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ABSTRACT

Introduction of lightweight materials for different structural members of aerospace,

marine, civil and automobile sectors are being made possible by utilizing nano rein-

forcements and addition of porosity in the bulk composite. Cylindrical curved panel

structures are extensively utilized in different engineering applications owing to their

better structural stability characteristics. Stability and dynamic behaviour analysis of

these lightweight cylindrical panel structures is essential for the satisfactory design. In

general, the buckling and dynamic characteristics of these panels are mostly studied

under uniform edge load (UEL) conditions. However, the panels are exposed to non-

uniform and partial edge loads in practical situation. Hence, the prediction of buckling

and free vibration characteristics of the panels under different non-uniform edge loads

(NELs) will help the designers in avoiding the failure of these structures.

The buckling and free vibration characteristics of different nano composite panels

namely, GPL reinforced porous, GPL reinforced porous core sandwich, CNT and GOP

reinforced cylindrical panels under NELs are calculated using semi analytical method

in the present study. Considering a higher order shear deformation theory, Hamilton’s

principle is used to formulate the governing differential equations and buckling and

free vibration solutions are obtained by employing the semi analytical method based

on Galerkin’s approach. Initially, the membrane stress resultants due to the applied

edge loads are represented through Airy’s stress function expansion. Then the stress

resultants are evaluated through the minimisation of strain energy. Followed by this,

equations of motion are obtained based on Hamilton’s principle and the stress resultants.

The Eigen value problems of buckling and free vibration are solved using the semi

analytical method.





Buckling and free vibration characteristics of graphene nano platelets (GPL) rein-

forced porous cylindrical panel under the inuence of NELs is studied rst. The dis-

tribution of GPL and porosity is varied in a layer wise fashion through the thickness.

The effective mechanical properties are calculated using extended rule of mixture to-

gether with Halpin-Tsai micromechanics model and open-cell metal foam properties. It

is found that the type of NEL greatly inuences the critical buckling load of the cylin-

drical panel. Further, the critical buckling load and natural frequency varies with a

particular combination of porosity and GPL distributions.

Next, a sandwich cylindrical panel with GPL reinforced porous core and metal fac-

ing sheets is analyzed. The effective mechanical properties are obtained by using prop-

erties of open cell foams and Halpin–Tsai micro mechanical model. Effects of nature of

in-plane edge load, distribution of porosity and GPL, porosity coefcient, GPL loading,

core to total thickness ratio are analyzed in detail. It is found that for the panel with

high core thickness, even for the higher amount of porosity, the buckling resistance and

free vibration frequency can be improved by properly tailoring the graded distribution

of both the GPL and pores. Furthermore, a signicant variation in buckling load and

free vibration frequencies is observed with respect to the type of in plane loading. Re-

markable change in buckling mode and free vibration mode shape (with increase in the

load intensity) is observed for panels having higher aspect ratio. The sandwich cylin-

drical panel with a core having a distribution of less porosity and high GPL content at

the extreme surfaces provides maximum buckling strength and free vibration frequency

value.

Next, buckling and free vibration characteristics of agglomerated carbon nanotubes

(CNTs) reinforced nano cylindrical panels are studied considering nonlocal elasticity

theory. Effective material properties of the agglomerated CNT reinforced composite

are obtained using a two-parameter micro-mechanics model while Eringen’s non-local

theory is used to account the size effect. A comprehensive study is carried out to an-





alyze the inuence of various degrees of agglomeration (complete, partial), nature of

edge load , and non-local effects on the buckling and free vibration response of CNT

reinforced nano cylindrical panel. The results revealed that non-local size effect leads to

a reduction in stiffness and thus reduces buckling and dynamic characteristics. It is also

observed that critical buckling load varies with type of in plane load. The reduction in

natural frequency with increase in the edge load intensity is different for different type

of NEL.

Finally, the buckling and free vibration characteristics of graphene oxide powder

(GOP) reinforced cylindrical panels are studied. Inuence of loading of GOP quan-

tity, nature of grading of GOP, nature of non-uniform and partial edge loads on critical

buckling coefcient and fundamental frequency and mode shapes are investigated. It is

noted that the buckling and vibration characteristics are sensitive to the nature of GOP

grading, GOP loading and nature of variation in edge loads. Furthermore, the funda-

mental buckling mode is not always the typical (1, 1) mode instead of that (2, 1) mode

is observed as the buckling mode according to the variation in aspect ratio and nature of

edge loads. It is found that near critical buckling load, the fundamental vibration mode

changes to (2,1) from (1,1) for parabolic and partial edge loading cases for the panels

with aspect ratio higher than 1.3.

KEYWORDS: Cylindrical Panel, Non-uniform Edge Loading, Buckling,

Porosity, Nano composite, Functional grading
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CHAPTER 1

INTRODUCTION

1.1 Introduction

Thin walled cylindrical panels are extensively used as structural members in high speed

rail, automotive, aerospace and marine industries. These curved cylindrical panel struc-

tures, due to the presence of curvature, provides higher in plane load resistance com-

pared to at panels thereby gaining practical signicance. When these cylindrical pan-

els are subjected to edge compressive loads, a sudden change in shape can happen at

a certain level of load and this phenomenon is known as buckling. By denition,for a

structural element, the sudden change in present state of equilibrium to unstable from

stable happens at a particular value of load known as buckling load (Jones 2006). In

other words, the sudden change of equilibrium state to a distinctive stable conguration

from former stable conguration happens at the buckling load whether or not followed

by a large deformation (Jones 2006). Imagine the cylindrical panel like structural ele-

ments of an aircraft, ship or high-speed train changes its shape suddenly while in ser-

vice. These sudden shape changes can cause change in dynamic performance leading

to high fuel consumption, passenger discomfort or even failure. Hence, the buckling

phenomenon is undesirable and need to be analysed for better design of structures.

The free vibration characteristics namely, natural frequency and mode shapes of

structural members are properties of the system established by distribution of mass and

stiffness (Thomson 2018). The consideration of natural frequency is important due to

the fact that whenever an excitation frequency matches with the natural frequency, res-

onance will happen. The resonance is the condition in which the amplitude of vibration

becomes dangerously high. Consider the practical situation in which an automobile or



an aircraft cylindrical panel member is excited by external load at natural frequency.

The resulting high amplitude of vibration causes noise, passenger discomfort or even

failure.

The prime source of compressive edge loadings in the cylindrical panel is by the

process of load bearing/transfer. However, these edge loadings vary in magnitude along

the length or width of the cylindrical panel due to the process of load distribution and

lead to non-uniform distribution of loads. For instance, the wings of the aircraft and

stiffened plates in ship structures are practical examples in which structures are sub-

jected to non uniform edge loads (Hamedani and Ranji 2013). The in plane stresses

developed due to these edge loads induces buckling and may change the free vibration

characteristics of the cylindrical panel structure. In literature, however most of the stud-

ies are carried out by assuming uniform edge load (UEL) assumption. The important

aspect of structures subjected to compressive edge loads is that the presence edge loads

alters the stiffness resulting in changes of natural frequency. Thus analysis of free vi-

bration characteristics of structures under the inuence of the non-uniform edge load

(NEL) is very important.

1.1.1 Types of Edge Loads

The cylindrical panel structures, are typically exposed to different types of edge load-

ings such as : uniform, trapezoidal, triangular, partial tension, parabolic, reverse sinu-

soidal, increasing parabolic, partial edge loadings as shown in Figure 1.1. In actual

operating conditions, highly localised stresses are developed in structures due to high

speed and high temperature which will lead to different non uniform edge loads (Ad-

hikari et al. 2020).

For a cylindrical panel structure in service, the loads leading to buckling are applied

by adjoining free-body. The uniform edge loading is an exception to different type

of loads since relative stiffness determines the elastic forces between free-bodies (Jana
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Figure 1.1: Different types of edge loads

and Bhaskar 2006). Shariyat and Asemi (2014), reported that generally the edge loads

applied by surrounding elements on plate or cylindrical panel regions are non-linear

in nature. Thus, consideration of different non-uniform edge loadings is important for

complete understanding of the buckling and free vibration behaviour.

1.1.2 Light Weight Cylindrical Panels

Cylindrical panel members used in various engineering applications can be made light

in weight to facilitate the energy savings (less fuel consumption) and ultimately less

environmental impacts (less emissions). The question of light weight cylindrical panel

structures being asked by researchers over the years is answered by using thin walled

structures with preferably stiffer materials. By using stiffer materials, the light weight

structural members are made possible without compromising the stiffness. The nano
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composites and porous nano composites are emerged as solutions to this problem by

making use of the material property at the nano levels to achieve better strengths to the

bulk composite.

1.1.3 Nanocomposites

Nanocomposites can be dened as multiphase materials made up of a matrix phase

and atleast one nano-ller phase to achieve a combination of properties of its indi-

vidual phases (Safdari and Al-Haik 2018). Several nano-scale reinforcements such as

carbon nano tubes (CNT), graphene nano platelets (GPL) and graphene oxide powder

(GOP) can be used together with metal matrix or polymeric matrix to obtain excep-

tional mechanical properties. Nano composites have additional benets such as con-

trolled anisotropy and tailorability of mechanical properties (Dzenis 2008). The nano

composites can be prepared with the development of advanced manufacturing methods

to incorporate nano scale reinforcements in the matrix and used with proper structural

design in several applications. Thus low cost lightweight alternative structures with

exceptional properties can be obtained with nano reinforcements.

There are possible issues associated with nano composites such as problems in dis-

persion, alignment, achievable volume fraction of reinforcement, bonding and inter-

faces of composites. These issues will lead to degradation of mechanical properties of

the composite. The nano composites are widely used in fuel efcient cars, aerospace,

auto-mobile and sporting goods. Thus the consideration of agglomeration associated

with the dispersion of nano composites is necessary.

Some conned and small sized structures would actually benet from the perfor-

mance enhancement and tailorability provided by nano composites because of the small

size. These include structural elements in NEMS/MEMS (nano- and microelectro me-

chanical systems) and thin walls present in foams (Safdari and Al-Haik 2018).
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1.1.4 Graphene Nano Platelets (GNP) Reinforced Composites

The graphitic materials extracted from a single layer of graphene to platelets of 100nm

thickness are included in the denition of graphite nano platelets (Young et al. 2012).

Figure 4.1 shows the molecular model of a single graphene layer. The graphite nano

platelets are produced by different methods including ball milling, ultrasonication and

by microwave radiation exposure to graphite intercalated with acid. The availability

of GNP as a single layer graphene nano platelets (GPL) has gained much interest in

the scientic community. The single layer of graphene has exceptional mechanical

properties as reported by indentation experiment: Young’s modulus = 1000 ± 100 GPa

by Lee et al. (2008) and estimated using theoretical approach as 1050 GPa by Liu et al.

(2007).

Figure 1.2: Graphene-1 layer molecular model (Young et al. 2012)

The interest in the development of GPL reinforced composites is due to several rea-

sons. The prime reason being its ability to impart better load carrying capacity even

with very low concentrations (Raee et al. 2009; Liu et al. 2013). Additionally, im-

provement in other properties such as thermal conductivity, barrier nature and electrical

conductivity is an advantage. The possible issues associated with the GPL composites

are, non-uniform dispersion of GPL in the matrix are poor exfoliation, restacking oc-

currence and poor interface bonding. These issues can cause a signicant reduction in
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mechanical properties. Even though there are possible issues associated with GPL, it

can be used with ease as reinforcements of thin walls of open cell foams so that higher

strengths can be obtained with lower concentrations.

1.1.5 Graphene Oxide Powder (GOP) Reinforced Composites

Graphene oxide by denition is the oxidised form of graphene which is found as a com-

bination of individual graphene oxide sheets. The preparation of graphene oxide is done

by different methods but the method proposed by Hummers Jr and Offeman (1958) is

the efcient one which uses a water free mix of potassium permanganate, concentrated

sulphuric acid and sodium nitrate to treat the graphite. The mechanical properties of

GOP are lower compared to GPL due to several reasons such as the replacing of sp2

with sp3 bonding and changes in the structure due to oxidation. The equivalent Young’s

modulus of graphene oxide is 480 GPa as predicted by Suk et al. (2010). However,

there are several advantages associated with usage of GOP such as its availability in

large quantities because of the scalability of manufacturing process, ability to form bet-

ter interfaces with polymer matrix because of the presence of functional groups and

ease of dispersion and exfoilation in the matrix (Young et al. 2012). The graphene ox-

ide has major advantage in terms of preparation of composites that it can be exfoilated

using water and the nano-composites can be prepared using water soluble polymers.

Another method is by in-situ polymerisation of the polymer matrix. With epoxy resins,

intercalative polymerisation can be achieved for producing nano composite with en-

hanced properties (Young et al. 2012). Thus graphene oxide can be used together with

polymeric matrix to produce advanced lightweight composites.

1.1.6 Carbon Nano Tube (CNT) Reinforced Composites

The CNTs are found as cylindrical rolled up form of graphene sheets. The CNTs are

generally classied as (1) single walled nano tubes where a single layer of graphene
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is to form the cylindrical roll, (2) multi walled nano tubes where multiple concentric

rolled cylinders with 0.34 nm interlayer spacing is found. The CNTs are widely man-

ufactured by methods such as laser ablation, CVD (chemical vapour deposition) and

arc evaporation methods (Mittal et al. 2015). The excellent mechanical properties of

CNTs (Yakobson and Avouris 2001; Qian et al. 2002; Reich et al. 2008) such as high

Young’s modulus, high tensile strength, and low density and enhancement of mechani-

cal properties of bulk composite on addition of CNT (Coleman et al. 2006; Qian et al.

2000; Haggenmueller et al. 2000; Velasco-Santos et al. 2003) is already reported in the

literature.

The problem of uniform dispersion is associated with CNTs due to Van-der-Waals

forces, high aspect ratio, and low bending stiffness. The CNTs tend to bundle together

and it is called as agglomeration. Thus CNT agglomeration tend to reduce overall

mechanical properties considerably. CNTs can be utilised with ease in nano/micro

electromechanical systems to enhance their mechanical performance. However, the

consideration of size effects is important in the design of nano scaled structures. In

general, when comparable characteristic lengths exist, the classical continuum theories

(2D & 3D) becomes non applicable. Various non-classical continuum theories contain-

ing material length scale parameters have been proposed over the years. The non-local

elasticity theory (Eringen 1972, 1983, 2002) is the widely used one, which species

that the stress at the point of consideration accounts not only for strain at that point but

also for strain at all points in the domain.

1.1.7 Porous Nano-Composites

The metal foams are identied as an advanced class of materials with high stiffness to

weight ratio, high energy absorption capabilities and very low density. The closed cell

foams and open cell foams are the two class of foams available. In open cell foams, the

cells are only interconnected not closed but in closed cell foams, cells are enclosed by

thin walls (Ashby et al. 2000).
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Along with these advantages, however, there are some limitations associated with

metal foams such as loss in stiffness due to the presence of porosity. The loss in stiffness

can be regained by the addition of nano reinforcements which will maintain the inherent

advantages such as light weight nature. Due to the specic advantages, the porous nano

composites can be utilized in high speed rail applications (high damping and improved

stiffness), aerospace applications (light weight and high stiffness), oor panels (high

stiffness and light weight), and also as automobile energy absorbing panels (Smith et al.

2012; Li et al. 2018).

1.1.8 Porous Nano-Composite Sandwich Material

Porous nano composite sandwich is a material having metal face sheets and GPL re-

inforced porous core which has potential applications in marine, aerospace and auto

mobile industries (Banhart 2005; Banhart et al. 2019). Compared to conventional sand-

wich panels where core and face sheets are glued together, the metallic nature of porous

nano composite sandwich is an advantage.

1.2 Literature Review

1.2.1 Introduction

The focus of the thesis is the analysis of buckling and free vibration response of cylin-

drical panel reinforced with nano reinforcements under the inuence of NELs. The

review is organised with GPL reinforced structures rst, followed by CNT reinforced

structures then by GOP reinforced structures. The literature review is organised in such

a way that buckling studies under uniform and non-uniform edge loading is discussed

rst. This is followed by free vibration characteristics with and without the inuence of

uniform and NELs.
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1.2.2 Buckling Analysis Under Uniform and Non Uniform Edge

Loads

1.2.2.1 Isotropic and Laminated Composites

Leissa and Kang (2002) studied free vibration and buckling characteristics of plates

under different boundary conditions subjected to different linearly varying NELs using

power series solution method. They established the usage of power series method for

the buckling and free vibration analysis of plates under different boundary conditions.

Kang and Leissa (2005) presented an exact method for buckling analysis of rectan-

gular plates subjected to linearly varying NELs using power series. Their solutions are

non applicable for a non-general non-uniform edge loading conditions other than that

of linearly varying edge loads.

Panda and Ramachandra (2010) investigated buckling characteristics of isotropic

and laminated composite plates under different NELs using Galerkin’s method. They

proposed a more general method of solution for obtaining buckling characteristics of

plate structures.

Hamedani and Ranji (2013) analysed buckling characteristics of stiffened plates

subjected to NELs using nite element method.They found that critical buckling load

is inuenced by the type of edge loading.

Dey and Ramachandra (2014) studied the inuence of partial edge loadings for

post buckling and dynamic instability of composite cylindrical panels using Galerkin’s

method. It is observed that the partial edge loading applied in longitudinal direction

leads to behaviour of cylindrical panel as an imperfect panel.

Abolghasemi et al. (2019) analysed buckling characteristics of an isotropic plate

with a hole subjected to uniform and non-uniform (parabolic and sinusoidal) edge load-

ings using analytical method. They observed that buckling characteristics are inuenced

by the type of edge loading.
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Adhikari and Singh (2020) investigated the dynamic instability of laminated com-

posite plate subjected to NELs using nite element method. The instability behaviour

of composite plate varies in such a way that highest impact is for parabolic loading

followed by sinusoidal loading then by reverse sinusoidal loading.

Watts et al. (2021) studied buckling and dynamic instability characteristics of lam-

inated composite and isotropic plates subjected to NELs using element free Galerkin

method. They observed that the critical buckling load of trapezoidal plate depends on

the type of edge loading.

1.2.2.2 Porous Cellular Materials

Pollien et al. (2005) demonstrated production of functionally graded porous structures

with graded porosity. The study indicate that lightweight graded beams exhibit more

promise in the stand point of load-limited design.

Magnucka-Blandzi (2008) investigated buckling characteristics of circular porous-

cellular plate using Galerkin’s method. They demonstrated decrease in critical buckling

load with increase in porosity of the plate.

Thang et al. (2018) studied buckling characteristics of porous metal foam plates

subjected to UEL using an analytical method. They observed that increase in porosity

leads to reduction in critical buckling load due to loss in the structural stiffness.

Wang and Zhang (2019) analysed buckling characteristics of porous metal foam

plates subjected UEL using Galerkin’s method. The observed the variation in critical

buckling load with respect to the changes in the porosity distribution through the thick-

ness.

Li et al. (2019d) studied buckling characteristics of GPL reinforced porous arches

using analytical methods. Their study reveals that the increase in porosity content re-

duces the critical buckling load. They also observed that the increase in GPL content
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increases the critical buckling load signicantly.

Toan Thang et al. (2020) investigated buckling and post buckling characteristics

of metal foam cylindrical shells under uniform edge compression using Galerkin’s

method. They observed a reduction in critical buckling load with increase in poros-

ity in the cylindrical panel.

1.2.2.3 Graphene Nano Platelet (GPL) Nano-Composites

Liu et al. (2018) studied buckling characteristics of GPL reinforced cylindrical shells

using analytical methods. The results of the study indicate that the distribution of in-

creasing concentration of GPL towards extreme surfaces improves the critical buckling

load.

Ebrahimi and Barati (2018) analysed free vibration analysis of single layer graphene

sheets subjected to NELs using Galerkin’s method. They have considered the strain gra-

dient elasticity theory to include the inuence of non-local and strain-gradient effects.

It is observed that the natural frequency reduces with increase in the edge load intensity.

Song et al. (2018) investigated bending and buckling analysis of GPL reinforced

plates using analytical method. A notable inuence of GPL reinforcement pattern,

weight fraction on the bending and buckling response is established.

Gunasekaran et al. (2020a) studied buckling characteristics of GPL reinforced com-

posite plates subjected to uniform and NELs using analytical method. They reported

that the buckling characteristics is inuenced by the type of edge loading.

