2)) for CNT reinforced nano

composite cylindrical panel under SSSS boundary condition(a/b=1, a/h=20, r, = 0.1).

Dispersed uniformly Agglomerated partially Fully agglomerated
R/a (e=n=1) (e =0.5,7=0.75) (e=05n=1)

p=0 p=01 p=02 p=0 wu=01 =02 pu=0 p=01 p=02
SSSS

5 19.2845 17.6234 14.4157 18.3570 16.7758 13.7223 13.7166 12.5351 10.2535

10 18.5472 16.9497 13.8645 17.6556 16.1348 13.1980 13.1993 12.0624 9.8668

20 18.3578 16.7765 13.7229 17.4753 15.9701 13.0633 13.0664 11.9409 9.7675
CCCC

5 341172 30.5478 24.1889 32.4770 29.0793 23.0260 24.2803 21.7401 17.2146

10 33.6532 30.1311 23.8573 32.0356 28.6828 22.7106 23.9543 21.4473 16.9816

20 33.5359 30.0257 23.7735 31.9240 28.5826 22.6308 23.8719 21.3732 16.9227

on the natural frequency. Here ;1 = 0 denotes results obtained based on classical me-
chanics theory. The highest value for frequency is observed for ¢ = = 1 (uniformly
distributed) condition. This is expected as the elastic properties are improved with
the uniform dispersion of CNTs in the matrix. Part (b) of Figure 5.9 shows the influ-
ence of the nonlocal parameter on non-dimensional natural frequency for fully clamped
(CCCC) boundary condition. The natural frequencies reduce the same as the simply
supported condition and the highest frequency is observed for the uniformly distributed

CNT condition.

The influence of the different type of non-uniform edge load on the fundamental
frequency of CNT reinforced panel at different degree of agglomeration and the non-
local parameter is presented in Figure 5.10. It is observed that as the intensity of edge
loading increases, the natural frequency of the cylindrical panel decreases. This is due to
the influence of the edge load on the stiffness of the structure. The reduction of natural
frequency to zero happens at a very low load for fully agglomerated case (¢ = 0.5,n =
1) and non-local parameter (;) 0.2. This is expected as the reduction in stiffness happens
with agglomeration and increased influence of non-local parameter on mass. Further to
understand the effect of different type of loading pattern on the reduction in natural
frequency value, Figure 5.11 is plotted for uniformly CNT distributed cylindrical panel.

e =1,7=1and p =0.1 is considered. It is clear from Figure 5.11 that reduction rate
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partial agglomeration (¢ = (0.5) with change in agglomeration parameter(n) for different

CNT volume fractions(v,)

of natural frequency with increase in compressive load is different for various loading

conditions. This is expected as the reduction in transverse stiffness occurs with increase

in magnitude of in plane loading which in turn is highly depend upon the nature of

variation of the non-uniform edge load. The free vibration mode shape remains same

as (1,1) with increase in intensity of the edge load.

5.5 Closure

The size dependent buckling and free vibration behaviour of CNT reinforced cylindrical

nano panel considering agglomeration subject to different NELs using a semi-analytical
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Figure 5.10: Effect of compressive load on non-dimensional frequency (2 =
cun(%1 /22)) of SSSS cylindrical panel for all the type of loadings

method utilizing Galerkin’s method considering non-local elasticity theory is presented.
Two parameter micro mechanical model is used for the estimation of mechanical prop-
erties. A non-local parameter is introduced to evaluate the size effects. The accuracy of
the present solutions are verified by comparing authors results with various analytical
solutions available in the literature. The influence of non-local parameter, CNT ag-
glomeration, NELs on buckling, and free vibration response is presented. The buckling
strength of cylindrical nano panel depends primarily on the non-local parameter, type
of NEL and degree of CNT agglomeration. The free vibration response of cylindrical
nano panel depends largely on non-local parameter, degree of CNT agglomeration and
boundary conditions. The critical buckling load is influenced by the type of NEL. The
highest value of buckling load is observed for partial tension loading and the lowest for

uniformly distributed edge load. For the CNT reinforced cylindrical nano panel, the
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Figure 5.11: Effect of compressive load on non-dimensional frequency (2 =
(,un(%1 /’;—T:)) of uniformly distributed CNT reinforced cylindrical panel under SSSS

boundary condition for different loadings

consideration of size effect reduces the stiffness thus the buckling and free vibration
performance is poor. The reduction in natural frequency with the increase in buckling

load is different for various NELs.
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CHAPTER 6

FREE VIBRATION-BUCKLING ANALYSIS ON GOP
REINFORCED CYLINDRICAL PANEL

6.1 Introduction

In the previous chapters, buckling and free vibration of cylindrical panels reinforced
with GPL and CNT are investigated. The buckling and free vibration characteristics of
Graphene oxide powder (GOP) reinforced cylindrical panels need to be analysed next
since it has several advantages such as ease of availability and ability to form better

interfaces with polymer matrix.