Wang et al. (2022a) analysed buckling characteristics of shear deformable graphene

reinforced plates subjected UELs using multi-term Kantorovich-Galerkin approach.

They shown that the distribution in which graphene concentration is more at the ex-

treme surfaces gives higher buckling strength. Further, the increase in concentration of

graphene leads to an increase in the buckling load.
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1.2.2.4 Porous Nano-Composites

Yang et al. (2018) studied buckling characteristics of GPL reinforced porous plates

under UEL using Chebyshev-Ritz method. The study reveals that the distribution of

porosity and GPL has remarkable inuence on the buckling characteristics of the plate.

Zhou et al. (2019) analysed non linear buckling characteristics of GPL reinforced

porous cylindrical shells subjected to uniformly distributed pressure using Galerkin’s

method. They observed that buckling characteristics is depend on the average size of

pores, GPL weight fraction and thickness of GPLs.

Shahgholian et al. (2020) investigated buckling characteristics of GPL reinforced

porous cylindrical shells using Rayleigh-Ritz method. It is observed that increase in

density and size of pores leads to a reduction in critical buckling load. On the other

hand, an increase in weight fraction of GPL leads to an improvement in overall buckling

capacity.

Anamagh and Bediz (2020) studied buckling and free vibration characteristics of

porous GPL reinforced plates subjected to UEL using spectral Chebyshev method.

From the study, it is observed that the increase in amount of porosity reduces the stiff-

ness and thus the buckling load, while increase in amount of GPL increases the critical

buckling load.

Shakir and Talha (2022) investigated dynamic response of functionally graded GPL

reinforced porous spherical panels under blast loading using nite element method. The

inuence of GPL and porosity on the dynamic response is established in detail.

1.2.2.5 Porous Nano Composite Sandwich Material

Li et al. (2018) studied dynamic buckling analysis of GPL reinforced porous core sand-

wich plate using Galerkin’s method. Based on the study, the inuence of porosity, GPL

content on the dynamic stability of the sandwich plate is established.
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Yaghoobi and Taheri (2020) analysed buckling characteristics of sandwich plate

with GPL reinforced porous core subjected to UEL using an analytical method. Based

on the study, it is shown that presence of GPL improves the buckling capacity for high

core to total thickness ratio than compared to smaller core to total thickness ratio.

Adhikari et al. (2020) studied buckling characteristics of porous FGM plates sub-

jected to UEL and NELs using nite element method. It is shown that the critical

buckling load is signicantly inuenced by the type of edge loading. Further, changes

in buckling mode shape also observed as a function of the type of the edge load.

Tao and Dai (2021) analysed post buckling characteristics of functionally graded

GPL reinforced porous cylindrical shell panels using isogeometric analysis (IGA). The

study reveals that increasing GPL in the core leads to increase in post buckling strength.

On the other hand, increasing porosity in the core reduces the buckling strength. Fur-

ther, the distribution in which the pores are not found on the extreme surfaces enhances

the buckling strength.

1.2.2.6 Carbon Nano Tube (CNT) Nano-Composites

Kiani (2017) studied buckling analysis of CNT reinforced composite plates subjected to

parabolic edge loading using Chebyshev-Ritz method. The distribution of stress resul-

tants are calculated using minimisation of membrane strain energy. Then, Ritz method

is employed by considering Chebyshev polynomials to obtain the buckling parameters.

Thang et al. (2017) investigated non-linear buckling characteristics of CNT rein-

forced plates subjected to UEL by using Galerkin’s method. They observed a variation

in buckling characteristics with increase in CNT reinforcement. They also observed

signicant changes in buckling behaviour according to the graded distribution of CNTs

through the thickness.

Phung-Van et al. (2017) analysed free vibration characteristics of CNT reinforced

nano plates by considering non-local elasticity theory using isogeometric analysis. They
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observed a reduction in natural frequency of the plate with increase in non local param-

eter.

Jiao et al. (2019) analysed buckling characteristics of CNT reinforced plates using

differential quadrature method (DQM) subjected to different partial edge loads. Their

study reveals that the buckling characteristics are sensitive to partial edge load distribu-

tion.

Chakraborty et al. (2019) studied buckling and post buckling characteristics of CNT

reinforced cylindrical panels subjected to UEL and NELs using Galerkin’s method.

They observed a non-linear equilibrium post buckling path when linearly varying non-

uniform edge loading is applied. However, for the parabolic and partial edge loading

conditions, continuous deformation path is observed.

Thang et al. (2019) analysed non-linear buckling characteristics of CNT reinforced

cylindrical shells subjected to UEL using Galerkin’s method. They observed a signi-

cant change in buckling characteristics according to the type of CNT distribution.

Daghigh et al. (2020) studied buckling characteristics of CNT reinforced composite

plates considering non-local elasticity theory using analytical method. They observed a

decrease in the critical buckling load with increase in non-local parameter.

Naghsh et al. (2021) investigated buckling characteristics of polymeric core sand-

wich plates with CNT reinforced face-sheets subjected to uniform and different linearly

variying edge loads using spline nite strip method (SFSM). They observed the inu-

ence of edge load becomes signicant when the ratio between width and length is small.

1.2.2.7 Graphene Oxide Powder (GOP) Nano-Composites

Zhang et al. (2020) analysed buckling characteristics of graphene oxide powder (GOP)

reinforced polymer beams under edge compression. Their study indicate that increase

in GOP weight fraction improves critical buckling load of composite beams.
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Ebrahimi et al. (2021) studied buckling characteristics of GOP reinforced shells

using Galerkin’s method. They observed that the increase in GOP weight fraction sig-

nicantly improves the buckling characteristics of the shell.

1.2.3 Free Vibration Analysis

1.2.3.1 Isotropic and Laminated Composites

Mantari et al. (2011) proposed a higher order shear deformation theory for the free

vibration analysis of composite and sandwich shells. They demonstrated the accuracy

of the proposed higher order theory for the free vibration analysis of composite and

sandwich shells by comparing with results of different theories.

Hosseini-Hashemi et al. (2015) investigated free vibration response of nano plates

considering non-local elasticity theory using an analytical method. They observed a

decrease in natural frequency with increase in non-local parameter.

Sayyad and Ghugal (2019) analysed the free vibration response of laminated com-

posite and sandwich spherical shells using an analytical method. They proposed a gen-

eralised higher order shell theory and compared it with available theories to ascertain

its efciency.

Gunasekaran et al. (2020b) studied free vibration and acoustic characteristics of

an isotropic plate subjected to different edge loads using an analytical method. They

observed a reduction in free vibration frequency with the increase in magnitude of the

edge loading.

Are (2020) investigated vibration characteristics of piezoelectric nano shells con-

sidering nonlocal elasticity theory using Galerkin’s method. He observed that increase

in nonlocal parameter leads to a reduction in natural frequency of the nano shell.
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Moayedi et al. (2021) analysed free vibration characteristics of laminated cylindri-

cal shells by considering non-local stress and strain gradient theory using generalized

differential quadrature method element method (GDQEM). The inuence of non-local

parameter and length scale parameter on the natural frequency is analysed in detail.

1.2.3.2 Porous Cellular Materials

Chen et al. (2016) analysed free and forced vibration characteristics of functionally

graded beams using numerical method. They observed that variation of fundamental

frequency with porosity occurs according to the porosity distribution.

Akbaş (2017) investigated the thermal effects on vibration characteristics of func-

tionally graded beams with porosity using nite element method. They observed a vari-

ation in vibration characteristics with porosity parameter and temperature according to

the type of porosity distribution.

Wu et al. (2018) investigated free vibration characteristics of functionally graded

beam structures using nite element method. They established the inuence of porosity

on the free vibration frequency of the porous beam.

Zhao et al. (2019) studied the free vibration characteristics of porous metal foam

plates using improved Fourier series method (IFSM). They observed that the frequency

of the porous plate depends primarily on the type of porosity distribution and amount

of porosity.

Xue et al. (2019) analysed free vibration characteristics of porous foam plates with

variation of porosity along the thickness and in-plane directions using isogeometric

analysis method. The inuence of different distribution of porosity and amount of

porosity on the free vibration characteristics is analysed in detail.

Ramteke (2019) studied free vibration characteristics of porous plates using nite

element method. He established the inuence of porosity coefcient and distribution of
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porosity on the free vibration response of the plate.

Wang et al. (2019) investigated free vibration characteristics of porous shells using

Rayleigh-Ritz method. The results of the study indicate that the inuence of porosity

on the natural frequency of the cylindrical shell is signicant. It is also shown that the

inuence of porosity on the natural frequency depends on different distributions.

Wang and Zhao (2019) studied free vibration characteristics of metal foam core

sandwich beams using Chebyshev collocation method (CCM). From the study, the in-

uence of different porosity distributions on the free vibration characteristics of sand-

wich beam is established. The inuences of core to total thickness ratio and amount of

porosity on the natural frequency of the sandwich beam are analysed in detail.

Li et al. (2019a) analysed vibration characteristics of porous cylindrical shell using

Rayleigh-Ritz method. The results indicate that porosity coefcient and distributions

inuence the vibration frequency of the cylindrical shell.

Li et al. (2019b) studied free vibration characteristics of porous spherical shells

using Ritz method. The study reveals that the nature of grading and amount of porosity

have a signicant inuence on the free vibration frequency.

Teng andWang (2020) analysed non-linear free vibration characteristics of graphene

reinforced porous plates using an analytical method. From the study, it is shown that

hardening or weakening phenomenon according to the increase in porosity depends

upon the porosity distribution. Further, increase in weight fraction of GPL leads to an

increase in non-linear natural frequency.

1.2.3.3 Graphene Nano Platelet (GPL) Nano-Composites

Feng et al. (2017) analysed non-linear free vibration characteristics of GPL reinforced

composite beams using Ritz method. They observed signicant improvement in natu-

ral frequency by the addition of GPL. The distribution pattern of GPL in which high
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amount of GPL at the extreme surfaces provides the better natural frequency values.

Song et al. (2017) investigated free and forced vibration characteristics of GPL re-

inforced plates using an analytical method. They established the inuence of amount of

GPL and distribution on the free vibration characteristics of the plate.

Wang et al. (2018) studied free vibration characteristics of GPL reinforced doubly

curved shells using an analytical method. They observed that the increase in small

amount of GPL result in signicant improvement in natural frequency.

Van Do and Lee (2020) analysed free vibration characteristics of GPL reinforced

curved panels using the isogeometric analysis. They observed notable inuence of GPL

weight fraction and its grading pattern of reinforcement on the free vibration character-

istics.

1.2.3.4 Porous Nano-Composites

Pourjabari et al. (2019) studied free and forced vibration characteristics of GPL rein-

forced porous cylindrical nano shells using an analytical method. They have used a size

dependent theory to model the nano shell. Based on the study, it is shown that increase

in porosity, GPL and length scale parameter leads to an increase in natural frequency.

Barati and Zenkour (2019) analysed the free vibration characteristics of GPL rein-

forced porous nano composite shells using Galerkin’s method. The results of the study

indicate that GPL, porosity distribution and porosity coefcient has an evident inuence

on the natural frequencies.

Wang et al. (2019) studied free vibration characteristics of graphene foams using

Chebyshev-Ritz method. Based on the study, it is shown that increase in foam coef-

cient leads to reduction in natural frequency. It is also shown that foam distributions

have a signicant inuence on the free vibration characteristics.
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Rahimi et al. (2020) investigated free vibration characteristics of porous GPL re-

inforced composite cylindrical shell using semi analytical method. From the study, it

is shown that the distribution of porosity and GPL has an important inuence on the

natural frequency.

Amir et al. (2022) analysed non-linear free vibration characteristics of functionally

graded porous cylindrical panels nite element methods. They investigated the inu-

ence of porosity distributions on the non-linear vibration characteristics of cylindrical

panels.

1.2.3.5 Carbon Nano Tube (CNT) Nano-Composites

Hedayati and Aragh (2012) analysed free vibration characteristics of CNT reinforced

sectorial plates considering agglomeration using generalised DQM. Based on the study

it shown that agglomeration phenomenon inuences the natural frequency of the plate.

Further, it is observed that agglomeration parameter has less inuence for symmetric

distribution compared to uniform and asymmetric distributions of CNTs.

Yas et al. (2013) studied free vibration characteristics of CNT reinforced cylindrical

panels using DQM. The inuence of CNT volume fraction and its distribution pattern

on the free vibration characteristics of cylindrical panel is analysed in detail.

Tornabene et al. (2016) investigated vibration characteristics of CNT reinforced

composite laminated doubly curved shells using generalised DQM. They demonstrated

that addition of CNTs improves the stiffness of structure and thus the natural frequency.

They also shown that inuence of CNT is remarkable when CNTs are uniformly dis-

tributed.

Kamarian et al. (2016) studied free vibration characteristics of conical shells rein-

forced with agglomerated CNTs using generalised DQM. The effect of the agglomera-

tion parameters on the free vibration frequency is established by the study.
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Nguyen et al. (2018) analysed free vibration characteristics of CNT reinforced shell

panels using non-uniform rational B-Spline (NURBS) functions. They observed im-

provement in natural frequency of the shell panel with increase in volume fraction. It is

also observed that the improvement in frequency with volume fraction is highly depen-

dent on the distribution pattern of CNTs.

Ansari et al. (2019) investigated free vibration characteristics of CNT reinforced

plates with arbitrary shapes using DQM. The results presented shows that the natural

frequency increases with increase in volume fraction of CNT. The results also revealed

that the nature of CNT distribution pattern has a signicant inuence on the natural

frequency.

Dindarloo and Li (2019) studied free vibration characteristics of CNT reinforced

cylindrical shell panels by considering non-local elasticity theory an using analytical

method. They observed that the increase in non-local parameter decreases the natural

frequency of the cylindrical panel.

Ghasemi et al. (2019) analysed vibration characteristics of CNT reinforced cylin-

drical shells considering the agglomeration effect using an analytical method. They

demonstrated that an agglomeration parameter has signicant inuence on the free vi-

bration frequency. Further, it is also shown that increase in mass fraction of CNTs leads

to an increase in natural frequency of the shell.

Daghigh and Daghigh (2019) investigated free vibration behaviour of CNT rein-

forced plates considering non-local elasticity theory and analytical methods. The inu-

ences of non-local parameter, volume fraction of CNT on the free vibration character-

istics are analysed in detail.

Bisheh and Civalek (2020) studied vibration characteristics of CNT reinforced cylin-

drical panels subjected to hygrothermal loading using an analytical method. They re-

ported that increasing the amount of CNT as reinforcement improves the natural fre-

quencies of the cylindrical panel. They also observed that an increase in temperature or

20



moisture reduces the natural frequency of the cylindrical panel.

Civalek et al. (2022) analysed buckling and free vibration characteristics of CNT

reinforced laminated composite plates subjected to UEL using discrete singular convo-

lution method. The study reveals that lower aspect ratio of the plate and increase in

volume fraction of CNT leads to increase in buckling and free vibration characteristics.

Cheshmeh et al. (2022) studied buckling and free vibration characteristics of CNT

reinforced plate using analytical method and the DQM. From the study, it is inferred

that the increase in CNT volume fraction increases the natural frequency. Further, the

inuence of CNT distribution pattern on the buckling and free vibration characteristics

is also presented.

1.2.3.6 Graphene Oxide Powder (GOP) Nano-Composites

Ebrahimi et al. (2019) studied free vibration characteristics of GOP reinforced com-

posite beams using Galerkin’s method. They observed that increase in GOP weight

fraction increases the natural frequency of the composite beam. They also established

the inuence of GOP weight fraction on the free vibration characteristics.

Ebrahimi et al. (2020) analysed free vibration characteristics of GOP reinforced

plates subjected to thermal loads using an analytical method. They observed that the

variation in free vibration frequency with increase in GOP weight fraction is different

for room temperature and elevated temperature cases. However, for some distributions

the vibration frequency is observed to be increasing with the temperature.

Wang et al. (2020) investigated the free vibration characteristics of GOP reinforced

beams using Ritz method. They observed that the addition of small amounts of GOP

improves the natural frequency. They also suggested that by placing more amount of

GOPs on top and bottom bres, higher stiffness and thereby higher natural frequency is

observed.
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Wang et al. (2022b) studied vibration characteristics of GOP reinforced curved

beams using an analytical method. The study reveals that a low level of reinforce-

ment leads to much high improvement in vibration frequency of the curved beams.

Further, GOP reinforcements and diameter to thickness ratio has a high inuence on the

vibration frequency.

1.2.4 Closure

Many researchers have studied buckling and free vibration characteristics of structures

subjected to UEL over the years. However, very limited amount of studies are carried

out by considering non-uniformly varying edge loads. From the literature survey, it is

found that the type of edge loading, aspect ratio of the cylindrical panel, distribution of

material properties through the thickness signicantly inuence the buckling and free

vibration characteristics of the cylindrical panel.

Most of the studies of structures subjected to NELs are carried out using numerical

methods such as nite element method, differential quadrature method and isogeomet-

ric method etc. The semi-analytical method is used in limited amount of studies and it

has an ease of computation for nding the buckling and free vibration when subjected

to non-uniform edge loads more accurately.

The development of nano composite structures which are light in weight helps in

reduction of emissions and fuel savings. Introducing nano reinforcements enhances

structural stiffness of the thin-walled structures signicantly without much increase in

overall weight. The weight of the component can be reduced by introducing the poros-

ity. However, the porosity tends to reduce the stiffness of the structure. In that case

further improvement in stiffness can be achieved by using nano reinforcements. For

light weight cylindrical panel structures, the literature review reveals that the distribu-

tion and amount of porosity, distribution and amount of nano reinforcements, non-local

effect and agglomeration phenomenon signicantly inuences the buckling and free
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vibration characteristics.

1.3 Objectives and Scope of Study

Because of the rapid development of light weight nano-composite cylindrical panels,

it is important to study the buckling and free vibration characteristics for better under-

standing and design of these structures. From the literature survey, it is evident that the

nature of edge loading signicantly inuences the buckling and free vibration charac-

teristics. The main objective is to investigate the inuence of non-uniform edge loads

(NELs) on the buckling and free vibration characteristics of cylindrical panels.

Similarly, the usage of nano composites with porosity and nano reinforcements

requires careful analysis of weight fraction and distribution of nano reinforcements,

amount and distribution of porosity in cylindrical panel and sandwich cylindrical panel.

Furthermore, the inuence of porosity pattern, amount of porosity on the core to total

thickness ratio also need to be analysed. Further, the possible issues associated with the

nano reinforcements such as agglomeration and consideration of size effects also need

be analysed. The following objectives are formulated based on the above discussion:

• To implement a semi-analytical method for buckling and free vibration behaviour

of cylindrical panels subjected to different types of NELs.

• To study the buckling and dynamic behaviour of GPL reinforced porous cylindri-

cal nano-composite panels and sandwich panels subjected to different NELs.

• To investigate buckling and free vibration behaviour of CNT reinforced cylindri-

cal panels under NELs considering the agglomeration of CNTs and based on the

non-local elasticity theory.

• To analyze the buckling and free vibration response of graphene oxide powder

(GOP) reinforced cylindrical panel under NELs.
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1.4 Outline of the Thesis

The rst chapter of the thesis includes the brief introduction and literature review. In

the following chapters, the methodology, validation and followed by results and dis-

cussion are presented. In the nal chapter, conclusions and outcomes of the present

research work is presented. The remaining chapters details are explained in the sections

following.

Chapter 2 details the methodology followed for buckling and free vibration of a

cylindrical panel under NELs. The generalised formulation of governing differential

equations is discussed rst. Followed by that semi analytical solution procedure includ-

ing pre-buckling analysis is discussed in detail. The solutions obtained are validated

with different published results.

Chapter 3 details the buckling and free vibration characteristics of an GPL rein-

forced porous cylindrical panel under NELs. The semi analytical method is used to

carry out the analysis of the inuence of amount and distribution of porosity, amount

and distribution of GPL, aspect ratio and type of edge loading on the buckling and free

vibration characteristics.

Chapter 4 examines buckling and free vibration response of a sandwich cylindrical

panel having GPL reinforced foam core and aluminium face sheets subjected to uniform

and different NELs. The inuence of amount and distribution of porosity, amount and

distribution of GPL, core to total thickness ratio, aspect ratio and type of edge loading

on the buckling and free vibration behaviour of sandwich cylindrical panel is presented

in detail.