In this chapter, the buckling and free vibration response under different non-uniform
edge and partial edge loads of functionally graded graphene oxide powder reinforced
cylindrical panel is analyzed. The graphene oxide powder is functionally graded along
the thickness in three different patterns and amount of GOP reinforcement is also var-
ied. To obtain the solutions, the governing differential equations are solved for natural
frequency, critical buckling load and mode shapes utilizing Galerkin’s method subjected

to different types NELs.

6.2 Material Modelling of GOP Reinforced Composite

The GOP reinforced composite cylindrical panel has material properties varying in
thickness direction in three different patterns given as : (a) U-GOPRC-in which GOP is
distributed uniformly through the thickness, (b) X-GOPRC-in which the concentration

of GOP increases from center to the surfaces, (¢) O-GOPRC-in which the concentration



a) U- GOPRC b) X - GOPRC ¢)0-GOPRC

Figure 6.1: Different types of GOP distribution patterns

of GOP increases from surface to the center (Figure 6.1). Thus, considering Ebrahimi
et al. (2021); Zheng et al. (2021) the material properties of GOP reinforced cylindri-
cal panel such as density (pgoprc), Poisson’s ratio (vgopgrce) and Young’s modulus

(Ecoprce) are estimated by Halpin-Tsai model given as:

pcorrc = pcorVaor + pmVm
vaoprc = VaorVaor + Vm Vi (6.1)

FEcoprc = 0.49E; 4+ 0.51E;

Where, pcop, pm represent density of reinforcement(GOP), matrix, Vgop, V,, repre-
sent volume fraction of reinforcement, matrix and vgop, v, represent Poisson’s ratio of
reinforcement (GOP), matrix respectively. F; and E; represents transverse and longitu-
dinal moduli of the nano composite cylindrical panel reinforced with GOP. The volume
fraction of GOP (Vop) for different layers varies according to the different patterns

and it is defined as:

U — GOPRC : VGOP(Z) = VC/?OP
X — GOPRC : Vgop(l) = 2|2l = NL — 1|\V{op (6.2)
O —GOPRC : Vgop(l) = 57 (1 = |2l = NL — 1))V{op

Here, total number of layers is represneted by NL and /=1, 2,....., NL. The relationship

between volume fraction of matrix (V,,) and volume fraction of GOP’s (Vgop) are
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related as:

Veop + Vi, =1 (6.3)

In Equation 6.2, V{,,p is the total volume fraction of GOP in the cylindrical panel and
given as:

. W,
Véor = WGOP+(1—W22§)(pcop/pm) ©4

Here, W0 p represents the weight fraction of GOP. The longitudinal (£)) and transverse

(E;) moduli of the composite in Equation 6.1 is given as:

E, = HamVeor E,,

1-mVeor (6.5)
B, = +&neVaor % E
t 1-ntVaor m

Here, n;, n; represents parameters and F,, represents Young’s moduli of the matrix

material which are defined as:

EJEﬁ_1 EﬂEE_1 6.6
m EEQme e’ us EEQmQP e ( . )

where, ¢ and &, are geometry factors given as:
§=6= —id(fﬁlf (6.7)

where, hgop and dgop are the thickness and diameter of GOP respectively. Using
the Young’s modulus (Egop), Poisson’s ratio (vgop) and density (pgop) the different
coefficients are calculated and buckling and free vibration characteristics are obtained

as mentioned in Section 2.

6.3 Validation of Material Modelling

To assure the accuracy and effectiveness of the present mathematical model of GOP

reinforced composite validation study is conducted based on results available in the
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literature and presented in this section.

The dimensionless buckling load {NO = NCT(RI—M)} of a cylindrical shell

reinforced with GOP for different weight fractions of GOP are presented in Figure 6.2
together with results of Ebrahimi ef al. (2021). In Section 4, the material properties used

for the present study are presented. The cylindrical shell is considered simply supported

L _ R_

with the geometric parameters defined as: 3 = 3*=20. The dimensionless buckling load

obtained using present study and those obtained by Ebrahimi ef al. (2021) are in close

agreement.

m WGOP = 1% Ebrahimi et al.
e WGOP = 2% Ebrahimi et al.
WGOP = 3% Ebrahimi et al.
v WGOP = 4% Ebrahimi et al.
WGOP = 4% Present
WGOP = 3% Present

o
(&)}
!

o
A
1

— WGOP = 2% Present
— WGOP = 1% Ebrahimi et al

o o
N w
1 |

Dimensionless buckling load, Ncr
o
n

0.0

Circumferential wave number, n

Figure 6.2: Comparison of dimensionless buckling load (N, = NCT(RI—M)) of
SSSS GOP cylindrical shell

120



6.4 Free Vibration and Buckling Characteristics for GOP

Reinforced Cylindrical Panel

The present study aims to investigate the influence of NELs on free vibration and buck-
ling response of FG-GOP reinforced cylindrical panel. The matrix is assumed to be
Epoxy and reinforcement is graphene oxide powder (GOP) with the following proper-

ties (Zhang et al. 2020), (Lin et al. 2014):

FE,, =3.0GPa,v,, =0.34 and p,, = 1200% : Epoxy Matrix

Eqop = 444.8GPa,vgop = 0.165 and pgop = 1090% : GOP Reinforcement
(6.8)

The GOP is considered as a circular shaped reinforcement having a thickness t = 0.95
nm and diameter d = 500 nm as given in (Lin et al. 2014). The following convention
is used for boundary conditions, for instance, ’C’ and ’S’ denotes clamped and simply
supported boundary conditions respectively. Thus, ’CCCC’ and ’SSSS’ denotes all
edges clamped and all edges simply supported boundary conditions respectively. The
geometric properties are assumed as the following though out the study unless otherwise

mentioned as: § = 1,% = 20, Wgop = 2wt% and cylindrical panel thickness ratio is

assumed as % = 100.

6.4.1 Buckling Studies

In this section, the influence of GOP distribution and it’s concentration on buckling
behaviour under different NELs is studied first. Following that the influence of aspect
ratio (3) on buckling characteristics of nano composite cylindrical panel is analysed in
detail. The expression for critical buckling coefficient is given as N, = Ncr(m).

Here, A denotes the lowest eigen-value obtained from the buckling problem.
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6.4.1.1 Influence of GOP Distribution and Its Volume Fraction

As a first study, the GOP cylindrical panel is assumed to be square (7 = 1) with thick-
ness ratio (7 = 100) and radius ratio (g = 20) and boundary condition is considered to
be simply supported (SSSS). The variation of buckling coefficient for a GOP reinforced
cylindrical panel is affected by two different factors, namely GOP weight fraction and
GOP distribution. Therefore, buckling coefficient value is calculated for different val-
ues of GOP weight fraction for different distribution are shown in Figure 6.3. The
sub figure (a) in Figure 6.3 denotes variation of buckling coefficients for uniformly
distributed GOP reinforced cylindrical panel. The buckling coefficient value increases
with increase in GOP concentration, due to enhancement in structural stiffness due to
addition of GOP. It can be seen that minimum buckling coefficient is observed for par-
tial edge loading and maximum for reverse sinusoidal loading. The highest intensity
of load at the center of the nano composite cylindrical panel is the main reasoning for
lowest buckling coefficient value for partial edge loading. While for reverse sinusoidal
loading highest intensity of loading is at the edges and results in higher buckling coef-
ficient value. A glance again at Figure 6.3 reveals that buckling coefficient value varies
in the increasing order of uniform loading, parabolic loading followed by increasing
parabolic loading. The highest buckling coefficient value is observed for X-GOPRC
distribution and lowest is observed for O-GOPRC for all the loading conditions. This
is due to higher quantity of GOP at the top and bottom fibres for X-GOPRC giving rise
to enhance the buckling strength. On the other hand, for O-GOPRC distribution, less
amount of GOP at the top and bottom layers leading to reduction in buckling strength

because of lower bending stiffness.

Further, to show the influence of GOP distribution on the buckling coefficient value
with increase in GOP weight fraction, Figure 6.4 is plotted. The cylindrical panel is
assumed to be simply supported with § = 1, 3 = 100 and % = 20. The GOP weight
fraction is varied from 0O to 3 and the corresponding change in buckling coefficient value

is plotted. The variation in buckling coefficient is shown for two different type of load-
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Figure 6.3: Buckling coefficients (Ncr(m)) for a square, SSSS, GOP reinforced
nano composite cylindrical panel under different edge loading: Influence of various
distribution and weight fraction of GOP.

ing conditions namely, uniform and partial edge loading. It is observed that there is
a 70 % increase in buckling coefficient value with the addition of 0.5 wt fraction of
GOP for U-GOPRC, 100 % increase for X-GOPRC and 40 % increase for O-GOPRC
distributions respectively. The reason being the presence of large amount of GOP at
the extreme surfaces for X-GOPRC while less amount for O-GOPRC as already dis-
cussed. This establishes the influence of various distribution of GOP reinforcement in

enhancing the buckling strength of the cylindrical panel.
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Figure 6.4: Increase of buckling coefficients (Nm'(#?,,.nﬁf)) for various distributions of
GOP (SSSS square cylindrical panel) with increase in GOP content (a)uniform loading
(b)partial edge loading.