Chapter 5 details the non-local buckling and free vibration studies of agglomerated

CNT reinforced cylindrical panel subjected to NELs. The CNT reinforced cylindrical

panel is analysed for the inuence of non local parameter, type of edge loading, degree

of agglomeration on the buckling and free vibration response.
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Chapter 6 presents the investigation of buckling and free vibration response of

graphene oxide powder (GOP) reinforced cylindrical panel structures under the inu-

ence of NELs. The inuence of amount and distribution of GOP, type of edge loading,

aspect ratio on the buckling and free vibration characteristics is analysed in detail.

In chapter 7, important ndings and conclusions are summarized.
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CHAPTER 2

METHODOLOGY

2.1 Introduction

From the previous chapter, the literature review, motivation and scope for the study

is established. In this chapter, methodology followed for buckling and free vibration

analysis of cylindrical panels subjected to different types of non-uniform edge loads

(NELs) is described. A semi analytical method based on Galerkin’s technique is imple-

mented which has the ability to predict the buckling and free vibration characteristics of

the panel under the inuence of NELs accurately with the help of a higher order shear

deformation theory. Two sets of non-uniform edge loads namely, non-uniform load I

(NEL-I) and non-uniform load II (NEL-II) are considered in the present work. In the

case of non-uniform load I, the variation of edge load is linear while in non-uniform

load II case the variation of edge load is not linear.

2.2 Analysis Approach

Semi-analytical method is used to nd the buckling and free vibration characteristics

of the cylindrical panel under the inuence of NELs. Three different types of edge

loadings namely, uniform, type I non-uniform edge loadings, type II non uniform edge

loadings are considered. The analysis approach followed in the present work is given

in Figure 2.1. The stress distribution developed due to UEL and NEL-I coincides with

edge loading pattern so the panel does not experience any pre-stress in directions other

that of loading. Hence, the pre-buckling stress evaluation is not carried out when the

panel is subjected to these loadings. On the other hand, the stress distribution developed



Figure 2.1: Flow chart of the present work

due to NEL-II is calculated using pre buckling analysis because of the presence of all

in plane stress components. After the evaluation of stress distribution developed as a

results of edge loads, buckling characteristics are obtained by solving the eigen value

buckling problem. Similarly, free vibration characteristics are estimated by solving free

vibration eigen value problem.

2.3 Formulation

The derivation of governing differential equations of the cylindrical panel under various

NELs is described in this section. Schematic of the cylindrical panel considered, with

details of geometric conguration and coordinate system used is shown in Figure 2.2.
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The displacement eld considering a higher order shear deformation theory is:

Figure 2.2: Geometry and coordinate system of the cylindrical panel studied.
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where, Γ(z) = z − 4
3
z3

h2 is the Reddy’s shear deformation theorem (Reddy 2000) and

ψx(x, y, t), ψy(x, y, t) are rotations of the cross-section about y and x axis respectively.

u0, v0 and w0 denotes the displacement of the mid plane along x, y, z directions respec-

tively, and u, v, w are the displacements of point of interest within the cylindrical panel.

The relations connecting in plane, transverse strains and displacement is outlined as:
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where, ϵnl denotes the non-linear strain components given as

ϵnl =
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(2.3)

The stress-strain relation of the cylindrical panel is established considering a layered

structure as follows:
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Qij are stiffness matrix coefcients and dened as follows:

Q11 = Q22 =
E(z)

1−(ν)2

Q66 = Q55 = Q44 = G(z)

Q12 = Q21 = ν ′ E(z)
1−(ν)2

(2.5)

Hamilton’s principle is applied to obtain the governing differential equations of the

cylindrical panel  t2
t1
(δK + δU − δV )dt = 0 (2.6)

where, δ - variational operator, δV - work done by the external forces, δU - strain en-

ergy, and δK - kinetic energy.
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The in-plane force and moment resultants of the cylindrical panel are dened as:
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Inertia coefcients of the cylindrical panel are dened as:
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Introducing stress resultants and inertia coefcients in Equation 2.7, takes the following

form:
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+ Ñxy

∂δu0

∂y
+ Ñxy
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The governing partial differential equations can be written by equating δu0, δv0, δw0,

δϕ, δψ coefcients to zero given as:
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∂Ñxy

∂x
+ ∂Ñyy
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Ñxy



+ ∂
∂y


∂w
∂y
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∂x∂t2
− I3

∂4w0

∂x2∂t2
+ I5

∂3ψx

∂x∂t2
+


I2 +

I3
R


∂3v0
∂y∂t2

−I3
∂4w0

∂y2∂t2
+ I5

∂3ψy

∂y∂t2
+ I1

∂2w0

∂t2
: δw0

∂Ms
xx

∂x
+

∂Ms
xy

∂y
−Qxx = I4

∂2u0

∂t2
− I5

∂3w0

∂x∂t2
+ I6

∂2ψx

∂t2
: δψx

∂Ms
yy

∂y
+

∂Ms
xy

∂x
−Qyy =


I4 +

I5
R


∂2v0
∂t2

− I5
∂3w0

∂y∂t2
+ I6

∂2ψy

∂t2
: δψy

(2.12)

and,




Ñxx

Ñxy

Ñyy





=





Nxx − nxx

Nxy − nxy

Nyy − nyy





(2.13)

Using Equations 2.4, 2.8 and 2.12 and neglecting non-linear terms the governing differ-

ential equations can be re-written as:

A11
∂2u0

∂x2 − B11
∂3w0

∂x3 + E11
∂2ψx

∂x2 + A12
∂2v0
∂xy

+ A12

R
∂w0

∂x
− B12

∂3w0

∂xy2
+ E12

∂2ψy

∂xy
+ A66

∂2u0

∂y2

+A66
∂2v0
∂xy

− 2B66
∂3w0

∂xy2
+ E66

∂2ψx

∂x2 + E66
∂2ψy

∂xy
= I1

∂2u0

∂t2
− I2

∂3w0

∂xt2
+ I4

∂2ψx

∂t2

(2.14a)
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A12
∂2u0

∂xy
− B12

∂2w0

∂yx2 + E12
∂2ψx

∂xy
+ A22

∂2v0
∂y2

+ A22

R
∂w0

∂y
− B22

∂2w0

∂y3
+ E22

∂2ψy

∂y2
+ A66

∂2u0

∂xy

+A66
∂2v0
∂x2 − 2B66

∂2w0

∂yx2 + E66
∂2ψx

∂xy
+ E66

∂2ψy

∂x2 =


I1 + 2 I2

R
+ I3

R2


∂2v0
∂t2

−

I2 +

I3
R


∂2w0

∂yt2

+


I4 +

I5
R


∂2ψy

∂t2

(2.14b)

B11
∂3u0

∂x3 −D11
∂4w0

∂x4 + 2B66
∂3u0

∂xy2
+ B12

∂3u0

∂xy2
− A12

R
∂u0

∂x
+ B12

∂3v0
∂yx2 − 2D12

∂4w0

∂x2y2
+ 2B66

∂3v0
∂yx2

+B22
∂3v0
∂y3

− A22

R
∂v0
∂y

+ 2B12

R
∂2w0

∂x2 − 4D66
∂4w0

∂x2y2
+ 2B22

R
∂2w0

∂y2
− A22

R2 w0 −D22
∂4w0

∂y4
+ F11

∂3ψx

∂x3

+2F66
∂3ψx

∂xy2
+ F12

∂3ψx

∂xy2
− E12

R
∂ψx

∂x
+ F12

∂3ψy

∂yx2 + 2F66
∂3ψy

∂yx2 + F22
∂3ψx

∂y3
− E22

R

∂ψy

∂y
+ ℵ(w0)

= I2
∂3u0

∂xt2
+ I3

∂4w0

∂x2t2
+ I5

∂3ψx

∂xt2
+


I2 +

I3
R


∂3v0
∂yt2

− I3
∂4w0

∂y2t2
+ I5

∂3ψy

∂yt2
+ I1

∂2w0

∂t2

(2.14c)

E11
∂2u0

∂x2 + E66
∂2u0

∂y2
+ E12

∂2v0
∂xy

+ E66
∂2v0
∂xy

− F11
∂3w0

∂x3 + E12

R
∂w0

∂x
− F12

∂3w0

∂xy2
− 2F66

∂3w0

∂xy2

+H11
∂2ψx

∂x2 +H66
∂2ψx

∂x2 +H12
∂2ψy

∂xy
+H66

∂2ψy

∂xy
− L55ψx = I4

∂2u0

∂t2
− I5

∂3w0

∂xt2
+ I6

∂2ψx

∂t2

(2.14d)

E12
∂2u0

∂xy
+ E66

∂2u0

∂xy
+ E22

∂2v0
∂y2

+ E66
∂2v0
∂x2 − F22

∂3w0

∂y3
+ E22

R
∂w0

∂y
− F12

∂3w0

∂yx2 − 2F66
∂3w0

∂yx2

+H12
∂2ψx

∂xy
+H66

∂2ψx

∂xy
+H22ψ,yy

∂2ψy

∂y2
+H66

∂2ψy

∂x2 − L44ψ,y
∂ψy

∂y
=


I4 +

I5
R


∂2v0
∂t2

−I5
∂3w0

∂yt2
+ I6

∂2ψy

∂t2

(2.14e)

The different coefcients are dened as follows:

(Aij, Bij, Dij, Eij) =
 h

2
−h
2

Qij(1, z, z
2, z − 4

3
z3

h2 )dz

(Fij, Hij, Lij) =
 h

2
−h
2

Qij


z(z − 4

3
z3

h2 ),


z − 4

3
z3

h2

2

,


1− 4 z2

h2

2
dz

(2.15)

The governing differential equations and different coefcients presented in this section

provides a general frame work of the buckling and free vibration studies conducted

throughout the study. However, in subsequent chapters changes relevant to the particu-

lar study are presented. The properties of materials used in the thesis is summarised in
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Table 2.1: Different materials and properties used in the present study

Sl No Matrix Reinforcement

1
Copper GPL

Em = 130GPa, νm = 034 EGPL = 101TPa, νGPL = 0186

ρm = 8960kgm3 ρGPL=1062.5 kg
m3

2
Aluminium Alloy GPL

Em=68.3 GPa, νm=0.34 EGPL = 101TPa, νGPL = 0186

ρm=2689.8 kg
m3 ρGPL=1062.5 kg

m3

3
PmPV SWCNT

Em=2.1 GPa, νm=0.34 Hills moduli(GPa): pr=1, lr=10, kr=30,mr=1, nr=450
ρm=1150 kg

m3 ρGPL=1400 kg
m3 , νGPL = 0186

4

Epoxy GOP
Em = 30GPa, νm = 034 EGOP = 4448GPa, νGOP = 0165

ρm=1200 kg
m3 ρGOP = 1090 kg

m3

Table 2.1.

2.4 Solution Procedure

In the present work, buckling and free vibration studies are carried out in different

steps. Firstly, pre-buckling analysis is performed to obtain the stress distribution due

to applied non-uniform edge load (NEL). After evaluating all the in-plane stress resul-

tants, the buckling parameters (critical buckling load and its mode shape) are obtained

by solving the linear eigen value problem. Later, free vibration parameters (natural fre-

quencies and the corresponding mode shapes) under the inuence of NELs are obtained

by solving the associated eigen value problem. The free vibration of the panel is per-

formed as a function of the buckling load, i.e., by varying the magnitude of the edge

load from zero to the buckling load. The semi-analytical method used in the present

work is adopted from the literature because of its simplicity and ease of application

with sufcient accuracy. However, there is no solution available in the open literature

for the analysis of different nano ller reinforced and sandwich cylindrical panels sub-

jected to different types of non-uniform and partial edge loads using the semi-analytical

method. The computational challenge is that when analysing loads such as partial edge
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loads, which is a discontinuous edge load the load need to be converted to continuous

form using Fourier series approximation. Detailed procedure of all the steps are given

in sections follows. Various types of edge loads considered in the present work are

presented in Figure 2.3. They are dened as follows:

1. Uniform edge load (UEL)
Nx = N0 (2.16)

2. Non-uniform edge Load-I (NEL-I)

Nx = N0[1− η(y
b
)] (2.17)

(a) η = 0.5; Trapezoidal loading

(b) η = 1; Triangular loading

(c) η = 1.5; Partial tension loading

3. Non-uniform edge Load-II (NEL-II)

(a) Parabolic loading

Nx = 4N0
y
b
[1− (y

b
)] (2.18)

(b) Reverse sinusoidal loading

Nx = N0


2
3


π

π−2


1− sin πy

b


(2.19)

(c) Increasing parabolic loading

Nx = N0
2y2

b2
(2.20)

(d) Partial edge loading

Nx = N0


2(d2−d1)

b
+
∞

n=1
2
nπ
(sin 2πnd2

b
− sin 2πnd1

b
) cos 2πny

b


(2.21)
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Where d1 and d2 are distances from the origin for partial edge loading as presented

in 2.3.

Figure 2.3: Different types of loadings considered

2.4.1 Pre-Buckling Analysis

The in-plane stress resultants (nxx, nyy, nxy) varies according to the nature of variation

of the given NEL. For the uniform and NEL-I, the resulting membrane stress distribu-

tion coincides with the nature of edge load pattern (Panda and Ramachandra 2010). On

the other hand, the stress distribution does not coincide with the load pattern for the

NEL-II as already discussed. Hence it is important to calculate the pre-buckling stress

state to obtain the critical buckling load (Panda and Ramachandra 2010) for the panels
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exposed to NEL-II. Hence a pre buckling analysis is carried out before buckling and

free vibration analysis for such load cases. Only the in-plane stress components are

considered for this purpose as the transverse shear strains are equal to zero before the

buckling. Strain energy associated with the pre-buckling state is given by:

δu =
 b

0

 a

0


nxx nyy nxy






δϵxx

δϵyy

δγxy





dxdy (2.22)

In terms of Airy’s stress function, the resultants are given as:

nyy =
∂2ℵ
∂x2 , nxx = ∂2ℵ

∂y2
, nxy = − ∂2ℵ

∂x∂y
(2.23)

The components of strain are expressed in terms of stresses by the following expression:





ϵxx

ϵyy

γxy





=




a11 a12 0

a12 a22 0

0 0 a66








nxx

nyy

nxy





(2.24)

where,
a11 =

A22

A11A22−A2
12

; a22 =
A11

A11A22−A2
12

a12 = − A12

A11A22−A2
12

; a66 =
1

A66

(2.25)

Substituting Equations 2.24 and 2.23 into 2.22 the strain energy equation can be re

written as:

δu =
 b

0

 a

0
(a11ℵ,yyδℵ,yy + a22ℵ,xxδℵ,xx + a12ℵ,xxδℵ,yy + a12ℵ,yyδℵ,xx

+a66ℵ,xyδℵ,xy)dxdy
(2.26)
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Approximate values of stress resultants are obtained by assuming the stress function

(ℵ(x, y)) in a series form given as:

ℵ(x, y) = ℵ0(y) + (x2 − ax)2(y2 − by)2(c0 + c1x+ c2y + c3x
2 + c4xy + c5y

2)

(2.27)

The function ℵ0(y) of the stress function for NEL-II can be written as:

1. Parabolic loading

ℵ0 = N0
y3

3b2
(2b− y) (2.28)

2. Reverse sinusoidal loading

ℵ0 = N0


2

3


π

π − 2


y2

2
+


b2

π2
sin

πy

b


(2.29)

3. Increasing parabolic loading

ℵ0 = N0
y4

6b2
(2.30)

4. Partial edge loading

ℵ0 = N0


y2(d2 − d1)

b
+

∞

n=1

b2

2n3π3
(sin

2πnd2
b

− sin
2πnd1

b
) sin2 πny

b



(2.31)

Substituting the corresponding value of ℵ0 in Equation 2.27 the stress function is

obtained. Then, the stress function is substituted in Equation 2.26 and minimized with

respect to the constants (c0, c1, c2, c3, c4, c5) given as:

∂u
∂c0

= 0 ; ∂u
∂c1

= 0 ; ∂u
∂c2

= 0 ; ∂u
∂c3

= 0 ; ∂u
∂c4

= 0 ; ∂u
∂c5

= 0 (2.32)

The constants (c0, c1, c2, c3, c4, c5) are evaluated from the resulting algebraic equations

and stress resultants are obtained using Equation 2.26.
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2.4.2 Semi-Analytical Procedure

The displacement and rotations of the cylindrical panel is approximated by various

approximate displacement functions satisfying the corresponding boundary conditions.

The approximated displacement functions are then substituted into the differential equa-

tions and reduced with the help of Galerkin’s method to an eigen-value problem. The

boundary conditions and corresponding displacement functions are given as: For the

simply supported boundary condition:

w0 = v0 = 0

M b
xx = M s

xx = ψy = 0



 x = a, 0 ;

w0 = u0 = 0

M b
yy = M s

yy = ψx = 0



 y = b, 0 (2.33)

Displacement elds are given as:

u0(x, y) =
l

r=1

m

s=1

Urse
iωt cos(

rπ

a
x) sin(

sπ

b
y) (2.34)

v0(x, y) =
l

r=1

m

s=1

Vrse
iωt sin(

rπ

a
x) cos(

sπ

b
y) (2.35)

ψx(x, y) =
l

r=1

m

s=1

ψxrse
iωt cos(

rπ

a
x) sin(

sπ

b
y) (2.36)

ψy(x, y) =
l

r=1

m

s=1

ψyrse
iωt sin(

rπ

a
x) cos(

sπ

b
y) (2.37)

w0(x, y) =
l

r=1

m

s=1

Wrse
iωt sin(

rπ

a
x) sin(

sπ

b
y) (2.38)

Similarly, fully clamped(CCCC) boundary condition is specied as:

w0 = u0 = v0 = 0

ψx = ψy = 0



 x = a, 0 ;

w0 = u0 = v0 = 0

ψx = ψy = 0



 y = b, 0 (2.39)
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The following displacement elds are assumed for satisfying the above boundary con-

dition:

u0(x, y) =
l

r=1

m

s=1

Urse
iωt cos(

rπ

a
x) sin(

sπ

b
y) (2.40)

v0(x, y) =
l

r=1

m

s=1

Vrse
iωt sin(

rπ

a
x) cos(

sπ

b
y) (2.41)

ψx(x, y) =
l

r=1

m

s=1

ψxrse
iωt cos(

rπ

a
x) sin(

sπ

b
y) (2.42)

ψy(x, y) =
l

r=1

m

s=1

ψyrse
iωt sin(

rπ

a
x) cos(

sπ

b
y) (2.43)

w0(x, y) =





l

r=1

m

s=1

Wrse
iωt cos ξr


x

a
− 1

2


+

sin(ξr2)

sinh(ξr2)
cosh ξr


x

a
− 1

2



cos ξs


y

b
− 1

2


+

sin(ξs2)

sinh(ξs2)
cosh ξs


y

b
− 1

2


(r, s = 2, 4, 6)

where, ξr are the roots obtained from tan


ξr
2


+ tanh


ξr
2


= 0

and, ξs are the roots obtained from tan


ξs
2


+ tanh


ξs
2


= 0

(2.44)

w0(x, y) =





l

r=1

m

s=1

Wrse
iωt sin ξr


x

a
− 1

2


+

sin(ξr2)

sinh(ξr2)
cosh ξr


x

a
− 1

2



sin ξs


y

b
− 1

2


+

sin(ξs2)

sinh(ξs2)
cosh ξs


y

b
− 1

2


(r, s = 1, 3, 5)

where, ξr are the roots obtained from tan


ξr
2


− tanh


ξr
2


= 0

and, ξs are the roots obtained from tan


ξs
2


− tanh


ξs
2


= 0

(2.45)
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The substitution of displacement approximations in Equations 2.14a-2.14e and applying

Galerkin’s method, the following eigen value problems are obtained as:


[K]−Ncr[KG]


dt


= 0 ; Buckling (a)


[K]− ω2

n[M ]


dt


= 0 ; Free vibration without pre-stress (b)


[K]− δNcr[KG]


− ω2

n[M ]


dt


= 0 ; Free vibration with pre-stress (c)

(2.46)

Here [K] denotes stiffness matrix, [KG] denotes geometric stiffness matrix and Ncr

species the critical buckling load. Also, [M] denotes the mass matrix and ω2
n is the

eigen value, its square root is the circular natural frequency. For the pre-stressed vibra-

tion problem, the value of natural frequencies at various fractions(δ = 0.1, 0.2, 0.3.....1)

of critical buckling load (Ncr) are obtained by solving the eigen value problem given by

Equation 2.46 (c).