6.4.1.2 Influence of Aspect Ratio

The change in buckling coefficient value with the change in aspect ratio is presented in
Figure 6.5. Fixed amount of GOP weight fraction is considered as 2 wt% and thickness
and radius ratio are assumed as § = 100, % = 20 respectively. Influence of type of
GOP distribution on the buckling coefficient with respect to aspect ratio (§) is analyzed
in Figure 6.5. The buckling coefficient value differs with the type of GOP distribu-
tion. The minimal buckling coefficient value is observed for O-GOPRC cylindrical
panel while the maximal buckling coefficient value is observed for X-GOPRC cylin-
drical panel for different type of loadings considered. This is due to higher amount of
GOP in the top and bottom fibres for X-GOPRC and least amount for O-GOPRC. The

results also indicate that variation of fundamental buckling mode from (1,1) to (2,1) for

a type of loading occurs at the same aspect ratio () and doesn’t vary with the type of
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GOP distribution. Further analysis of Figure 6.5 indicate that the variation of buckling
coefficient with the change in aspect ratio is different for various type of loading. The
shift of fundamental buckling mode to (2,1) from (1,1) with increase in aspect ratio
(%) occurs for all type of loadings. The reason for changes in buckling modes with in-
crease in aspect ratio can be explained as follows: as aspect ratio increases, the energy
input required for large buckling deformation is least for (2,1) mode rather than (1,1).
Thus, (2,1) buckling mode shapes becomes the primary buckling mode shape. It is also
interesting to know that this change in aspect ratio occurs at different aspect ratio for
different loadings. This is due to the fact that concentrated type of loadings has the high-
est efficiency in facilitating this energy transformation. Thus, for partial edge loading
and parabolic loading, which has center concentrated loading give rise to mode shape
change at a low aspect ratio. For clear understanding, buckling coefficients with change
in aspect ratio for X-GOPRC composite cylindrical panel is presented in Figure 6.6.
The change from (1,1) to (2,1) occurs at aspect ratios namely, 1.5 for uniform loading,
1.6 for increasing parabolic loading, 1.9 for reverse sinusoidal loading, 1.3 for parabolic
loading and 1.3 for partial edge loading. This can be related to the effectiveness of the
different applied non-uniform edge loads as already explained. For the case of partial
edge and parabolic loading, highest intensity of load is present at the center which is
the reason for its high effectiveness. On the other hand, reverse sinusoidal loading has

least concentration of load at the center making it the least effective load.

6.4.2 Free Vibration Studies

In this study, influence of GOP concentration and distribution on the fundamental free
vibration frequency is analysed first. In order to analyze the variation of free vibration
frequency with different bounndary conditions, SSSS(simply supported) and CCCC
(clamped) are considered. Later, the influence of different types of non-uniform edge
loadings on the first two natural frequencies of the cylindrical panel is analysed in detail.

The non-dimensional form, 2 = wn(% £), is used for the free vibration frequency.
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Figure 6.5: Variation of buckling coefficients (Ncr(%o for simply supported,

GOP reinforced cylindrical panel subjected different edge loading: Influence of aspect
ratio

6.4.2.1 Influence of GOP Volume Fraction and Its Distribution

In Figure 6.7, the influence of weight fraction of GOP and distribution on the funda-
mental free vibration frequency is presented . The nano composite cylindrical panel
is considered to be square (7 = 1) with thickness ratio (3 = 100) and radius ratio
(% = 20). It can be seen from Figure 6.7 that free vibration frequency increases as
GOP concentration rises. This is due to the fact that as the amount of GOP increases
an improvement in the structural stiffness of the panel occurs which in turn leads to the
increase in frequency. A glance again on Figure 6.7 reveals that X-GOPRC distribution

has the maximum natural frequency value. This indicate that the distribution of GOP
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Figure 6.6: Variation of buckling coefficients (Ncr(m)) with aspect ratio for a

simply supported, GOP reinforced cylindrical panel under X-GOPRC distribution: In-
fluence of edge loading.

has a higher influence than GOP concentration. The reason for the higher value of fre-
quency for X-GOPRC distribution is due to that fact that higher concentration of GOP
is present at the top and bottom layers giving rise to higher stiffness. It can be seen from
Figure 6.7 (b) that free vibration frequency varies with the type of boundary condition.
Further, the fully clamped (CCCC) nano composite cylindrical panel notes the the high-
est free vibration frequency value. The clamped nano composite cylindrical panel also

shows a similar trend of increase in natural frequency with GOP concentration.