2.5 Validation

In this section, the accuracy of the present approach in predicting buckling and free

vibration characteristics of cylindrical panels subjected to NELs is demonstrated by the

comparison of the present results with results available in the literature. Thus, this sec-

tion establishes the accuracy of the generalised frame work followed in present work

in predicting the buckling and free vibration characteristics. The validation studies

presented in this section are corresponding to an isotropic material. However, the com-

parison of the results is also presented in the subsequent chapters with respect to the

material analyzed in that chapter.
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Table 2.2: Comparison of critical buckling load

N̄0 = Ncr(

b2

π2D
);D = Eh3

12(1−ν2)


of a

SSSS square isotropic plate under different NELs.

Method
Loading type

Uniform Trapezoidal Triangular Partial Parabolic Reverse Increasing
tension sinusoidal parabolic

Present 3.9980 5.3307 7.9960 13.2087 5.2564 8.2610 6.4515
Adhikari et al. (2020) 3.9978 5.3158 7.8075 13.5046 5.2395 8.1514 6.0713

Difference [%] 0.005 0.27 2.35 2.2 0.32 1.32 5.89

2.5.1 Buckling Load Calculation

Buckling results of a cylindrical panel under different edge loadings is not available

in open literature for the comparison of solutions of present approach. So, a simply

supported isotropic plate under different NELs analyzed by Adhikari et al. (2020) is

considered for the validation. The solutions for the plate is obtained using the current

solutions derived for the cylindrical panel, by setting R→ ∞. Table 2.2 depicts the

comparison of critical buckling load

N̄0 = Ncr(

b2

π2D
)


of a simply supported isotropic

plate obtained using present formulation with Adhikari et al. (2020). Buckling analysis

under different NELs of a simply supported isotropic plate has been investigated by

Adhikari et al. (2020) using the FEM. The material properties used in this analysis are

E=1 GPa, ν=0.3.The difference between results (Table 2.2) of present semi-analytical

and FEM is due to the difference in methodology followed for the estimation of pre-

buckling stresses due to the NELs.

Table 2.3: Buckling load

N̄0 = Ncr(

b
D
);D = Eh3

12(1−ν2)


validation for an isotropic

plate simply supported (SSSS) at its ends under partial edge loading.

a
b

Present Kumar et al. (2016) Singh et al. (2022)
1 29.99 29.97 30.15

Similarly, Kumar et al. (2016) and Singh et al. (2022) investigated buckling be-

haviour of a square isotropic plate (ν=0.3 and E=200 GPa ; a
b
=1 and b

h
=100) having

simply supported boundary condition using analytical methods subjected to partial edge

loading. The critical buckling load values are compared in Table 2.3 for partial edge
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load case.

2.5.2 Free Vibration Frequency Calculation

To validate the free vibration results obtained using the present approach, the non-

dimensional natural frequency

Ω = ωn(

a2

h


ρm
Em


of an isotropic cylindrical panel

(ν=0.34 and E=3 GPa, ρ = 1200 kg
m3 ) subjected to different boundary conditions ob-

tained using the present formulation is veried with the results reported by Van Do and

Lee (2020). The free vibration response of an isotropic cylindrical panel is analyzed

by Van Do and Lee (2020) using isogeometric method formulated based on Reddy’s

HSDT. Excellent agreement between present results and Van Do and Lee (2020) results

are observed.

Table 2.4: Comparison of non-dimensional fundamental frequency

Ω =

ωn(
a2

h


ρm
Em

)


of an isotropic cylindrical panel (a

b
= 1, a

h
= 20 and R = 10m) with

Van Do and Lee (2020)

R
a

Boundary Condition
SSSS CCCC

Van Do and Lee (2020) Present Van Do and Lee (2020) Present
5 6.3163 6.3162 11.3115 11.1835
10 6.0826 6.0825 10.8810 11.0357
20 6.0226 6.0225 10.7705 10.9984
50 6.0057 6.0055 10.7393 10.9879
100 6.0032 6.0031 10.7348 10.9864

2.6 Closure

A detailed discussion about the methodology adopted to carry out the buckling and free

vibration analysis of cylindrical panels subjected to different NELs is presented. The

detailed steps involved in the buckling and free vibration analysis is given as a ow

chart. For certain type of NELs (NEL-II), the determination of stress distribution is car-
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ried out rst. By using a higher order shear deformation theory and considering non-

linear strains, the governing differential equations are derived using Hamilton’s prin-

ciple. The governing differential equations are solved by considering semi-analytical

method based on Galerkin’s method. The methodology developed is used for obtaining

buckling and free vibration characteristics of cylindrical panels discussed in the chap-

ters following.

44



CHAPTER 3

FREE VIBRATION-BUCKLING ANALYSIS ON

GPL-POROUS CYLINDRICAL PANEL

3.1 Introduction

A detailed study carried out on the buckling and free vibration characteristics of GPL

reinforced porous cylindrical panel under different NELs is presented in this chapter.

When thin curved panels made of GPL reinforced porous advanced composite mate-

rials are subjected to compressive loads, failure may occur due to buckling. These

compressive loads may not be always uniform and are at times turned to NELs in actual

practical circumstances. In the presence of NELs the pre-buckling analysis is carried

out to calculate the in-plane stress resultants. Thereafter, a semi analytical approach is

adopted using Galerkins method to study the buckling and dynamic behaviour of GPL

reinforced porous cylindrical panels under different type of NELs.

3.2 Modelling of GPL-Porous Cylindrical Panel

The cylindrical panel considered has graded distribution of both GPL and pores through

the thickness. Three different GPL graded patterns namely, GPL 1, GPL 2, and GPL 3

and three different types of functionally graded porosities namely, porosity distribution

(PD) A, B and, C are considered in this research. Alternate naming for different distri-

butions for better understanding is given in Table 3.1. Schematic diagram of different

GPL patterns examined in the current study is shown in Figure 3.1. In Figure 3.1, dark

colour represents a layer with high amount of GPL and white colour represents pure



Figure 3.1: Different GPL patterns

Table 3.1: Alternate naming for different distributions

Sl No. Pattern/Distribution Alternate Name
1 GPL-1 Symmetric Increasing GPL Pattern
2 GPL-2 Symmetric Decreasing GPL Pattern
3 GPL-3 Uniform GPL Pattern
4 PD-A Symmetric Decreasing Porosity Distribution
5 PD-B Symmetric Increasing Porosity Distribution
6 PD-C Uniform Porosity Distribution

matrix while other colours shows layers with in between amount of GPL. From Figure

3.1, it is noted that the GPL pattern 3 has same amount of GPL, i.e., constant volume

fraction of GPL (VGPL) through out the thickness. For GPL pattern 1, VGPL is high at

top and bottom layers and reduces to zero at the middle layer while, GPL pattern 2 has

VGPL zero at top and bottom layers and increases to maximum at the middle layer.

The schematic representation of the different porosity patterns are shown in Figure

3.2. In porosity distribution A (PD-A): the amount of pores at the centre of the panel is

more and at the surfaces it is less, in porosity distribution B (PD-B): the amount of pores

at the centre is less and at the surfaces it is more and porosity distribution C (PD-C):

the amount of pores is same across the thickness of the panel. The effective material

properties associated with the different porosity distribution patterns given by Yang
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Figure 3.2: Different porosity distributions

et al. (2018) are shown in Table 3.2. Variation of material properties including Young’s

modulus (E), shear modulus (G) and density (ρ) according to the nature of various

porosity distributions are given in Figure 3.3. In Table 3.2, ρ′, E ′, G′ represents the

Figure 3.3: Variation of material properties for different porosity distributions

effective density, Young’s modulus, and shear modulus of GPL reinforced cylindrical

shell panel without porosity respectively. Using extended rule of mixture and Halpin-

Tsai micro mechanics model, the effective material properties of FG-GPL reinforced
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Table 3.2: Variations of material properties for different types of porosity distributions

Porosity
Distribution

ρ(z) E(z) G(z)

PD-A ρ′[1− em cos(πzh )] E ′[1− e0 cos(
πz
h )] G′[1− e0 cos(

πz
h )]

PD-B ρ′[1− e′m(1− cos(πzh ))] E ′[1− e′0(1− cos(πzh ))] G′[1− e′0(1− cos(πzh ))]

PD-C ρ′α∗ E ′α G′α

shell are dened as given in Equation 3.1.

ρ′ = VGPLρGPL + (1− VGPL)ρm

E ′ = 3
8


1+ξGPL

L ηGPL
L VGPL

1−ηGPL
L VGPL


Em + 5

8


1+ξGPL

W ηGPL
W VGPL

1−ηGPL
W VGPL


Em

ν ′ = VGPLνGPL + (1− VGPL)νm

G′ = E′
2(1+ν′)

(3.1)

In which, Em is the Young’s modulus of the composite matrix material. While, VGPL,

ρGPL, νGPL represents volume fraction, density and Poisson’s ratio of the reinforce-

ment(GPL) and ρm, νm are density and Poisson’s ratio of the composite matrix material.

ηGPL
L , ηGPL

W are parameters represented by:

ηGPL
L = EGPL−Em

EGPL+ξGPL
L Em

ηGPL
W = EGPL−Em

EGPL+ξGPL
W Em

(3.2)

where, EGPL represents Young’s modulus of reinforcement(GPL) layer and parameters

ξGPL
L , ξGPL

W are related to dimensions of GPLs dened as:

ξGPL
L = 2lGPL

tGPL

ξGPL
W = 2wGPL

tGPL

(3.3)

where, tGPL, lGPL, wGPL are the average thickness, length, width of GPL platelets.

The volume fraction of reinforcement(GPL) VGPL for the different graded patterns
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of GPL is expressed as follows:

VGPL(z) =





Via[1− cos(πz
h
)] GPL Pattern 1

Vib cos(
πz
h
) GPL Pattern 2

Vic GPL Pattern 3

(3.4)

where, Via, Vib and Vic (i = a, b, c) are high values of volume content as given below.

The value i = a, b, c corresponds to porosity distribution A, B, C.





Via =
V F
GPL

n
k=1

ρ(zk)

ρ′n
k=1

ρ(zk)

ρ′ [1−cos(
πzk
h

)]
: Vic =

V F
GPL

n
k=1

ρ(zk)

ρ′n
k=1

ρ(zk)

ρ′

Vib =
V F
GPL

n
k=1

ρ(zk)

ρ′n
k=1

ρ(zk)

ρ′ cos(
πzk
h

)

(3.5)

in which,

zk =


1
2
+ 1

2n
− k

n


, k = 1, 2, 3, n

(3.6)

Here, V F
GPL denote total volume fraction of GPLs and it is given by

V F
GPL = ΛGPLρm

ΛGPLρm+ρGPL−ΛGPLρGPL
(3.7)

In Table 3.2, e0, e′0, and α are porosity coefcients which are used to specify the changes

in Young’s modulus and shear modulus with porosity while density coefcients em, e′m,

and α∗ are used to specify the effect of porosity on density of the composite. For open

cell foams, Young’s modulus, E, is related to density (Gibson and Ashby 1982, 1999)

as: 
ρ(z)
ρ′

2

= E(z)
E′ (3.8)

It is assumed that mass of the panels having different porosity pattern is equal as (Yang
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Table 3.3: Porosity coefcients for different distributions

PD-A PD-B PD-C
e0 e′0 α
0.1 0.1738 0.9361
0.2 0.3442 0.8716
0.3 0.5103 0.8064
0.4 0.6708 0.7404
0.5 0.8231 0.6733
0.6 0.9612 0.6047

et al. 2018; Wang and Zhang 2019). This assumption leads to the following equations:

 h/2

0


1− e0 cos(

πz
h
)dz =





 h/2

0


1− e′0(1− cos(πz

h
))dz

 h/2

0

√
αdz

(3.9)

Based on Equation 3.9, the values of e′0 and α for the given value of e0 are calculated and

given in Table 3.3. The relation between density co-efcients (em, e′m,α
∗) and porosity

co-efcients (e0, e′0,α) using Equation 3.8 are given as:





em =
1−
√

1−e0 cos(
πz
h
)

cos(πz
h
)

e′m =
1−
√

1−e′0(1−cos(πz
h
))

(1−cos(πz
h
))

α∗ =
√
α

(3.10)

3.3 Validation of the Material Modelling

To validate the material modelling of GPL reinforced porous cylindrical panel, the di-

mensionless fundamental frequency (Ω = ωna(


I∗
A∗ )) of GPL reinforced porous nano

composite plate having a
b
=1, a

h
=20, ΛGPL = 10wt%, e0 = 05, analyzed by Yang et al.

(2018) is compared with the results obtained using the present approach. Here, I∗ and

A∗ are values of I1 and A11 corresponding to pure matrix material.The solutions for the

plate is obtained using the current solutions derived for the cylindrical panel, by setting
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R→ ∞. The results are presented in Table 3.4 and the present results match well with

Yang et al. (2018).

3.4 Free Vibration and Buckling Characteristics for GPL-

Porous Cylindrical Panel

The free vibration and buckling behaviour of porous cylindrical panel reinforced with

functionally graded-GPL (FG-GPL) is presented in this section. Inuences of differ-

ent combinations of porosity distributions and GPL patterns as given in Table 3.5 on

buckling and vibration properties are analysed. CCCC-all edges clamped, SSSS-all

edges simply supported and CSCS - two opposite edges clamped and other two edges

simply supported starting from left edge are the three different boundary conditions

considered for the free vibration analysis. The effect of three different radius ratio

(R
a

= 5, 10, 20) on buckling and vibration behaviours is also presented. The func-

tionally graded-porous-GPL (FG-P-GP)L reinforced cylindrical shell consists of copper

(Em = 130GPa, ρm = 8960kgm3, νm = 034) as matrix and GPL (EGPL = 101TPa,

ρGPL=1062.5 kg
m3 , wGPL = 15µm, lGPL = 25µm, tGPL = 15nm, νGPL = 0186) as

reinforcement.

3.4.1 Buckling Studies

The buckling analysis is conducted on a square (a
b
= 1) cylindrical panel with a thick-

ness ratio of a
h
= 20 under different NELs. The cylindrical panel is simply supported at

its edges. Initially, the panel is assumed to have a xed porosity and weight fraction of

GPLs (e0 = 04, ΛGPL = 10wt%). The results are tabulated for different NEL condi-

tions. Buckling analysis is also carried out for different values of porosity coefcients

and GPL weight fractions. The buckling coefcient dened as N̄0 = Ncr


b2

100Emh3


is

used to represent the buckling results.
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Table 3.5: Different combinations in distributions of porosity and GPL

Porosity Distribution GPL pattern Combination Notation

PD-A
GPLP-1 GPLP-1-PD-A
GPLP-2 GPLP-2-PD-A
GPLP-3 GPLP-3-PD-A

PD-B
GPLP-1 GPLP-1-PD-B
GPLP-2 GPLP-2-PD-B
GPLP-3 GPLP-3-PD-B

PD-C
GPLP-1 GPLP-1-PD-C
GPLP-2 GPLP-2-PD-C
GPLP-3 GPLP-3-PD-C

Inuences of porosity pattern, grading of GPL and radius ratio of simply supported

cylindrical panel (e0 = 04; ΛGPL = 10wt%) on buckling coefcient under different

NELs are presented in Table 3.6. It is observed that there is a reduction in buckling

coefcients with increase in radius ratio due to the reduction in structural stiffness with

increase in radius ratio as anticipated. It is notable that the buckling coefcients varies

for different combinations of porosity distributions and GPL patterns.This happens due

to the alteration in structural stiffness because of combined effects of grading of GPL

and porosity. It can be observed that the highest buckling coefcient is obtained for

GPLP-1-PD-A case for all the type of loading conditions. Thus, higher volume content

of GPL and less amount of pores at the extreme surfaces enhances structural stiffness

of the cylindrical panel. On the other hand, lowest buckling coefcient is obtained

for GPLP-2-PD-B case. So, less volume content of GPL and more amount of pores

at the extreme surfaces reduces structural stiffness of the cylindrical panel. The most

important result deducted from Table 3.6 is that the buckling load varies with the type of

loading and highest buckling load is obtained for partial tension loading. The presence

of small amount of tensile load in the case of partial tension loading is the reason for

the increased buckling coefcient value. Further, lowest buckling coefcient value is

observed for uniform loading followed by parabolic loading then trapezoidal and then

triangular loading. The reason for this is explained as follows: for uniform loading,

the entire edge is subjected to maximum load whereas in the case of all other type of
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loadings, some part of the geometry is only subjected to a maximum load. Similarly,

in the parabolic loading case the variation of load is parabolic and the middle portion

of the edge is subjected to maximum load hence, the buckling load is less compared to

trapezoidal and triangular loads.

Figure 3.4 depicts the variation in buckling coefcients with the porosity coefcient

for different types of NELs. In Figure 3.4, the solid, dotted and dash dot lines repre-

sents buckling coefcients for porosity distribution cases PD-A, B, C respectively. It is

noteworthy that the there is a reduction in buckling coefcient with increase in porosity

coefcient for all the loading conditions. This is anticipated as the increase in poros-

ity coefcient (increase in amount of pores in the panel) leads to a reduction in both

shear modulus and Young’s modulus of the porous FG-GPL cylindrical panel as ob-

served from Table 3.2. It is noteworthy that for a given GPL distribution, the reduction

in buckling coefcient with increase in porosity coefcient is high for PD-B and least

for PD-A. This can be attributed to reduction rate in structural stiffness of the panel

with increase in porosity co-efcient for PD-B and PD-A porosity patterns. Thus, grad-

ing pattern of pores is an important factor which inuences the buckling strength of a

porous cylindrical panel. For the maximum amount of porosity (eo = 06) considered,

highest buckling coefcient is observed for GPLP-1-PD-A. It should be noted that with

the presence of more amount of pores (eo = 06), the reduction in buckling coefcient is

very less for PD-A than the other distributions. This is due to the presence of large size

pores at the middle for PD-A distribution with increase in porosity coefcient which

leads to enhancement of bending stiffness of the cylindrical panel compared to other

porosity patterns. Further more, higher buckling strength is observed for GPLP-3-PD-

A than GPLP-1-PD-B and GPLP-1-PD-C even though GPLP-1 has better strength than

GPLP-3.

In Figure 3.5, the change in buckling coefcients of the porous FG-GPL cylindrical

panel is presented for various values of weight fraction of GPL. The solid, dotted and

dash dot lines represents buckling coefcients for GPL distribution patterns GPLP-1,
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Figure 3.4: Buckling coefcients


Ncrb2

100Emh3


for GPL reinforced porous nano compos-

ite cylindrical panel under SSSS boundary condition(a/b=1, a/h=20, ΛGPL = 10wt%,
R=20): effect of porosity coefcient

2, 3 respectively. According to Figure 3.5, it is identied that there is a considerable

increase in buckling coefcient with the increase in GPL weight fraction for the all

the loading conditions. This is due to excellent reinforcement capability of graphene

nano platelets. It is also observed that for a given porosity distribution, the variation
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in buckling coefcient is high for GPLP-1 and least for GPLP-2. Thus, reinforcement

patterns signicantly affects the buckling strength of porous FG-GPL cylindrical panels.

The most important result deducted from Figure 3.5 is that at high GPL weight fraction

content, the highest buckling strength is observed for GPLP-1-PD-A panel. This is due

to the presence of less amount of pores and high content of GPL at the extreme surfaces

for GPLP-1-PD-A. It is also observed that at high GPL weight fraction, GPLP-1-PD-

C provides a buckling strength higher than GPLP-2-PD-A and GPLP-3-PD-A. This is

because GPLP-1 imparts a high amount of strength with increase in weight fraction of

GPL.

Figure 3.6 shows the buckling coefcient variation for FG GPL reinforced porous

panel with changes in aspect ratio (a
b
) corresponding to all the loading conditions. From

Figure 3.6, it is recognized that with the increase in aspect ratio, the transition of buck-

ling mode from (1,1) to (2,1) happens. This transition in buckling mode is observed for

the same aspect ratio irrespective of type of loading and grading of GPL and porosity.