6.4.2.2 Influence of Type of NEL and Aspect Ratio

It is interesting to know the variation of free vibration frequency and mode with increase
in compressive load for different type of loadings. For this reason, in Figures 6.8 and
6.9, the variation of first two free vibration frequencies with increase in compressive
load upto lowest critical buckling load for the nano composite cylindrical panel with

aspect ratios 1 and 1.3 respectively are presented.

127



a) SSSS b) CCCC
35

—s— U-GOPRC
—o— X-GOPRC
——0-GOPRC

—=—U-GOPRC
| —+—X-GOPRC
—4—0-GOPRC

w
S
w
S
1

n
(3}
1

Non dimensional frequency
S
!

Non dimensional frequency
& S
1 1

o
1

T T T T T T T T

T T
0.0 0.5 1.0 1.5 20 25 3.0 0.0 0.5 1.0 15 2.0 25 3.0
WGOP (%) WGOP (%)

a?

h
simply supported GOP reinforced cylindrical panel: Influence of various distribution
and weight fraction of GOP.

Figure 6.7: Variation of non dimensional frequency (2 = w( g—f;)) of clamped and

The influence of increase in compressive load on non-dimensional frequencies for
a square (7=1) GOP reinforced cylindrical panel is presented in Figure 6.8. A close
observation of Figure 6.8 reveals that there is a reduction in the first two natural fre-
quencies with increase in compressive load. The partial edge loading notes the highest
rate of reduction whereas reverse sinusoidal loading notes the lowest reduction rate.
This is expected as panel center has the highest intensity of load for partial edge load-
ing leading to its high effectiveness while panel center has lowest intensity for reverse
sinusoidal loading. In increasing steps, the amount of compressive load is varied upto
lowest critical buckling load corresponding to a type of loading. It is observed that
the natural frequency corresponding to (1,1) mode reduces to zero at critical buckling
load. The application of uniform load, parabolic load, increasing parabolic load shows
a similar trend of reduction in natural frequency according to the effectiveness of the
load as already discussed. The free vibration frequency corresponding to (2,1) mode
also reduces and attains a value according to the type of loading. It is also observed

that frequencies corresponding to all the type of distribution of GOP show a similar
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ported GOP reinforced cylindrical panel(aspect ratio 1) : Influence of increase in com-
pressive load.

To get more insight into the influence of type of loading on the vibration charac-
teristics of GOP reinforced cylindrical panel, the change in frequencies with increase
in load for aspect ratio 1.3 is plotted in Figure 6.9. The natural frequency reduction
with compressive load increase is observed similar to aspect ratio 1 for loads except
partial edge loading and parabolic loading. The free vibration frequency change with

compressive load increase for partial edge loading and parabolic loading is such that
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nearby critical buckling load, the frequency corresponding to (2,1) mode reduces to
zero instead of frequency of (1,1) mode. The explanation of the behaviour is given as
follows: for parabolic and partial edge loading, when aspect ratio is 1.3, the mode cor-
responding to minimum buckling load is (2,1) instead of (1,1). Consequently, near by
critical buckling load, the free vibration mode (1,1) changes to (2,1). On the other hand,
corresponding to critical buckling load, (1,1) is the buckling mode for all the other load-
ing conditions. As a consequence, there is no change in free vibration mode and also
(1,1) mode reduces to zero at critical buckling load. The main reason for resemblance
between buckling mode and free vibration mode near critical buckling load is due to
the fact that, nearby critical buckling load a minimum amount of energy is required
for the vibration mode shape which exactly same as buckling mode shape. Thus for
aspect ratio 1.3, free vibration mode shift from (1,1) to (2,1) occurs only for the case of

parabolic and partial edge loading.