It is also observed that, the highest buckling coefcient for the given aspect ratio is ob-

served for GPLP-1-PD-A. Furthermore, the variation of buckling load with aspect ratio

(a
b
) becomes insignicant for aspect ratios higher than 2.5 (a

b
> 25).

3.4.2 Free Vibration Studies

The effect of NEL on the fundamental vibration frequency of functionally graded GPL

reinforced porous cylindrical panel is presented. The cylindrical panel with same geo-

metrical parameters of the GPL reinforced porous panel considered for buckling anal-

ysis is used for free-vibration studies also. The cylindrical panel analysed has a
b
= 1

and a thickness ratio of a
h
= 20. The natural frequency is presented after being non-

dimensionalized as Ω = ωn(
a2

h


ρm
Em

).

Table 3.7 consists of dimensionless natural frequency values of functionally graded

GPL reinforced porous cylindrical panel without NEL for different values of radius ra-
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Figure 3.5: Buckling coefcients


Ncrb2

100Emh3


for GPL reinforced porous nano compos-

ite cylindrical panel under SSSS boundary condition(a/b=1, a/h=20, e0 = 04, R=20):
effect of graphene grading

tio (R
a
= 5, 10, 20). It is noteworthy that the dimensionless natural frequency reduces as

the radius ratio R
a
increases. It is also noted that the natural frequency values changes

with different combinations of porosity and GPL pattern. This happens due to the dif-

ferences in bending stiffness of panels with different combinations of porosity and GPL
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Figure 3.8: Effect of compressive load on the non-dimensional frequency (Ω =

ωn(
a2

h


ρm
Em

)) for GPL reinforced porous SSSS nano composite cylindrical panel for
all the type of loadings.

of NEL on fundamental natural frequency of FG-P-GPL reinforced cylindrical panel

with increase in the load intensity are given in Figure 3.8 and Figure 3.9 respectively.

The nano composite cylindrical panel (a/b=1, a/h=20, ΛGPL = 10wt%, e0 = 04,
R
a

= 20)with simply supported boundary condition is considered for this study. Re-

sults are presented for all the type of non-uniform edge loading conditions. It can be
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Figure 3.9: Effect of type of edge load on the on-dimensional frequency (Ω =

ωn(
a2

h


ρm
Em

)) for GPL reinforced porous SSSS nano composite cylindrical panel

observed that with increase in intensity of the NEL, the fundamental frequency of func-

tionally graded GPL reinforced porous panel decreases. In Figure 3.8, the changes in

natural frequency are presented for different combinations of GPL patterns and porosity

distributions. It is noted that the reduction of natural natural frequency to zero happens

at very low load for GPLP-2-PD-B combination. This is expected as the structural stiff-

ness is very low for the same. Figure 3.9 presents the variation in non-dimensional

fundamental frequency for different type of edge loading conditions. It may be noted

that with increase in amplitude of applied load, the rate of reduction of fundamental

frequency is more for uniform loading. The most important result from the Figure 3.9

is that the natural frequency reduction is highest for parabolic loading in the case of
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non-uniform edge loadings. It is been observed that free vibration mode shape remains

same as (1,1) for all the loading conditions with increase in edge load.

3.5 Closure

Buckling and free vibration characteristics of FG-P-GPL reinforced cylindrical shell

panel subjected to uniform and different NELs are investigated. To obtain the solutions,

semi analytical method based on higher order shear deformation theory is used. Ex-

tended rule of mixture together with modied Halpin-Tsai micromechanics model is

used to obtain the material properties of FG-P-GPL reinforced cylindrical panel. The

inuence of different NELs, radius of curvature, and porosity coefcient on buckling

and free vibration behaviour of panels is presented. From the results, it is observed that

the type of NEL greatly inuences the critical buckling load of the panel. The partial

tension loading yields the highest critical buckling load while the uniform edge loading

leads to lowest critical buckling load. The non-dimensional buckling loads and natu-

ral frequencies varies as per the combination of porosity and GPL distributions. The

maximum buckling strength and free vibration resistance is observed for GPLP-1-PD-

A panel. The buckling and free vibration responses are inuenced by changes in the

porosity coefcient and porosity grading pattern. The maximum reduction in stiffness

is observed for porosity distribution B while porosity distribution A has minimum re-

duction in stiffness. The critical buckling mode of functionally graded GPL reinforced

porous panel is inuenced by the change in aspect ratio.
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CHAPTER 4

FREE VIBRATION-BUCKLING ANALYSIS ON

GPL-POROUS SANDWICH CYLINDRICAL PANEL

4.1 Introduction

From the previous chapter, it is seen that buckling and free vibration behaviour of cylin-

drical panel is inuenced by the type of edge loading. The inuence of distribution of

porosity and GPL, amount of porosity and GPL on the buckling and free vibration char-

acteristics are established. The usage of porous-GPL core sandwich cylindrical panel

under NELs is analysed next. Buckling analysis of the FG-Porous-GPL core sandwich

panel under different important parameters (radius ratio, core to total thickness ratio,

porosity coefcients and GPL weight fraction) is presented rst followed by the free

vibration analysis.

4.2 Modelling of Sandwich Cylindrical Panel with GPL-

Porous Core

4.2.1 Mathematical Material Modelling

The porous functionally graded-GPL (FG-GPL) core sandwich cylindrical panel con-

sidered for the analysis is shown in Figure 4.1. The geometry of the cylindrical sand-

wich panel is dened by R-radius, h-thickness, a-length along x direction, b-length

along y direction. The thickness of the FG-GPL reinforced porous core is denoted as

hc, while the thickness of the top and bottom face sheets are given as hft and hfb re-



Table 4.1: Naming for different distributions

Sl No. Pattern/Distribution Alternate Name
1 U-PD Uniform Porosity Distribution
2 D-PD Symmetric Decreasing Porosity Distribution
3 I-PD Symmetric Increasing Porosity Distribution
4 U-GPL-P Uniform GPL Pattern
5 I-GPL-P Symmetric Increasing GPL Pattern
6 D-GPL-P Symmetric Decreasing GPL Pattern

spectively.

Figure 4.1: Cylindrical sandwich panel with porous FG-GPL core

The core of the sandwich panel is assumed to have both varying porosity and GPL

distribution through the thickness. Three types of porosity distributions U-PD, D-PD

and I-PD are considered in the present study are shown in Figure 4.2. U-PD denotes uni-

form porosity, D-PD denotes decreasing porosity distribution where porosity decreases

from centre to the surfaces and I-PD denotes increasing porosity distribution where

porosity increases from centre to the surfaces. Three GPL distributions such as U-GPL-

P, I-GPL-P, D-GPL-P considered are shown in Figure 4.3. For U-GPL-P the amount of

GPL is constant through out the thickness, for I-GPL-P the amount of GPL increases

from centre to the surfaces while it reduces from centre to surface for D-GPL-P. The

naming for easy reference is provided in Table 4.1.

The effective material properties such as density ρc(z), Young’s modulus Ec(z),
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Figure 4.2: Metal foam core with different types of graded porosity

Figure 4.3: Core with different types of GPL patterns

Poisson’s ratio νc(z) and shear modulus Gc(z) of the sandwich core are given as (Yang

et al. 2018)

ρc(z) = ρeΞd(z)

Ec(z) = EeΞe(z)

νc(z) = νe

Gc(z) = GeΞe(z)

(4.1)

Where, Ξd(z) and Ξe(z) are functions representing variation of density and elastic prop-
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erties with respect to porosity gradation given as (Yang et al. 2018; Wang and Zhang

2019):

Ξd(z) =





α∗ U-PD

1− em cos(πz
h
) D-PD

1− e′m(1− cos(πz
h
)) I-PD

(4.2)

Ξe(z) =





α U-PD

1− e0 cos(
πz
h
) D-PD

1− e′0(1− cos(πz
h
)) I-PD

(4.3)

Here, α∗, em and e′m are mass density coefcients and α, e0, e′0 are porosity coefcients.

The relation between mass density and porosity coefcients for open cell foams (Gibson

and Ashby 1982, 1999) is given as:


ρc(z)
ρe

2

= Ec(z)
Ee

(4.4)

using Equation 4.4, the relationship between mass density and porosity coefcients are

given as:

(α∗)2 = α
1− em cos(πz

h
)

2

= 1− e0 cos(
πz
h
)


1− e′m(1− cos(πz

h
))

2

= 1− e′0(1− cos(πz
h
))

(4.5)

The relationship between different porosity coefcients is obtained considering the

equivalence of mass of panels with different porosity distribution as (Yang et al. 2018;

Wang and Zhang 2019). The resulting equation is given as:





 h/2

0


1− e0 cos(

πz
h
)dz =

 h/2

0

√
αdz

 h/2

0


1− e0 cos(

πz
h
)dz =

 h/2

0


1− e′0(1− cos(πz

h
))dz

(4.6)
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Table 4.2: Porosity coefcients for different distributions

U-PD D-PD I-PD
α e0 e′0

0.9361 0.1 0.1738
0.8716 0.2 0.3442
0.8064 0.3 0.5103
0.7404 0.4 0.6708
0.6733 0.5 0.8231
0.6047 0.6 0.9612

The values of α and e′0 calculated from Equation 4.6, and are presented in Table 4.2.

It is assumed that the GPLs are distributed in three different forms through the thick-

ness namely, U-GPL-P, I-GPL-P and D-GPL-P. The volume content of GPL varies for

different GPL distribution patterns as:

VGPL(z) = sijℸ(z) (4.7)

Where, ℸ(z) is a function denoting the variation of volume fraction with GPL pattern

given as:

ℸ(z) =





1 U-GPL-P

[1− cos(πz
h
)] I-GPL-P

cos(πz
h
) D-GPL-P

(4.8)

and sij represents the high values of volume content of GPL. In sij , where j rep-

resents particular pattern of GPL while i represents particular pattern of porosity. The

total volume fraction of GPL(V T
GPL) is calculated by Equation 4.9 and by using that the

relations of siU , siI and siD are given as:

V T
GPL = ΛGPLρm

ΛGPLρm+ρGPL−ΛGPLρGPL
(4.9)
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siU =
V T
GPL

n
l=1

ρ(zl)

ρ′n
l=1

ρ(zl)

ρ′
U-GPL-P

siI =
V T
GPL

n
l=1

ρ(zl)

ρ′n
l=1

ρ(zl)

ρ′ [1−cos(
πzl
h

)]
I-GPL-P

siD =
V T
GPL

n
l=1

ρ(zl)

ρ′n
l=1

ρ(zl)

ρ′ cos(
πzl
h

)
D-GPL-P

(4.10)

in which,

zl =


− l

n
+ 1

2n
+ 1

2


, l = 1, 2, 3, n

(4.11)

In Equation 4.1, ρe, Ee, νe, Ge denotes the effective density, Young’s modulus, Pois-

son’s ratio, and shear modulus respectively of cylindrical shell panel reinforced with

GPL. The effective properties utilizing Halpin-Tsai micro mechanics model and ex-

tended rule of mixture (Raee et al. 2009; Tjong 2013) are specied in Equation 4.12.

ρe = (1− VGPL)ρm + VGPLρGPL

Ee =
5
8


1+ξGPL

W ηGPL
W VGPL

1−ηGPL
W VGPL


Em + 3

8


1+ξGPL

L ηGPL
L VGPL

1−ηGPL
L VGPL


Em

νe = (1− VGPL)νm + VGPLνGPL

Ge =
Ee

2(1+νe)

(4.12)

Here, VGPL, ρm and ρGPL denotes volume content of GPL, density of the metal

matrix and density of the GPL respectively. Em and EGPL represents Young’s modulus

of the metal matrix and GPL. ξGPL
L , ξGPL

W and ηGPL
L , ηGPL

W are parameters given as:

ηGPL
L = EGPL−Em

EGPL+ξGPL
L Em

; ξGPL
L = 2lGPL

tGPL
; ηGPL

W = EGPL−Em

EGPL+ξGPL
W Em

; ξGPL
W = 2wGPL

tGPL

(4.13)

while, νGPL, νm represents Poisson’s ratio of GPL and metal matrix and wGPL, tGPL,

lGPL are the average width, thickness, length of GPL.
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4.2.2 Inertia and Stiffness Coefcients

The inertia and stiffness coefcients of sandwich cylindrical panels are calculated as

the summation of coefcients for core and face sheets.

The stress strain relation of porous FG-GPL core layer of cylindrical panel is estab-

lished considering a layered structure as follows:





σC
xx

σC
yy

τCxy





(k)

=




QC
11 QC

12 0

QC
12 QC

22 0

0 0 QC
66




(k) 


ϵxx

ϵyy

γxy





(k)

(4.14a)

τCyz = QC
44γyz

τCxz = QC
55γxz

(4.14b)

QC
ij are stiffness matrix coefcients of the core are dened and given as:

QC
11 = QC

22 =
Ec(z)

1−(νc)2
; Q12 = νc

Ec(z)
1−(νc)2

QC
66 = QC

55 = QC
44 = Gc(z)

(4.15)

Also, for the top and bottom face sheet layers the stress-strain relations are given as:





σf
xx

σf
yy

τ fxy





=




Qf
11 Qf

12 0

Qf
12 Qf

22 0

0 0 Qf
66








ϵxx

ϵyy

γxy





(4.16a)

τ fyz = Qf
44γyz

τ fxz = Qf
55γxz

(4.16b)
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Qf
ij are stiffness matrix coefcients of the core are dened and given as:

Qf
11 = Qf

22 =
Em

1−(νm)2
; Q12 = νm

Em

1−(νm)2

Qf
66 = Qf

55 = Qf
44 = Gm(z)

(4.17)

The in plane force resultants of the sandwich cylindrical panel are dened as:









Nxx

Nyy

Nxy





,





M b
xx

M b
yy

M b
xy





,





M s
xx

M s
yy

M s
xy









=
 −h

2
+hf

−h
2


1, z, z − 4

3
z3

h2






σf
xx

σf
yy

τ fxy





dz

+
 h

2
−hf

−h
2

+hf


1, z, z − 4

3
z3

h2






σC
xx

σC
yy

τCxy





dz +
 h

2
h
2
−hf


1, z, z − 4

3
z3

h2






σf
xx

σf
yy

τ fxy





dz

(4.18)

Similarly, the moment resultants of the sandwich cylindrical panel are dened as:




Qxz

Qyz



 =

 −h
2

+hf

−h
2


1− 4 z2

h2



τ fxz

τ fyz



 dz

+
 h

2
−hf

−h
2

+hf


1− 4 z2

h2



τCxz

τCyz



 dz +

 h
2
h
2
−hf


1− 4 z2

h2



τ fxx

τ fyz



 dz

(4.19)

Thus, different coefcients for a sandwich cylindrical panel are dened as follows:

(Aij, Bij, Dij, Eij) =
 −h

2
+hf

−h
2

Qij(1, z, z
2, z − 4

3
z3

h2 )dz +
 h

2
−hf

−h
2

+hf
Qij(1, z, z

2, z − 4
3
z3

h2 )dz

+
 h

2
h
2
−hf

Qij(1, z, z
2, z − 4

3
z3

h2 )dz

(Fij, Hij, Lij) =
 −h

2
+hf

−h
2

Qij


z(z − 4

3
z3

h2 ),


z − 4

3
z3

h2

2

,


1− 4 z2

h2

2
dz

+
 h

2
−hf

−h
2

+hf
Qij


z(z − 4

3
z3

h2 ),


z − 4

3
z3

h2

2

,


1− 4 z2

h2

2
dz

+
 h

2
h
2
−hf

Qij


z(z − 4

3
z3

h2 ),


z − 4

3
z3

h2

2

,


1− 4 z2

h2

2
dz

(4.20)
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(I1, I2, I3) =
 −h

2
+hf

−h
2

ρm(1, z, z
2)dz

+
 h

2
−hf

−h
2

+hf
ρc(1, z, z

2)dz +
 h

2
h
2
−hf

ρm(1, z, z
2)dz

(I4, I5, I6) =
 −h

2
+hf

−h
2

ρm


z − 4

3
z3

h2 , z(z − 4
3
z3

h2 ),


z − 4

3
z3

h2

2
dz

+
 h

2
−hf

−h
2

+hf
ρc


z − 4

3
z3

h2 , z(z − 4
3
z3

h2 ),


z − 4

3
z3

h2

2
dz

+
 h

2
h
2
−hf

ρm


z − 4

3
z3

h2 , z(z − 4
3
z3

h2 ),


z − 4

3
z3

h2

2
dz

(4.21)

The sandwich cylindrical panel modelling requires the consideration of different coef-

cients in the governing differential equations as per the above discussion and using

these coefcients, buckling and free vibration characteristics are analyzed as discussed

in section 2.

4.3 Validation of Sandwich Material Modelling

Validation of material modelling of a sandwich plate is presented in this section. Since

no results for a porous GPL core sandwich cylindrical panel is available, by keeping

the radius of curvature as innite (R→ ∞) in the present formulation, the sandwich

plate results are compared. The critical buckling coefcient value

Ncr(

b2

100h3Em
)


of

a sandwich cylindrical panel subjected to UEL calculated using the present approach

is compared with the results of Yaghoobi and Taheri (2020) as shown in Table 4.3.

Yaghoobi and Taheri (2020) used Navier’s method based analytical solutions to obtain

the critical buckling load values of porous GPL core sandwich plate. It can observed

that critical buckling value obtained using present investigation are in good agreement

with Yaghoobi and Taheri (2020).
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4.4 Free Vibration and Buckling Characteristics for GPL-

Porous Sandwich Cylindrical Panel

The buckling and free vibration characteristics of porous FG-GPL sandwich cylindrical

panel under the inuence of various important parameters are presented in this section.

In the present study, core and face sheets of the sandwich cylindrical panel are made of

aluminium alloy with material properties given as (Yaghoobi and Taheri 2020):

ρm=2689.8 kg
m3 , νm=0.34, Em=68.3 GPa

The material properties of the GPL reinforcement are given as (Yaghoobi and Taheri

2020):

ρGPL=1062.5 kg
m3 , wGPL = 15µm, lGPL = 25µm, tGPL = 15nm, νGPL = 0186,

EGPL = 101TPa

In the present study, various boundary conditions are considered with ’S’ denot-

ing simply supported boundary and ’C’ denoting clamped boundary. The total thick-

ness of the sandwich cylindrical panel is maintained as 10 mm throughout the study.

Throughout the study unless otherwise mentioned the following geometric properties

are assumed: a
b
= 1, eo = 04, ΛGPL = 1wt%, hc

ht
=0.8 and R

a
= 20.

4.4.1 Buckling Studies

To start with, the buckling analysis is conducted on a square (a
b
= 1) sandwich cylindri-

cal panel under simply supported (SSSS) boundary condition with a xed porosity(eo =

04) and GPLweight fraction(ΛGPL = 1wt%) with core to total thickness ratio (hc

ht
=0.8).

For convenience purposes, the critical buckling load is expressed as buckling coefcient

given as: N̄0 = Ncr(
b2

100Emh3 )

The buckling coefcient value of the sandwich cylindrical panel under different

NELs and radius ratio is analyzed and presented in Table 4.4. From Table 4.4, it is
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seen that buckling load decrease substantially with increase in radius ratio as antici-

pated. This is due to reduction in structural stiffness with increase in radius ratio. It

is also observed that the buckling coefcient changes with different types of porosity

and GPL distribution patterns. For any given NEL case, highest buckling coefcient

value is observed for the sandwich having the core with D-PD porosity and I-GPL-P

pattern of GPL distribution. The increased amount of GPL and the least presence of

pores towards top and bottom of the sandwich cylindrical panel enhances the buckling

coefcient value. Similarly, for any given NEL case, lowest buckling coefcient value

is observed for the sandwich having the core with I-PD porosity and D-GPL-P pat-

tern of GPL distribution. The presence of large amount of pores and reduced amount of

GPL towards top and bottom of the sandwich cylindrical panel is the reason for reduced

buckling coefcient value. Furthermore, for any given type of core analyzed, highest

buckling coefcient value is observed for the partial tension loading (Case d) while the

lowest value is observed for uniform edge loading (Case a). This is due to the presence

of a small amount of tensile load for partial tension loading. A part from the uniform

compressive loading, parabolic edge loading has the reduced buckling coefcient value.