6.4.2.3 Comparison of Buckling Loads for Different Types of Nano Filler Rein-

forced Cylindrical Panels

The comparison of buckling load per unit mass (%) of the cylindrical panel for UEL
under the influence of different types of materials analyzed in the present study is pre-
sented in this section. The cylindrical panel with ¢ =1, # = 100 and § = 20 under
simply supported boundary condition is considered for this comparison study. Effect of
volume fraction on the buckling load per unit mass of the cylindrical panel is shown in
Figure 6.10. Four different types of cylindrical panels namely, porous GPL reinforced
cylindrical panel, sandwich cylindrical panel with porous GPL core, GOP reinforced
cylindrical panel and CNT reinforced cylindrical panel are considered. For compari-
son purposes, the epoxy matrix given in Section 6.4 is considered for all the different
kinds of cylindrical panels. For porous cylindrical panels, small amount of porosity (eg

= 0.2) is considered. ey = 0.2 is selected to compare the lightweight nature of GPL

porous cylindrical panel and GPL porous sandwich cylindrical panel. It is seen that in
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Figure 6.9: Non dimensional frequency ({2 = wn(‘Z—Q1 /g—::)) change for a simply sup-

ported GOP reinforced cylindrical panel (aspect ratio 1.3) : Influence of increase in
compressive load.

the absence of nano reinforcement, buckling strength per unit mass is high for sand-
wich cylindrical panel with decreasing porosity distribution. This is due to the ability
of sandwich cylindrical panel with porous core in reducing the overall weight without
much reduction in stiffness. Furthermore, with increase in volume fraction of nano
reinforcement, the buckling load per unit mass increases for all the cases. The GPL
reinforced porous cylindrical panel with higher amount of GPL at the extreme surfaces

exhibits high buckling load per unit mass value. This is expected as GPL enhances the

131



s

‘spoued [eoupur[£d 9jsodwod oueu JUSIAYIP 10§ (=g

) ssew Jrun 1od peoy Surponqg jo uostredwo)) ()9 23

JUSWSDJOJUIBI OUBU JO UOIOBL SWN[OA
6000 89000 G000 €200°0 0
| L 1 " | L 1 L

d-1d9-a ® dd-l
d-1d9-1 % dd-l
d-1d9-N ® dd-l
d-1d9-ad® dd-d
d-1d9-1 % dd-d
d-1d9-N® dd-d
d-1d©-ad ® dd-n
d-1dO-1 % dd-N
d-1d9-N® dd-N
0-Ad-€-d1d9
0-Ad-¢-d1d9
0-Ad-1-d1d9
g-dd-€-d'1d9
8-dd-¢-d'1dO
g-dd-l-d1dO
V-ad-€-d1d9
V-ad-¢-d1d9
V-dd-L-d71d9

—-Hmeoed4d POV AL

<4 E Y INee 180 @
HA >  QOommEt® ¢
A
T T
N

\
4Ky u ed 06 P

A )
T
<

A

HOAd DOV A®KXKBO + XX

132

ssew Jun Jad peo| buipong



structural stiffness even at low concentrations. Next to the GPL reinforced cylindrical
panel, the sandwich cylindrical panel with GPL reinforced porous core is having better
buckling strength followed by this, the GOP reinforced reinforced cylindrical and the

CNT reinforced cylindrical panels are having the lower buckling strength values.

Figure 6.11 depicts the variation in buckling load per unit mass with increase in
porosity for GPL reinforced porous cylindrical panel and sandwich cylindrical panel
with GPL reinforced porous core. The volume fraction of nano reinforcements is con-
sidered as a minimum i.e., 0.011. The GOP and CNT reinforced cylindrical panels are
shown in the graph for comparison. In the absence of porosity, it is seen that highest
value of buckling load per unit mass is observed for GPL reinforced cylindrical panel
with maximum amount of GPL at the extreme surfaces. This is due to influence of GPL
in improving the stiffness of the cylindrical panel. The next highest value of buckling
load per unit mass is observed for sandwich cylindrical panel then followed by GOP
reinforced cylindrical panel and finally CNT reinforced cylindrical panel. The increase
in porosity lead to a small reduction in buckling load per unit mass for all the case.
This is because the increase in porosity lead to a reduction in structural stiffness of the

cylindrical panel.

6.5 Closure

The investigation carried out on dynamic and buckling characteristics of GOP embed-
ded composite cylindrical panel under different edge loadings are presented. Three
different type of GOP distribution namely, O-GOPRC, X-GOPRC and U-GOPRC are
considered. The influence of GOP distribution and concentration, aspect ratio and na-
ture of different type of edge loading on the vibration and buckling response is ana-
lyzed in detail. The buckling strength of GOP reinforced cylindrical panel is largely
influenced by the type of GOP distribution. Highest buckling coefficient value is ob-
served for X-GOPRC distribution and lowest for O-GOPRC distribution. The buckling

133



s
kUZ

‘sjoued [eoLIPUI[AD 911sodwod oueu JURISHIP 10J (=) ssew jrun Jod peoy urpyong jo uosuredwo)) :11°9 231