This can be explained by considering the fact that parabolic edge compression has the

highest load at the center of the cylindrical panel. It is interesting to note that increasing

parabolic loading has lower buckling coefcient value than triangular loading. This is

due to the fact that for increasing parabolic loading, higher intensity of load is present

towards one edge compared to triangular loading.

In order to analyse the effect of core to total thickness ratio on buckling capacity

of sandwich cylindrical panel with different distribution of GPL and porosity pattern,

three different core to total thickness ratio (hc

ht
= 04, 06, 08) are considered. Fixed

porosity(eo = 04) and GPL weight fraction(ΛGPL = 1wt%) and radius ratio (R
a
= 20)

are considered for this study. Table 4.5 illustrates the buckling coefcient value of a

sandwich cylindrical panel under different edge loading with respect to core to total

thickness ratio. To have a better understanding, a graphical representation of varia-

tion of buckling coefcient with change in core to total thickness ratio (hc

ht
) for uniform
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Figure 4.4: Variation in buckling coefcient value with core to total thickness (hc

ht
) of

GPL reinforced porous sandwich cylindrical panel subjected to uniform edge load under
SSSS boundary condition(a

b
= 1, eo = 04, ΛGPL = 1wt%, R

a
= 20)

loading condition is presented in Figure 4.4.It is observed that increase in core to to-

tal thickness ratio has a positive effect on certain combinations of GPL and porosity

distribution. For instance, with increase in core to total thickness ratio the presence of

decreasing porosity distribution (D-PD) in a sandwich cylindrical panel enhances the

buckling coefcient value irrespective of GPL pattern. This is due to the high inuence

of D-PD porosity pattern in enhancing the stiffness with increase in core to total thick-

ness ratio. Similarly, an enhancement in buckling coefcient value is observed for the

core with U-PD porosity pattern and I-GPL-P pattern of GPL with increase in core to to-

tal thickness ratio. It can be attributed as the inuence of increased distribution of GPL

towards top and bottom side and high GPL content. Moreover, it is also observed that

buckling coefcient value decreases for all other combinations of porosity pattern and

GPL distribution. This is due to decrease in stiffness with increase in size of the core.

Further, highest buckling coefcient value is observed for the core with D-PD porosity
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pattern and I-GPL-P pattern of GPL for the core to total thickness ratio (hc

ht
) of 0.8. This

is expected as both D-PD and I-GPL-P patterns increases the structural stiffness of the

cylindrical panel and so does the buckling coefcient value. Highest buckling coef-

cient value among different type of loading is observed for uniform loading and lowest

value is observed for partial tension loading as expected.

Figure 4.5: 3D surface plots of buckling coefcient of sandwich cylindrical panel indi-
cating the effect of GPL weight fraction and core to total thickness ratio under uniform
loading (Case-a) (a)porosity coefcient(e0)=0.2 (b)porosity coefcient(e0)=0.6
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Figure 4.6: 3D surface plots of buckling coefcient of sandwich cylindrical panel indi-
cating the effect of GPL weight fraction and core to total thickness ratio under trape-
zoidal loading (Case-b) (a)porosity coefcient(e0)=0.2 (b)porosity coefcient(e0)=0.6

To study the synergistic inuence of GPL weight fraction and core to total thickness

ratio (hc

ht
) on the buckling response of porous GPL core sandwich cylindrical panel, 3D

surface plots are presented in Figures 4.5, 4.6, 4.7. These gures show the transition

of buckling coefcient value with GPL weight fraction and core to total thickness ratio

for uniform, trapezoidal and parabolic respectively. In these gures, Sub-gure (a) and
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Figure 4.7: 3D surface plots of buckling coefcient of sandwich cylindrical panel indi-
cating the effect of GPL weight fraction and core to total thickness ratio under parabolic
loading (Case-e) (a)porosity coefcient(e0)=0.2 (b)porosity coefcient(e0)=0.6

(b) corresponds to two different porosity coefcient value given as (a) e0 = 02, (b)

e0 = 06. By careful examination of Sub gures 4.5(a), 4.6(a), 4.7(a), it is inferred that

at high values of GPL the increase in core to total thickness ratio have a positive impact

on the buckling coefcient value. This is expected as the presence of high amount of

GPL enhances the stiffness of the sandwich cylindrical panel. On the other hand, at
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low GPL content the increase in core to total thickness ratio has a negative impact on

the buckling coefcient value for most of the cases. This is due to reduction in stiffness

with increase in core to total thickness ratio. Accordingly, one can observe by analyzing

Sub-gures 4.5(b), 4.6(b), 4.7(b) (porosity coefcient e0 = 06) that even when high

GPL content is present, increase in core thickness reduces the buckling coefcient value

for most of the cases. This can be explained as the stiffness of the sandwich is governed

by porosity of the core over GPL content. The only exceptions are D-PD & U-GPL-

P and D-PD & I-GPL-P for which at high GPL content, stiffness of porous sandwich

cylindrical panel is governed by GPL content instead of porosity. This is due to the

presence of efcient D-PD porosity distribution in common.

Figure 4.8: Variation of buckling coefcient of GPL reinforced sandwich panel under
SSSS boundary condition subject to uniform edge loading(eo = 04, ΛGPL = 1wt%,
hc

ht
=0.8 and R

a
= 20): effect of aspect ratio

Next, the buckling coefcient of porous GPL core sandwich cylindrical panel under

uniform load with respect to aspect ratio (a
b
) is illustrated in Figure 4.8. It is observed

that buckling coefcient value decreases considerably with increase in aspect ratio upto

1, afterwards an increase in value is observed till a
b
=1.4. Beyond a

b
=1.4, buckling coef-

cient value again decreases and so on. Accordingly, the buckling mode shape changes
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from (1,1) to (2,1) as shown in Figure 4.8. This is due to variation in structural stiffness

and pre-stress developed due to the applied load with increase in aspect ratio. More-

over, similar kind of variation in buckling coefcient is observed for the core with other

types of distributions also. Since there is no change in buckling coefcient with varia-

tion in aspect ratio for different porosity pattern and GPL distribution combinations, the

same analysis is not presented for other type of loadings. Figure 4.8, also reveals that

sandwich having a core with D-PD porosity variation and I-GPL-P pattern of GPL dis-

tribution has the maximum buckling coefcient value while the sandwich having a core

with I-PD porosity variation and D-GPL-P pattern of GPL distribution has the lowest

buckling coefcient as already explained.

Figure 4.9: Variation of buckling coefcient of D-PD & I-GPL-P sandwich panel under
SSSS boundary condition subject to uniform, NEL-I (eo = 04, ΛGPL = 1wt%, hc

ht
=0.8

and R
a
= 20): effect of aspect ratio

Variation of buckling coefcient value of D-PD & I-GPL-P sandwich cylindrical

panel subjected to different type I non-uniform edge loading with respect to aspect ratio

(a
b
) is shown in Figure 4.9. Similar to the uniform loading, the shifting of buckling mode

shape from (1,1) to (2,1) happens at a
b
=1.4. This can be explained as equal inuence

of the linear loads to change the buckling mode shape. Furthermore, Figure 4.9 shows

84



that the highest buckling coefcient value is for partial tension loading and lowest is for

uniform loading as already established in earlier discussions.

Figure 4.10: Variation of buckling coefcient of D-PD & I-GPL-P sandwich panel
under SSSS boundary condition subject to uniform, NEL-II (eo = 04, ΛGPL = 1wt%,
hc

ht
=0.8 and R

a
= 20): effect of aspect ratio

Figure 4.10 demonstrates the variation of buckling coefcient value of D-PD & I-

GPL-P core sandwich cylindrical panel subjected to different type II non-uniform edge

loadings with respect to aspect ratio (a
b
). The displayed results reveal that mode shifting

from (1,1) to (2,1) occurs at different a
b
ratio when the load variation is not linear. The

buckling mode shifts from (1,1) to (2,1) at a
b
= 1.2 for parabolic loading case, a

b
= 1.4

for increasing parabolic loading and a
b
= 1.7 for reverse sinusoidal loading. This is due

to the inuence of different in-plane stress distributions in the case of non linear edge

loadings. However, the buckling mode shape under the different load cases in which

the load variation is not linear is same for a
b
= 1.2, it is (1,1) mode as shown in Figure

4.11. Accordingly, one can observe that at a
b
= 1.6 the buckling mode shape for all cases

except reverse sinusoidal loading is (2,1) (double half wave) and for reverse sinusoidal

loading it is (1,1) (half wave) as depicted in Figure 4.12.
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Figure 4.11: Buckling mode of D-PD & I-GPL-P sandwich panel for aspect ratio
a/b=1.2 for uniform and different edge loads (Parabolic, Reverse Sinusoidal, Increasing
Parabolic.)

Before closing this section, it has been demonstrated that increase in core to total

thickness ratio has a positive impact on buckling response of sandwich cylindrical panel

for some cases of porosity distribution and GPL patterns. The increase in core to total

thickness ratio would actually lower the total weight of the sandwich panel with an

added benet of increased buckling capacity. Thus, D-PD & I-GPL-P core sandwich

panel with a high core to total thickness ratio can improve the buckling performance of

sandwich cylindrical panel. Moreover, it has been established that changes in buckling

mode shape occurs at different a
b
ratio for different type of type II non-uniform edge

loading conditions. The question that arise now is the free vibration response of GPL

reinforced porous sandwich panel and will be discussed in the following section.

4.4.2 Free Vibration Studies

Free vibration results of porous FG-GPL core cylindrical panel under different non-

uniform edge loadings is presented in this section. The geometric properties used are

same as that considered in Section 4.4.1. Two different boundary conditions are used to

study the inuence of bouundary conditions on the free vibration frequencies of sand-

wich cylindrical panel. Simply supported (SSSS) and fully clamped (CCCC) are the
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Figure 4.12: Buckling mode of D-PD & I-GPL-P sandwich panel for aspect ratio
a/b=1.6 for (a) Uniform (b) Parabolic (c) Reverse Sinusoidal (d) Increasing Parabolic.

two different boundary conditions considered. For convenience purposes, the natural

frequency is expressed as non-dimensional frequency given as: Ω = ωn


a2

h


ρm
Em



In Table 4.6, the non-dimensional fundamental frequency of GPL reinforced porous

sandwich cylindrical panel with different boundary conditions with respect to radius ra-

tio is presented. It is observed that the non-dimensional frequency reduces with increase

in radius ratio. This is expected as increase in radius ratio decreases the structural stiff-

ness and so does the natural frequency. The non-dimensional natural frequency tends to

vary with different porosity and GPL distributions. The highest natural frequency value

is observed for D-PD & I-GPL-P core sandwich cylindrical panel and lowest for I-PD

& D-GPL-P core sandwich cylindrical panel. This can be explained by considering low
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Table 4.6: Non-dimensional fundamental frequency of GPL reinforced porous sand-
wich cylindrical under different boundary condition(a

b
= 1, eo = 04, ΛGPL = 1wt%,

hc

ht
=0.8) : variation with radius ratio (R

a
)

GPL Porosity
SSSS CCCC

R
a

R
a

5 10 20 5 10 20
U-GPL-P

U-PD
12.4263 8.3578 6.9752 16.5264 13.1421 12.1469

I-GPL-P 12.5837 8.5904 7.2524 16.9198 13.6347 12.6786
D-GPL-P 12.3357 8.2220 6.8119 16.2973 12.8522 11.8325
U-GPL-P

D-PD
12.5770 8.5558 7.2041 16.8675 13.5507 12.5831

I-GPL-P 12.8064 8.8263 7.5046 17.3416 14.0903 13.1499
D-GPL-P 12.4295 8.3799 7.0069 16.5596 13.1970 12.2099
U-GPL-P

I-PD
12.3160 8.1020 6.6387 16.1168 12.5524 11.4869

I-GPL-P 12.3268 8.2490 6.8565 16.3332 12.9284 11.9236
D-GPL-P 12.3106 8.0319 6.5338 16.0136 12.3716 11.2759

porosity and increased GPL content towards top and bottom surfaces for D-GPL-P and

high porosity and reduced GPL content towards top and bottom surfaces for I-PD &

D-GPL-P sandwich cylindrical panel. Moreover, it is observed that there is an enhance-

ment in non-dimensional frequency with respect to boundary conditions for all type of

sandwich cylindrical panels.

Next, the inuence of core to total thickness ratio (hc

ht
) on the non-dimensional fre-

quency of porous GPL core sandwich cylindrical panel is presented in Table 4.7. It

is observed that the non-dimensional frequency increases with increase in hc

ht
ratio for

most of the cases. This can be explained by the combined effect of increase in struc-

tural stiffness due to GPL addition and reduction in mass due to presence of porosity.

The only two sandwich panels for which increase in hc

ht
ratio has a negative effect are

I-PD & U-GPL-P core and I-PD & D-GPL-P core sandwich panels. This is because of

the inability of GPL reinforcement in uniform and decreasing pattern to improve stiff-

ness for these two cases. The highest natural frequency value is observed for D-PD &

I-GPL-P core panel and lowest for I-PD & D-GPL-P core panel at hc

ht
=0.8. This is ex-

pected as D-PD & I-GPL-P core sandwich cylindrical panel can impart higher stiffness

with increase in core to total thickness ratio while the inverse is applicable for I-PD &

D-GPL-P core sandwich panel.
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Table 4.7: Non-dimensional frequency of GPL reinforced porous sandwich cylindrical
under different boundary condition(a

b
= 1, eo = 04, ΛGPL = 1wt%, R

a
= 20 : variation

with core to total thickness ratio(hc

ht
)

GPL Porosity
SSSS CCCC

hc

ht

hc

ht

0.4 0.6 0.8 0.4 0.6 0.8
U-GPL-P

U-PD
6.7583 6.8660 6.9752 11.7700 11.9574 12.1469

I-GPL-P 6.7923 6.9821 7.2524 11.8354 12.1804 12.6786
D-GPL-P 6.7388 6.7988 6.8119 11.7326 11.8283 11.8325
U-GPL-P

D-PD
6.7874 6.9627 7.2041 11.8245 12.1409 12.5831

I-GPL-P 6.8278 7.0930 7.5046 11.8981 12.3848 13.1499
D-GPL-P 6.7617 6.8787 7.0069 11.7777 11.9836 12.2099
U-GPL-P

I-PD
6.7211 6.7309 6.6387 11.6932 11.6893 11.4869

I-GPL-P 6.7420 6.8151 6.8565 11.7410 11.8633 11.9236
D-GPL-P 6.7113 6.6909 6.5338 11.6707 11.6066 11.2759

Variation in the non-dimensional frequency with increase in both GPL weight frac-

tion and core to total thickness ratio(hc

ht
) is shown in Figure 4.13. 3D surface plots are

presented for better understanding with sub gures (a) and (b) denoting e0 = 02 and

e0 = 06 respectively. In Figure 4.13, sub gure (a) reveal that at high GPL content in-

crease in hc

ht
ratio leads to elevated non-dimensional frequency value for all the different

sandwich panels. This is explained as the inuence of GPL to improve the sandwich

panel stiffness at low porosity level. Moreover, for the lower GPL content, the nature of

porosity distribution has the higher inuence and sandwich panels with three porosity

distributions show signicantly different response. For instance, the sandwich cylindri-

cal panel with decreasing porosity distribution (D-PD) shows an increasing frequency

value whereas, I-PD sandwich panel shows a decreasing nature of frequency. However,

not much change is observed for uniform porosity distribution. This is due to higher

inuence of porosity pattern in the presence of low GPL content. Further, considera-

tion of sub gure (b) shows that at low GPL content, the non-dimensional frequency

reduces with increase in core thickness for all the type of distributions. This is because

of the reduction in the sandwich panel stiffness due to the presence of high amount of

porosity. Accordingly, for high GPL content increase in frequency is observed for the

core with some combinations of porosity and GPL distributions. Interestingly, it is also
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Figure 4.13: 3D surface plots of non dimensional frequency of sandwich cylindrical
panel indicating the effect of GPL weight fraction and core to total thickness ratio under
uniform loading (a)porosity coefcient(e0)=0.2 (b)porosity coefcient(e0)=0.6

observed that sandwich panel with decreasing porosity shows an increase in frequency

even at high porosity. This is because of the inuence of D-PD porosity variation in im-

proving stiffness and high GPL content. U-PD & I-GPL-P core sandwich panel shows

an increasing buckling coefcient value with increase in hc

ht
ratio at high GPL content.

This can be attributed to the inuence of high GPL content in improving stiffness.

90



Figure 4.14: Variation of non-dimensional frequency with uniform compressive load
for GPL reinforced porous sandwich cylindrical panel under SSSS boundary condition

Figure 4.15: Variation of non-dimensional frequency with compressive load of D-PD &
I-GPL-P sandwich panel under SSSS boundary condition subject to uniform, linearly
and non-linearly varying in-plane compressive loads.

To demonstrate the inuence of gradually applied compressive load on the fun-

damental non-dimensional frequency of GPL reinforced porous sandwich cylindrical

panel, Figures 4.14 and 4.15 are plotted. Figure 4.14 shows the variation of the non-

dimensional frequency of a GPL reinforced porous cylindrical panel with increase in

UEL. The magnitude of UEL is increased in small steps of critical buckling load (0.1N̄0,

0.2N̄0, 0.3N̄0.....1N̄0) and corresponding variation in natural frequency is plotted. The

displayed results reveal that natural frequency reduces with increase in compressive

load for all the different GPL and porosity combinations and follows a similar reduc-
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tion path. The highest value of non-dimensional frequency and buckling coefcient is

observed for D-PD & I-GPL-P core sandwich panel and lowest for I-PD & D-GPL-P

core sandwich panel. Further, Figure 4.15 shows the reduction in fundamental natural

frequency of D-PD& I-GPL-P core sandwich cylindrical panel under different in-plane

loads. Interestingly, the natural frequency reaches to zero when applied load is equal to

the critical buckling load. More interestingly, the intensity of load required to reduce

non-dimensional natural frequency to a minimum value is different for different edge

loads. This is expected as increase in magnitude of the compressive loading reduces

the transverse stiffness of the structure and thus highly dependent on the distribution

of compressive load. For uniform loading, very small amount of compressive load is

required to reduce the frequency to a minimum value. Compared to linear loading, non-

linearly varying compressive load seems to be effective as non-linearly varying loading

induces stress resultants in more than one direction which has a clear inuence on stiff-

ness reduction. The free vibration mode shape remains same as (1,1) with increase in

edge load for all the loading conditions.

4.5 Closure

The buckling and free vibration response of GPL reinforced porous sandwich cylindri-

cal panel subjected to different type of NELs was investigated. Different combinations

of porosity and GPL distributions for the sandwich core are considered. The Eigen value

problems of buckling and free vibration are obtained by utilizing a higher order shear

deformation theory and semi analytical method. The inuence of different distributions

of GPL and porosity, core to total thickness ratio, radius of curvature, GPL weight frac-

tion, porosity coefcient on buckling and free vibration under uniform, NEL-I, NEL-II

is analyzed. From the parametric study, it is found that the sandwich cylindrical panel

with D-PD & I-GPL-P core has the maximum buckling resistance and better free vi-

bration frequency while the panel with I-PD & D-GPL-P core has the minimum. The
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critical buckling load is largely inuenced by the type of NEL and uniform loading has

the minimum value while partial tension loading posses the maximum. The enhance-

ment in buckling resistance and free vibration frequency with core to total thickness

ratio depends on the amount of porosity in the core. In sandwich cylindrical panels

with low porosity coefcient, in the presence of high GPL content the buckling coef-

cient and free vibration frequency increases with rise in core to total thickness ratio. In

sandwich cylindrical panels with high porosity coefcient, in the presence of high GPL

content the variation of buckling coefcient and free vibration frequency depending on

porosity distribution and GPL pattern. The shifting of mode shape associated with crit-

ical buckling load from (1,1)(single half wave) to (2,1) (double half wave) occurs for

different value of aspect ratio for different types of non-uniform edge loads. The reduc-

tion of natural frequency with compressive load depends on the type of non-uniform

edge load. The low magnitude of edge load to reduce the natural frequency to mini-

mum is observed for uniform load while, large magnitude is required for partial tension

loading.
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CHAPTER 5

FREE VIBRATION-BUCKLING ANALYSIS ON CNT

REINFORCED CYLINDRICAL PANEL

5.1 Introduction

In the present chapter, buckling and free vibration behaviour of agglomerated CNT re-

inforced nano cylindrical panel under the inuence of NELs considering the non-local

effect has been investigated. The presence of nano reinforcements in these nano scaled

structures helps in improvement of stiffness, however, consideration of size effects is

important to predict the results accurately. Further, the consideration of CNT agglom-

eration is important for predicting the buckling and free vibration characteristics of

structures under practical conditions. Therefore, critical buckling load and free vibra-

tion frequencies of agglomerated CNTs reinforced cylindrical shell panel subjected to

different kinds of NELs considering the size effect are investigated.

5.2 Non-Local Elasticity Modelling of CNT Reinforced

Cylindrical Panel

5.2.1 Mathematical Material Modelling

This section presents the constitutive equations for cylindrical panels reinforced with

CNTs considering its agglomeration effect as well as size effect. The effective mechan-

ical properties of cylindrical panels can be obtained by direct method if the CNTs are

dispersed uniformly throughout the matrix. However, CNTs are often not uniformly



distributed and tend to bundle together due to Van-der-Waals forces, high aspect ratio,

and low bending stiffness. The effective material properties of CNT reinforced com-

posites are given in Shi et al. (2004) using a two-parameter micromechanics model.

The non-uniform distribution of CNTs in the matrix leads to the formation of spherical

bundles with different elastic properties of the surrounding material as shown in Figure

5.1.

Figure 5.1: CNT bundleing model with agglomeration

The total volume of CNTs (V CNT
r ) in the RVE (representative volume element) is

given by:

V CNT
r = V m

r + V bundle
r (5.1)

where, V bundle
r and V m

r represents the volume of CNTs inside the bundle and matrix

respectively. The agglomeration phenomenon is represented by two parameters as fol-

lows:

ϵ = Vbundle

V
and η = V bundle

r

V CNT
r

(5.2)

where, Vbundle, V represents the volume of bundles in the RVE and total volume

of RVE respectively. The parameters ϵ represents the volume fraction of bundles to

the total volume of the RVE and η represents the volume ratio of CNTs present in

the bundle to the total volume of CNTs in the RVE. In Equation 5.2, ϵ = 1 denotes

uniform distribution of CNTs in the matrix and decrease in ϵ value denotes increase in
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agglomeration degree. When η = 1, all the CNTs are dispersed in inclusions and the

case of ϵ = η denotes CNTs are uniformly dispersed in the cylindrical panel.

The ratio of volume of CNTs to the total volume is given as average volume fraction

(rv) as:

rv =
V CNT
r

V (5.3)

The effective shear modulus (Gout) and bulk modulus (Kout) outside the bundles, and

the effective shear modulus (Gin) and bulk modulus (Kin) of the bundles are given as

(Shi et al. 2004):

Gout = Gm + rv(ηr−2Gmβr)(1−η)
2[1−ϵ−rv(1−η)+rv(1−η)βr] (5.4a)

Kout = Km + rv(δr−3Kmαr)(1−η)
3[1−ϵ−rv(1−η)+rv(1−η)αr] (5.4b)

Gin = Gm + rv(ηr−2Gmβr)η
2[ϵ−rvη+rvηβr] (5.4c)

Kin = Km + rv(δr−3Kmαr)η
3[ϵ−rvη+rvηαr] (5.4d)

where,

Gm = Em

2(1+νm) (5.5a)

ηr =
1
5


2
3
(nr − lr) +

8Gmpr
Gm+pr

+ 8mrGm(3Km+4Gm)
3Km(mr+Gm)+Gm(7mr+Gm)

+2(kr−lr)(2Gm+lr)
3(Gm+kr)

 (5.5b)

βr =
1
5


4Gm+2kr+lr
3(Gm+kr)

+ 4Gm

Gm+pr
+ 2[Gm(3Km+Gm)+Gm(3Km+7Gm)]

Gm(3Km+Gm)+mr(3Km+7Gm)


(5.5c)

Km = Em

3(1−2νm) (5.5d)

δr =
1
3


nr + 2lr +

(2kr+lr)(3Km+2Gm−lr)
Gm+kr


(5.5e)
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αr =
3(Km+Gm)+kr−lr

3(Gm+kr) (5.5f)

Here, kr, lr,mr, nr and pr denotes Hill’s Elastic moduli (Hill 1965) for the CNT re-

inforcement and Gm, Em, νm and Km represents the shear modulus, Young’s modulus,

Poisson’s ratio and the bulk modulus of the matrix phase.

The Mori-Tanaka model is used to calculate the effective material properties as:

K = Kout


1 +

ϵ


Kin
Kout

−1



1+αc(1−ϵ)


Kin
Kout

−1




(5.6a)

G = Gout


1 +

ϵ


Gin
Gout

−1



1+βc(1−ϵ)


Gin
Gout

−1




(5.6b)

E = 9KG
3K+G (5.6c)

ν = 3K−2G
6K+2G (5.6d)

where,

αc =
1+νout

3(1−νout) (5.7a)

βc =
8−10νout
15(1−νout) (5.7b)

and

νout =
3Kout−2Gout

6Kout+2Gout (5.8)

The variation in material properties Kin, Kout, K and Gin, Gout, G with variation in

agglomeration parameter η for partially agglomerated condition (ϵ = 05) is given in

Figure 5.2. It is observed that with increase in amount of CNTs inside bundle (increase

in η) leads to reduction in both effective bulk modulus (K) and shear modulus (G) of
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parameter using various non local theories are available in the open literature (Lei et al.

2016; Li et al. 2019c; Xie et al. 2022). The general approach for estimation of non-local

parameter is by minimisation of least square error between experimental and theoretical

results (Lei et al. 2016).

The stress-strain relations considering non-local effect is given as:

(1− µ2∇2)





σxx

σyy

τxy

τxz

τyz





=




Q11 Q12 0 0 0

Q12 Q22 0 0 0

0 0 Q66 0 0

0 0 0 Q55 0

0 0 0 0 Q44








ϵxx

ϵyy

γxy

γxz

γyz





(5.10)

Qij are stiffness matrix coefcients and dened as follows:

Q11 = Q22 =
E

1−ν2

Q12 = Q21 =
Eν

1−ν2

Q66 = Q55 = Q44 = G

(5.11)

Using non-local elasticity theory the stress-strain relations are considered by incorpo-

rating the non-local parameter as discussed in this section. Using these equations, the

governing differential equations are formulated and buckling and free vibration param-

eters are calculated as discussed in Section 2.

5.3 Validation

In this section, the comparison of effective material properties, buckling and free vi-

bration results of agglomerated CNTs reinforced cylindrical panel obtained using the

present method with the results available in literature is presented.
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5.3.1 Verication of Material Properties Estimation

Firstly, the effective Young’s modulus reported by Bisheh et al. (2020) is compared to

verify the correctness of micro mechanics model followed in the present work. Bisheh

et al. (2020) also used Mori-Tanaka micro-mechanics model to evaluate the effective

Young’s modulus. The matrix and CNT properties as given in Bisheh et al. (2020) are

adopted. For the matrix : Em=1.9 GPa, νm=0.3 and for SWCNT : nr= 450 GPa, kr=

350 GPa, mr= 1 GPa, pr= 1 GPa, and lr= 10 GPa. Table 5.1 presents the comparison

of Young’s modulus for the CNT reinforcement with complete agglomeration (η = 1).

It is found that the results are in good agreement. In Table 5.2, the effective Young’s

modulus reported by Bisheh et al. (2020) is compared with current results for partial

agglomeration condition (ϵ = 05). The present results are in good agreement with the

results reported by Bisheh et al. (2020). Finally, in Table 5.3 the results for randomly

oriented CNTs (ϵ = η = 1) in the matrix are compared with the results of Bisheh

et al. (2020). The comparison is done to check the equivalence of randomly oriented

and uniformly distributed CNTs (Bisheh and Wu 2019) in the matrix. The material

properties used are : For matrix: Em=78 GPa, νm=0.31 and SWCNT : nr= 1089 GPa,

kr= 271 GPa, mr= 17 GPa, pr= 442 GPa, and lr= 88 GPa. It is observed that the

present results matches well with the results reported by Bisheh et al. (2020). This

also indicates the effectiveness of the proposed model to calculate the effective elastic

properties of the material analyzed.

5.3.2 Buckling Load Calculation

The estimation of the buckling load considering the non-local effect is validated by

comparing the present results with Hosseini-Hashemi et al. (2015) as shown in Table

5.4. An analytical method based on HSDT is used by Hosseini-Hashemi et al. (2015)

to obtain the results. The excellent agreement between references and present results

are obtained.
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Table 5.4: Comparison of buckling coefcients


Ncra2

D


for CNT reinforced simply

supported at panels with Hosseini-Hashemi et al. (2015)

a
b
= 1

h
a
= 01 h

a
= 001

Hosseini-Hashemi et al. (2015) Present Hosseini-Hashemi et al. (2015) Present
HSDT SSDT HSDT SSDT

µ = 0 18.6861 18.8585 19.7281 19.7299
µ = 01 15.6057 15.7497 16.4916 16.4774
µ = 02 10.4408 10.5380 11.0136 11.0250
µ = 03 6.7200 6.7921 7.1030 7.1060

Table 5.5: Non-dimensional frequency

Ω = ωn(

a2

h


ρm
Em

)


for CNT reinforced sim-

ply supported at panels with Phung-Van et al. (2017)

VCNT
a
h

µ = 15 µ = 4
Phung-Van et al. (2017) Present Phung-Van et al. (2017) Present

HSDT SSDT HSDT SSDT

0.11
10 2.044 2.0415 1.257 1.2554
20 2.477 2.4729 1.523 1.5207
50 2.688 2.6879 1.653 1.6529

0.14
10 2.123 2.1224 1.306 1.3052
20 2.637 2.6334 1.622 1.6194
50 2.909 2.9099 1.789 1.7894

5.3.3 Free Vibration Frequency Calculation

Natural frequencies of CNT reinforced plate considering the non-local effect presented

in Phung-Van et al. (2017) is considered since there is no study on the CNT reinforced

cylindrical panel. Isogeometric analysis based on HSDT is used in Phung-Van et al.

(2017) to obtain the free vibration frequencies. The comparison of the results in Table

5.5 indicate that both the results are in good agreement. Excellent agreements of the

presence solutions with reference solutions are observed which conrms the accuracy

of the semi analytical method.
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Table 5.6: Properties of matrix and CNT(Chakraborty et al. 2019; Shi et al. 2004)

Matrix(PmPV) Single Walled Carbon Nanotube (SWCNT)

Em=2.1GPa, νm=0.34, ρm=1150 kg
m3 νr=0.175, ρr=1400 kg

m3

Hills elastic moduli(GPa): pr=1, lr=10, kr=30,mr=1, nr=450

5.4 Free Vibration and Buckling Characteristics for CNT

Reinforced Cylindrical Panel

The numerical results for CNT reinforced nanocomposite cylindrical panel considering

agglomeration are presented in this section. The matrix is assumed to be poly(m-

phenylenevinylene)-co-[(2,5-dioctoxy-p-phenylene) vinylene], known as PmPV, and

reinforcement is assumed to be single-walled carbon nanotubes (SWCNTs) and their

properties are listed in Table 5.6. In the numerical investigation, the following values

are used : a
b
= 1, a

h
= 20.

5.4.1 Buckling Analysis

The buckling analysis under different loads is performed on a square cylindrical panel

(a
b
= 1) having thickness ratio of ( a

h
= 20). Three different type of CNT distributions

considered are: a) Uniformly distributed (ϵ = η = 1), b) Partially agglomerated (ϵ =

05, η = 075), c) Fully agglomerated (ϵ = 05, η = 1). The schematic diagram of

different CNT distributions is presented in Figure 5.3. Firstly, the panel is assumed to

have a xed volume fraction of CNT (rv = 01) and simply supported (SSSS) boundary

condition is considered. Three different radius ratios (R
a
= 5, 10, 20) are considered.

Table 5.7 presents the buckling coefcient, N̄0 = ( Ncrb2

100prh3 ), variation for different

distributions of CNT and at different values of nonlocal parameter. It is observed that

cylindrical panel has high buckling strength for ϵ = η = 1 (uniformly distributed)

and the increase in agglomeration degree reduces the buckling strength. The lowest

buckling coefcient value is observed for ϵ = 05, η = 1(fully agglomerated). This is
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Figure 5.3: Schematic representation of different level of agglomeration

expected as the increase in agglomeration leads to a decrease in stiffness of the struc-

ture. It is also observed that with the increase in non-local parameter, the buckling

coefcient reduces for all the values of radius ratio. Thus, the non-local effects must be

considered while estimating the buckling characteristics. It is also observed that with

the increase in radius, the buckling coefcient value reduces. This is due to the reduc-

tion of structural stiffness with the increase in the radius of the panel. It is found that

the buckling coefcient varies with the type of non-uniform edge loading. The highest

and lowest buckling loads are observed for partial tension loading and uniform loading

respectively. The presence of a small amount of tension in the loading pattern makes

partial tension loading less effective as discussed in the previous chapters.

Figure 5.4 is a graphical representation showing the variation of the buckling coef-

cient with changes in the non-local parameter, radius ratio, and agglomeration. From

Figure 5.4 a) it is clear that buckling coefcient value for a particular radius ratio

(R
a

= 5) and agglomeration degree (ϵ = η = 1) reduces with increase in non-local

parameter value for all the loading conditions. This is expected as the non-local effect
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Table 5.7: Buckling coefcients ( Ncrb2

100prh3 ) for CNT reinforced nano composite cylindri-
cal panel under SSSS boundary condition(a/b=1, a/h=20, rv = 01)subject to different
NELs

R/a
Dispersed uniformly

(ϵ = η = 1)
Agglomerated partially
(ϵ = 05, η = 075)

Fully agglomerated
(ϵ = 05, η = 1)

µ = 0 µ = 01 µ = 02 µ = 0 µ = 01 µ = 02 µ = 0 µ = 01 µ = 02
Uniform Loading

5 0.3865 0.3228 0.2160 0.3502 0.2925 0.1957 0.1955 0.1633 0.1093
10 0.3575 0.2986 0.1998 0.3240 0.2706 0.1810 0.1811 0.1512 0.1012
20 0.3503 0.2925 0.1957 0.3174 0.2651 0.1774 0.1775 0.1482 0.0992

Trapezoidal Loading
5 0.5153 0.4304 0.2880 0.4669 0.3900 0.2609 0.2607 0.2177 0.1457
10 0.4767 0.3981 0.2664 0.4320 0.3607 0.2414 0.2414 0.2016 0.1349
20 0.4670 0.3900 0.2610 0.4232 0.3534 0.2365 0.2366 0.1976 0.1322

Triangular Loading
5 0.7730 0.6455 0.4319 0.7004 0.5849 0.3914 0.3911 0.3266 0.2185
10 0.7150 0.5972 0.3996 0.6479 0.5411 0.3621 0.3621 0.3024 0.2024
20 0.7005 0.5851 0.3915 0.6348 0.5302 0.3547 0.3549 0.2964 0.1983

Partial tension Loading
5 1.5459 1.2911 0.8639 1.4008 1.1699 0.7828 0.7821 0.6532 0.4370
10 1.4301 1.1943 0.7991 1.2959 1.0822 0.7241 0.7243 0.6049 0.4047
20 1.4011 1.1701 0.7829 1.2696 1.0603 0.7095 0.7098 0.5928 0.3966

is to reduce the buckling load value. Similarly, a reduction in buckling coefcient value

is observed with increase in radius ratio as shown in Figure 5.4 b) corresponding to

non-local parameter (µ = 01) and uniformly distributed CNT (ϵ = η = 1). This is

because of the reduction in structural stiffness with the increase in radius ratio. Fig-

ure 5.4 c) shows the variation in buckling coefcient value with changes in degree of

agglomeration of cylindrical panel with radius ratio (R
a
= 5) and non-local parameter

(µ = 01). The buckling coefcient reduces with the degree of agglomeration for all the

loading conditions. This is due to the reduction in material properties as a result of CNT

agglomeration. It is also noted from Figure 5.4 that highest buckling coefcient value is

observed for partial tension load while lowest buckling coefcient value is for uniform

loading. This is due to the fact that in uniform loading the entire edge is subjected to

maximum compressive load whereas in partial tension loading, the edge is subjected to

a combined compressive and tensile load. The buckling coefcient values of trapezoidal

and triangular value are in between uniform and partial tension loading. The trapezoidal
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Figure 5.4: Effect of a) non-local parameter(µ) b) radius ratio(R
a
) c)agglomeration on

buckling coefcient ( Ncrb2

100prh3 ) for different type of loading.

loading has a higher effective compressive loading on the edge compared to triangular

loading, thus variation in buckling coefcient value is well expected.

Figure 5.5 shows the effect of agglomeration parameter (ϵ-volume fraction of bun-

dle) considering full agglomeration (all the CNTs are in the bundle) on the buckling

coefcient of cylindrical panel. The radius ratio(R
a
) and a

h
maintained as 20 and volume

fraction of CNT(rv) is 0.2. It is observed that with the increase in the volume fraction of

bundle, the buckling coefcient increases for all the loading conditions. This is because

when all the CNTs are in bundles the increase in bundle size contributes to improved

dispersion of CNTs in the matrix. For the uniformly distributed CNT condition, i. e.,

ϵ = 1, the highest value of buckling coefcient is obtained. There is a change in buck-

ling coefcient value with an increase in the volume fraction of CNT (rv) and non-local
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parameter (µ) is observed. It can be observed that with the increase in agglomeration

parameter (ϵ), there is not much increase in buckling coefcient even though the volume

fraction of CNT(rv) is increased up to ϵ = 0.5 which denotes complete agglomeration.

This is because of the agglomeration which can cause only a marginal improvement

in material properties. Further, as ϵ increases beyond 0.5 distribution start to improve

and the inuence of volume fraction will become more evident. It can be observed that

the increase in volume fraction causes a very high increase in buckling coefcient. For

instance, the rate of increase in buckling coefcient is very high for rv=0.2 compared

to rv=0.1. This is expected as the increased amount of CNTs in the matrix enhances the

mechanical performance of the composite. One can also be observed that the non-local

parameter causes a similar reduction in the buckling coefcient in the buckling coef-

cient for all the load cases. Furthermore, the effect of volume fraction of CNT (rv)

dominates the non-local effect when CNT distribution is uniform. As seen from Fig-

ure 5.5, the buckling coefcient value for rv=0.2 and µ=0.2 is higher than rv=0.1 and

µ=0.1. Even though the non-local parameter is higher in the rst case, the dominating

effect of the volume fraction of CNT is the reason for the higher buckling coefcient

value.

The inuence of partial CNT agglomeration (ϵ = 05 and ϵ ≤ η) on the buckling co-

efcient for various value of η are presented in Figure 5.6. The agglomeration changes

from fully agglomerated (ϵ = 05 ,η=1)to uniformly distributed (ϵ = 05 ,η=0.5). Simi-

lar to Figure 5.5 the effect of increased volume fraction of CNT dominates the non-local

effect as the CNT distribution becomes uniform. For instance, the cylindrical panel with

rv=0.2 and µ=0.2 provides better buckling strength than rv=0.1 and µ=0.1 as CNT dis-

tribution tend towards uniform. This is due to the enhancement of material properties as

a result of increased CNT volume fraction. The highest buckling coefcient is observed

for ϵ=η=0.5 and the lowest value is observed for ϵ = 05 and η=1. This is expected as

η=ϵ=0.5 represents uniform distribution and ϵ = 05 and η=1 denotes full agglomera-

tion. Thus it is evident that with the increase in agglomeration the buckling coefcient

reduces for all the loading conditions due to the reduction in material properties.
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Figure 5.5: Variation of buckling coefcient ( Ncrb2

100prh3 ) considering complete agglomer-
ation (η = 1) with change in agglomeration parameter(ϵ) for different CNT volume
fractions(vr)

Figure 5.7 presents the variation of the buckling coefcient for different values of ϵ

and η as the non-local parameter is increased. It is evident that the buckling coefcients

reduce as the non-local parameter increases for all the different loading conditions. It

is observed that the uniformly distributed CNT case results in the highest buckling co-

efcient. This is due to enhanced material properties as a result of uniform distribution.