Alisoiod
90 v'0 Z0 0

I
~—

d09 X-94

He
T
AN

d-1d9-a ¥ dd-l
d-1d9-1 ® dd-
d-1d9-N ¥ dd-l
d-1d9-d ® dd-d
d-1d9-1 8 dd-d
d-1d9-N ¥ dd-d
d-1d9-d ® dd-n
d-1d9-18 Ad-N
d-1d9-N % Ad-nN
0-ad-€-d1dO
0-Ad-¢-d1dO
0-Ad-l-d1dO
g-dd-€-d71d9
g-dd-¢-d1dO
g-dd-1-d71d9
V-ad-€-d1dO
V-Ad-¢-d1d9
V-dd-l-d1dO

Q
O
[T
- meoedPoOvVvAS

I
(s2]

I
ssew Jiun Jad peoj Buipong

&N 40 ¢ »

4 X dvoex am oo
|

A
P4 X O VOG-0
4o I e
L ¢
1 I
To) <~

|
T
N~

HOAd DOV AG KB + XX
A
>
1
(o]

134



strength enhances by 100 % for X-GOPRC distribution, 70 % for U-GOPRC and 40
% for O-GOPRC with the addition of 0.5 weight fraction of GOP. The type of edge
loading alters the critical buckling load value significantly. The lowest buckling load
value belongs to partial edge loading while highest value belongs to reverse sinusoidal
loading. An increase in weight fraction of GOP leads to compelling increasing in buck-
ling coefficient of GOP reinforced composite cylindrical panel. The lowest buckling
mode of the cylindrical panel becomes (2,1) from (1,1) at some aspect ratios depending
upon the type of loading. For the partial edge loading the shift happens at very low
aspect ratio while it happens at high aspect ratio for reverse sinusoidal loading. A sig-
nificant increase in free vibration frequency is observed with an increase in GOP weight
fraction. X-GOPRC distribution leads to higher natural frequency and O-GOPRC dis-
tribution of GOP notes the lowest natural frequency. A reduction in frequencies with
increase in compressive load for a nano composite cylindrical panel depends largely
on the type of edge loading. The partial edge loading leads to higher reduction while
lowest reduction is observed for reverse sinusoidal loading. A change in fundamental
free vibration mode in presence of compressive load is observed for partial edge loading
and parabolic loading. Nearby critical buckling load, free vibration mode changes from
(1,1) to (2,1) for parabolic and partial edge loadings for a nano composite cylindrical

panel at aspect ratio 1.3.
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CHAPTER 7

SUMMARY AND CONCLUSIONS

7.1 Summary

The buckling and free vibration characteristics of different types of nano composite
cylindrical panels subjected to uniform and different NELs are presented. The usage of
nano composite reinforced structures for various structural application leads to signif-
icant reductions in overall weight of the structure without compromising the stiffness.
Considering a higher order shear deformation theory, Hamilton’s principle is used to
formulate the governing partial differential equations and buckling and free vibration
solutions are obtained by employing the semi analytical method based on Galerkin’s
method. Initially, the membrane stress resultants due to the applied edge loads are cal-
culated through Airy’s stress function expansion. The Eigen value problems of buckling
and free vibration are obtained by utilizing semi analytical solution method on the gov-

erning differential equations.

Firstly, buckling and free vibration characteristics of GPL reinforced porous cylin-
drical panel subjected to uniform and different NELs are investigated. The influences
of grading patters of GPL, porosity coefficient on buckling and dynamic character-
istics of functionally graded GPL reinforced porous cylindrical panel under uniform
and non-uniform in-plane loads are investigated. Then, the buckling and free vibration
characteristics of sandwich cylindrical panel with GPL reinforced porous core are also
investigated. The influence of different distributions of GPL and porosity, core to total
thickness ratio, radius of curvature, GPL weight fraction, porosity coefficient on buck-
ling and free vibration characteristics are analysed. The size dependent buckling and

free vibration behaviour of CNT reinforced cylindrical nano panel considering agglom-



eration considering non local elasticity theory is investigated next. The influence of
non-local parameter, CNT agglomeration, non-uniform in-plane loads on buckling, and
free vibration response is presented next. Finally, the buckling characteristics of GOP
embedded composite cylindrical panel is investigated. The influence of GOP distribu-
tion and concentration, aspect ratio and nature of different type of edge loading on the

vibration and buckling response is analyzed in detail.

7.2 Conclusions

The following conclusions are made :

7.2.1 Free Vibration-Buckling Analysis on GPL-Porous Cylindri-

cal Panel

* The type of NEL greatly influences the critical buckling load of the panel. Highest
critical buckling load is observed for partial tension loading and the lowest critical

buckling load is observed for the uniform edge load.

* The buckling coefficients and natural frequencies varies according to the par-
ticular combination of porosity and GPL distributions. The maximum buckling

strength and free vibration resistance is observed for GPLP-1-PD-A combination.

* The buckling and free vibration parameters are influenced by changes in the
porosity coefficient and porosity grading pattern. The maximum reduction in
stiffness is observed for porosity distribution B while porosity distribution A has

minimum reduction in stiffness, with increase in porosity.

* The critical buckling mode of functionally graded GPL reinforced porous cylin-

drical panel is influenced by the aspect ratio of the panel.
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7.2.2 Free Vibration-Buckling Analysis on GPL-Porous Sandwich
Cylindrical Panel

* The critical buckling load is largely influenced by the type of NEL and uniform
loading has the minimum value while partial tension loading posses the maximum

value.

* The sandwich cylindrical panel with D-PD & I-GPL-P core has the higher buck-
ling resistance and better free vibration frequency while the panel with I-PD &

D-GPL-P core has the lower values.

* The enhancement in buckling resistance and free vibration frequency with respect

to core to total thickness ratio depends on the amount of porosity in the core.

— For the low porosity coefficient, in the presence of high GPL content the
buckling coefficient and free vibration frequency increases with the core to

total thickness ratio.

— For the high porosity coefficient, in the presence of high GPL content the

variation of buckling coefficient and free vibration frequency depending on

porosity distribution and GPL pattern.

* The shifting of buckling mode shape from (1,1)(single half wave) to (2,1) (double

half wave) occurs at different values of aspect ratio for different loads.

* The reduction of natural frequency with increase in compressive load intensity

depends on the type of the non-uniform edge load.
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7.2.3 Free Vibration-Buckling Analysis on CNT Reinforced Cylin-

drical Panel

» The buckling response of cylindrical nano panel depends primarily on the non-

local parameter, type of edge load and degree of CNT agglomeration.

* The free vibration frequency of cylindrical nano panel depends largely on non-

local parameter, degree of CNT agglomeration and boundary conditions.

* The critical buckling load is influenced by the type of edge load. The highest
value of buckling load is observed for partial tension loading and the lowest value

is observed for uniformly distributed load.

* For the CNT reinforced cylindrical nano panel, the consideration of size effect
reduces the stiffness thus the buckling load and free vibration frequencies are

reduced.

* The reduction in natural frequency with the increase in buckling load is different
for various NELs. The reduction rate is high for the uniform load case and low

for partial tension loading.

7.2.4 Free Vibration-Buckling Analysis on GOP Reinforced Cylin-
drical Panel
* The buckling strength of GOP reinforced cylindrical panel is largely influenced

by the type of GOP distribution. Highest buckling coefficient value is observed
for X-GOPRC distribution and lowest value occurs for O-GOPRC distribution.

* The buckling strength is enhanced by 100 % for X-GOPRC distribution, 70 % for
U-GOPRC and 40 % for O-GOPRC with the addition of 0.5 weight fraction of
GOP.
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The type of edge loading alters the critical buckling load value. The lowest buck-
ling load value belongs to partial edge loading while highest value belongs to

reverse sinusoidal loading.

The lowest buckling mode of the cylindrical panel becomes (2,1) from (1,1) at
different aspect ratios depending upon the type of loading. For partial edge load-
ing the shift happens at very low value of aspect ratio while it happens at higher

aspect ratio for reverse sinusoidal loading.

X-GOPRC distribution leads to higher natural frequency and O-GOPRC distri-

bution of GOP notes the lowest natural frequency.

A reduction in frequencies with increase in compressive load for a nano compos-
ite cylindrical panel depends largely on the type of edge loading. The partial edge
loading leads to higher reduction while lowest reduction is observed for reverse

sinusoidal loading.

A change in fundamental free vibration mode in presence of compressive load is

observed for partial edge and parabolic loading cases.

Nearby critical buckling load, free vibration mode changes from (1,1) to (2,1)
for parabolic and partial edge loadings for a nano composite cylindrical panel at

aspect ratio 1.3.
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7.3 Scope for Future Work

The current research work analyses the buckling and free vibration characteristics of
various light weight cylindrical panel structures under the influence of uniform and non
uniform edge loads. Various future extensions of the present work can be summarised

as:

* The buckling and free vibration characteristics of nano composite structures un-
der various multi physics loadings such as hygrothermal loading, thermal loading

and supersonic air flow can be studied.

* Non linear vibration and buckling characteristics of these nano composite struc-

tures can be studied.

* Vibro acoustic characteristics of nano composite cylindrical panels under various

multi physics loadings including non uniform edge loads can be studied.
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