As seen from Figure 5.7, a drastic reduction of the buckling coefcient for uniformly

distributed case (ϵ = η = 1)is observed as µ increases from 0.2. This is because of

the dominant inuence of non-local parameter on the buckling coefcient value. It is

evident from the fact that for a high non-local parameter value, µ = 1, the buckling

coefcient value becomes very less.

The variation of the buckling coefcient with the non-local parameter for partially
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Figure 5.6: Variation of buckling coefcient ( Ncrb2

100prh3 ) considering partial agglomera-
tion (ϵ = 05) with change in agglomeration parameter(η) for different CNT volume
fractions(vr)

agglomerated (ϵ = 05) cylindrical panel under different loading conditions is shown

in Figure 5.8. It is observed that the highest buckling coefcient value is observed for

ϵ = η = 05 case, i. e., for the uniformly distributed CNT panel. With the increase

of non-local parameter, the buckling coefcient value reduces for all the cases. This

is expected as the non-local parameter value increases, its inuence on geometric stiff-

ness increases which leads to the dominating effect such that buckling coefcient value

reduces drastically.

110



Figure 5.7: Variation of buckling coefcient ( Ncrb2

100prh3 ) considering full agglomeration
(η = 1) with change in non-local parameter(µ) for different combinations of ϵ and η

5.4.2 Free Vibration Analysis

The non-dimensional fundamental frequency of agglomerated CNT reinforced cylin-

drical panel under different non-uniform edge loads is presented in this section. The

cylindrical panel having the dimensions (a
b
= 1, a

h
= 20, R

a
= 5, 10, 20) considered

for buckling analysis is considered for free vibration studies also. The volume frac-

tion of CNT is maintained as rv = 01 and free vibration frequency is presented in

non-dimensional form as Ω = ωn(
a2

h


ρm
pr
).

Non-dimensional frequency of CNT reinforced cylindrical panel considering ag-

glomeration effect under various radius ratio (R
a

= 5, 10, 20) for different values of

non-local parameter is presented in Table 5.8. Notably, the non-dimensional frequency

reduces with an increase in the degree of agglomeration. It is due to a reduction in
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Figure 5.8: Variation of buckling coefcient (Ncrb
2100prh

3) considering partial ag-
glomeration (ϵ = 05) with change in non-local parameter(µ) for different combinations
of ϵ and η

structural stiffness with the increase in the degree of agglomeration. It is also noted that

the increase in non-local parameter reduces the natural frequency. This is because of

the inuence of non-local parameter in increasing the mass matrix coefcients without

altering the structural stiffness. It is also observed that the natural frequency changes

with boundary conditions and the highest value of frequency are observed in the CCCC

boundary condition, which is due to the presence of clamped edges in the fully clamped

boundary condition.

The variation of the non-dimensional natural frequency of CNT reinforced cylindri-

cal panel with changes in the local parameter is depicted in Figure 5.9. The rst part (a)

denotes the reduction of the natural frequency with an increase in non-local parameter

for the SSSS boundary condition. This is due to the inuence of the nonlocal parameter
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Table 5.8: Non-dimensional frequency (Ω = ωn(
a2

h


ρm
pr
)) for CNT reinforced nano

composite cylindrical panel under SSSS boundary condition(a/b=1, a/h=20, rv = 01).

R/a
Dispersed uniformly

(ϵ = η = 1)
Agglomerated partially
(ϵ = 05, η = 075)

Fully agglomerated
(ϵ = 05, η = 1)

µ = 0 µ = 01 µ = 02 µ = 0 µ = 01 µ = 02 µ = 0 µ = 01 µ = 02
SSSS

5 19.2845 17.6234 14.4157 18.3570 16.7758 13.7223 13.7166 12.5351 10.2535
10 18.5472 16.9497 13.8645 17.6556 16.1348 13.1980 13.1993 12.0624 9.8668
20 18.3578 16.7765 13.7229 17.4753 15.9701 13.0633 13.0664 11.9409 9.7675

CCCC
5 34.1172 30.5478 24.1889 32.4770 29.0793 23.0260 24.2803 21.7401 17.2146
10 33.6532 30.1311 23.8573 32.0356 28.6828 22.7106 23.9543 21.4473 16.9816
20 33.5359 30.0257 23.7735 31.9240 28.5826 22.6308 23.8719 21.3732 16.9227

on the natural frequency. Here µ = 0 denotes results obtained based on classical me-

chanics theory. The highest value for frequency is observed for ϵ = η = 1 (uniformly

distributed) condition. This is expected as the elastic properties are improved with

the uniform dispersion of CNTs in the matrix. Part (b) of Figure 5.9 shows the inu-

ence of the nonlocal parameter on non-dimensional natural frequency for fully clamped

(CCCC) boundary condition. The natural frequencies reduce the same as the simply

supported condition and the highest frequency is observed for the uniformly distributed

CNT condition.

The inuence of the different type of non-uniform edge load on the fundamental

frequency of CNT reinforced panel at different degree of agglomeration and the non-

local parameter is presented in Figure 5.10. It is observed that as the intensity of edge

loading increases, the natural frequency of the cylindrical panel decreases. This is due to

the inuence of the edge load on the stiffness of the structure. The reduction of natural

frequency to zero happens at a very low load for fully agglomerated case (ϵ = 05, η =

1) and non-local parameter (µ) 0.2. This is expected as the reduction in stiffness happens

with agglomeration and increased inuence of non-local parameter on mass. Further to

understand the effect of different type of loading pattern on the reduction in natural

frequency value, Figure 5.11 is plotted for uniformly CNT distributed cylindrical panel.

ϵ = 1, η = 1 and µ = 0.1 is considered. It is clear from Figure 5.11 that reduction rate
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Figure 5.9: Variation of non-dimensional frequency (Ω = ωn(
a2

h


ρm
pr
)) considering

partial agglomeration (ϵ = 05) with change in agglomeration parameter(η) for different
CNT volume fractions(vr)

of natural frequency with increase in compressive load is different for various loading

conditions. This is expected as the reduction in transverse stiffness occurs with increase

in magnitude of in plane loading which in turn is highly depend upon the nature of

variation of the non-uniform edge load. The free vibration mode shape remains same

as (1,1) with increase in intensity of the edge load.

5.5 Closure

The size dependent buckling and free vibration behaviour of CNT reinforced cylindrical

nano panel considering agglomeration subject to different NELs using a semi-analytical
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Figure 5.10: Effect of compressive load on non-dimensional frequency (Ω =

ωn(
a2

h


ρm
pr
)) of SSSS cylindrical panel for all the type of loadings

method utilizing Galerkin’s method considering non-local elasticity theory is presented.

Two parameter micro mechanical model is used for the estimation of mechanical prop-

erties. A non-local parameter is introduced to evaluate the size effects. The accuracy of

the present solutions are veried by comparing authors results with various analytical

solutions available in the literature. The inuence of non-local parameter, CNT ag-

glomeration, NELs on buckling, and free vibration response is presented. The buckling

strength of cylindrical nano panel depends primarily on the non-local parameter, type

of NEL and degree of CNT agglomeration. The free vibration response of cylindrical

nano panel depends largely on non-local parameter, degree of CNT agglomeration and

boundary conditions. The critical buckling load is inuenced by the type of NEL. The

highest value of buckling load is observed for partial tension loading and the lowest for

uniformly distributed edge load. For the CNT reinforced cylindrical nano panel, the

115



Figure 5.11: Effect of compressive load on non-dimensional frequency (Ω =

ωn(
a2

h


ρm
pr
)) of uniformly distributed CNT reinforced cylindrical panel under SSSS

boundary condition for different loadings

consideration of size effect reduces the stiffness thus the buckling and free vibration

performance is poor. The reduction in natural frequency with the increase in buckling

load is different for various NELs.
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CHAPTER 6

FREE VIBRATION-BUCKLING ANALYSIS ON GOP

REINFORCED CYLINDRICAL PANEL

6.1 Introduction

In the previous chapters, buckling and free vibration of cylindrical panels reinforced

with GPL and CNT are investigated. The buckling and free vibration characteristics of

Graphene oxide powder (GOP) reinforced cylindrical panels need to be analysed next

since it has several advantages such as ease of availability and ability to form better

interfaces with polymer matrix.

In this chapter, the buckling and free vibration response under different non-uniform

edge and partial edge loads of functionally graded graphene oxide powder reinforced

cylindrical panel is analyzed. The graphene oxide powder is functionally graded along

the thickness in three different patterns and amount of GOP reinforcement is also var-

ied. To obtain the solutions, the governing differential equations are solved for natural

frequency, critical buckling load and mode shapes utilizing Galerkin’s method subjected

to different types NELs.

6.2 Material Modelling of GOP Reinforced Composite

The GOP reinforced composite cylindrical panel has material properties varying in

thickness direction in three different patterns given as : (a) U-GOPRC-in which GOP is

distributed uniformly through the thickness, (b) X-GOPRC-in which the concentration

of GOP increases from center to the surfaces, (c) O-GOPRC-in which the concentration



Figure 6.1: Different types of GOP distribution patterns

of GOP increases from surface to the center (Figure 6.1). Thus, considering Ebrahimi

et al. (2021); Zheng et al. (2021) the material properties of GOP reinforced cylindri-

cal panel such as density (ρGOPRC), Poisson’s ratio (νGOPRC) and Young’s modulus

(EGOPRC) are estimated by Halpin-Tsai model given as:

ρGOPRC = ρGOPVGOP + ρmVm

νGOPRC = νGOPVGOP + νmVm

EGOPRC = 049El + 051Et

(6.1)

Where, ρGOP , ρm represent density of reinforcement(GOP), matrix, VGOP , Vm repre-

sent volume fraction of reinforcement, matrix and νGOP , νm represent Poisson’s ratio of

reinforcement (GOP), matrix respectively. Et and El represents transverse and longitu-

dinal moduli of the nano composite cylindrical panel reinforced with GOP. The volume

fraction of GOP (VGOP ) for different layers varies according to the different patterns

and it is dened as:

U −GOPRC : VGOP (l) = V ′
GOP

X −GOPRC : VGOP (l) =
2

NL
2l −NL− 1V ′

GOP

O −GOPRC : VGOP (l) =
2

NL
(1− 2l −NL− 1)V ′

GOP

(6.2)

Here, total number of layers is represneted by NL and l=1, 2,....., NL. The relationship

between volume fraction of matrix (Vm) and volume fraction of GOP’s (VGOP ) are
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related as:

VGOP + Vm = 1 (6.3)

In Equation 6.2, V ′
GOP is the total volume fraction of GOP in the cylindrical panel and

given as:

V ′
GOP = WGOP

WGOP+(1−WGOP )(ρGOP /ρm)
(6.4)

Here,WGOP represents the weight fraction of GOP. The longitudinal (El) and transverse

(Et) moduli of the composite in Equation 6.1 is given as:

El =
1+ξlη1VGOP

1−η1VGOP
× Em

Et =
1+ξtηtVGOP

1−ηtVGOP
× Em

(6.5)

Here, ηl, ηt represents parameters and Em represents Young’s moduli of the matrix

material which are dened as:

ηl =
EGOP
Em

−1
EGOP
Em

+ξl
, ηt =

EGOP
Em

−1
EGOP
Em

+ξt
(6.6)

where, ξl and ξt are geometry factors given as:

ξl = ξt =
2dGOP

hGOP
(6.7)

where, hGOP and dGOP are the thickness and diameter of GOP respectively. Using

the Young’s modulus (EGOP ), Poisson’s ratio (νGOP ) and density (ρGOP ) the different

coefcients are calculated and buckling and free vibration characteristics are obtained

as mentioned in Section 2.

6.3 Validation of Material Modelling

To assure the accuracy and effectiveness of the present mathematical model of GOP

reinforced composite validation study is conducted based on results available in the

119



literature and presented in this section.

The dimensionless buckling load

N̄0 = Ncr(

R
√

3(1−νm)

100Emh3 )


of a cylindrical shell

reinforced with GOP for different weight fractions of GOP are presented in Figure 6.2

together with results of Ebrahimi et al. (2021). In Section 4, the material properties used

for the present study are presented. The cylindrical shell is considered simply supported

with the geometric parameters dened as: L
h
= R

h
=20. The dimensionless buckling load

obtained using present study and those obtained by Ebrahimi et al. (2021) are in close

agreement.

Figure 6.2: Comparison of dimensionless buckling load (N̄0 = Ncr(
R
√

3(1−νm)

100Emh3 )) of
SSSS GOP cylindrical shell
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6.4 Free Vibration and Buckling Characteristics for GOP

Reinforced Cylindrical Panel

The present study aims to investigate the inuence of NELs on free vibration and buck-

ling response of FG-GOP reinforced cylindrical panel. The matrix is assumed to be

Epoxy and reinforcement is graphene oxide powder (GOP) with the following proper-

ties (Zhang et al. 2020), (Lin et al. 2014):

Em = 30GPa, νm = 034 and ρm = 1200 kg
m3 : Epoxy Matrix

EGOP = 4448GPa, νGOP = 0165 and ρGOP = 1090 kg
m3 : GOP Reinforcement

(6.8)

The GOP is considered as a circular shaped reinforcement having a thickness t = 0.95

nm and diameter d = 500 nm as given in (Lin et al. 2014). The following convention

is used for boundary conditions, for instance, ’C’ and ’S’ denotes clamped and simply

supported boundary conditions respectively. Thus, ’CCCC’ and ’SSSS’ denotes all

edges clamped and all edges simply supported boundary conditions respectively. The

geometric properties are assumed as the following though out the study unless otherwise

mentioned as: a
b
= 1, R

a
= 20,WGOP = 2wt% and cylindrical panel thickness ratio is

assumed as a
h
= 100.

6.4.1 Buckling Studies

In this section, the inuence of GOP distribution and it’s concentration on buckling

behaviour under different NELs is studied rst. Following that the inuence of aspect

ratio (a
b
) on buckling characteristics of nano composite cylindrical panel is analysed in

detail. The expression for critical buckling coefcient is given as N̄0 = Ncr(
b2

100Emh3 ).

Here, λ denotes the lowest eigen-value obtained from the buckling problem.
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6.4.1.1 Inuence of GOP Distribution and Its Volume Fraction

As a rst study, the GOP cylindrical panel is assumed to be square (a
b
= 1) with thick-

ness ratio ( a
h
= 100) and radius ratio (R

a
= 20) and boundary condition is considered to

be simply supported (SSSS). The variation of buckling coefcient for a GOP reinforced

cylindrical panel is affected by two different factors, namely GOP weight fraction and

GOP distribution. Therefore, buckling coefcient value is calculated for different val-

ues of GOP weight fraction for different distribution are shown in Figure 6.3. The

sub gure (a) in Figure 6.3 denotes variation of buckling coefcients for uniformly

distributed GOP reinforced cylindrical panel. The buckling coefcient value increases

with increase in GOP concentration, due to enhancement in structural stiffness due to

addition of GOP. It can be seen that minimum buckling coefcient is observed for par-

tial edge loading and maximum for reverse sinusoidal loading. The highest intensity

of load at the center of the nano composite cylindrical panel is the main reasoning for

lowest buckling coefcient value for partial edge loading. While for reverse sinusoidal

loading highest intensity of loading is at the edges and results in higher buckling coef-

cient value. A glance again at Figure 6.3 reveals that buckling coefcient value varies

in the increasing order of uniform loading, parabolic loading followed by increasing

parabolic loading. The highest buckling coefcient value is observed for X-GOPRC

distribution and lowest is observed for O-GOPRC for all the loading conditions. This

is due to higher quantity of GOP at the top and bottom bres for X-GOPRC giving rise

to enhance the buckling strength. On the other hand, for O-GOPRC distribution, less

amount of GOP at the top and bottom layers leading to reduction in buckling strength

because of lower bending stiffness.

Further, to show the inuence of GOP distribution on the buckling coefcient value

with increase in GOP weight fraction, Figure 6.4 is plotted. The cylindrical panel is

assumed to be simply supported with a
b
= 1, a

h
= 100 and R

a
= 20. The GOP weight

fraction is varied from 0 to 3 and the corresponding change in buckling coefcient value

is plotted. The variation in buckling coefcient is shown for two different type of load-
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Figure 6.3: Buckling coefcients (Ncr(
b2

100Emh3 )) for a square, SSSS, GOP reinforced
nano composite cylindrical panel under different edge loading: Inuence of various
distribution and weight fraction of GOP.

ing conditions namely, uniform and partial edge loading. It is observed that there is

a 70 % increase in buckling coefcient value with the addition of 0.5 wt fraction of

GOP for U-GOPRC, 100 % increase for X-GOPRC and 40 % increase for O-GOPRC

distributions respectively. The reason being the presence of large amount of GOP at

the extreme surfaces for X-GOPRC while less amount for O-GOPRC as already dis-

cussed. This establishes the inuence of various distribution of GOP reinforcement in

enhancing the buckling strength of the cylindrical panel.
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GOP distribution. Further analysis of Figure 6.5 indicate that the variation of buckling

coefcient with the change in aspect ratio is different for various type of loading. The

shift of fundamental buckling mode to (2,1) from (1,1) with increase in aspect ratio

(a
b
) occurs for all type of loadings. The reason for changes in buckling modes with in-

crease in aspect ratio can be explained as follows: as aspect ratio increases, the energy

input required for large buckling deformation is least for (2,1) mode rather than (1,1).

Thus, (2,1) buckling mode shapes becomes the primary buckling mode shape. It is also

interesting to know that this change in aspect ratio occurs at different aspect ratio for

different loadings. This is due to the fact that concentrated type of loadings has the high-

est efciency in facilitating this energy transformation. Thus, for partial edge loading

and parabolic loading, which has center concentrated loading give rise to mode shape

change at a low aspect ratio. For clear understanding, buckling coefcients with change

in aspect ratio for X-GOPRC composite cylindrical panel is presented in Figure 6.6.

The change from (1,1) to (2,1) occurs at aspect ratios namely, 1.5 for uniform loading,

1.6 for increasing parabolic loading, 1.9 for reverse sinusoidal loading, 1.3 for parabolic

loading and 1.3 for partial edge loading. This can be related to the effectiveness of the

different applied non-uniform edge loads as already explained. For the case of partial

edge and parabolic loading, highest intensity of load is present at the center which is

the reason for its high effectiveness. On the other hand, reverse sinusoidal loading has

least concentration of load at the center making it the least effective load.

6.4.2 Free Vibration Studies

In this study, inuence of GOP concentration and distribution on the fundamental free

vibration frequency is analysed rst. In order to analyze the variation of free vibration

frequency with different bounndary conditions, SSSS(simply supported) and CCCC

(clamped) are considered. Later, the inuence of different types of non-uniform edge

loadings on the rst two natural frequencies of the cylindrical panel is analysed in detail.

The non-dimensional form, Ω = ωn(
a2

h


ρm
Em

), is used for the free vibration frequency.
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Figure 6.5: Variation of buckling coefcients

Ncr(

b2

100Emh3 )


for simply supported,

GOP reinforced cylindrical panel subjected different edge loading: Inuence of aspect
ratio

6.4.2.1 Inuence of GOP Volume Fraction and Its Distribution

In Figure 6.7, the inuence of weight fraction of GOP and distribution on the funda-

mental free vibration frequency is presented . The nano composite cylindrical panel

is considered to be square (a
b
= 1) with thickness ratio ( a

h
= 100) and radius ratio

(R
a

= 20). It can be seen from Figure 6.7 that free vibration frequency increases as

GOP concentration rises. This is due to the fact that as the amount of GOP increases

an improvement in the structural stiffness of the panel occurs which in turn leads to the

increase in frequency. A glance again on Figure 6.7 reveals that X-GOPRC distribution

has the maximum natural frequency value. This indicate that the distribution of GOP
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Figure 6.6: Variation of buckling coefcients (Ncr(
b2

100Emh3 )) with aspect ratio for a
simply supported, GOP reinforced cylindrical panel under X-GOPRC distribution: In-
uence of edge loading.

has a higher inuence than GOP concentration. The reason for the higher value of fre-

quency for X-GOPRC distribution is due to that fact that higher concentration of GOP

is present at the top and bottom layers giving rise to higher stiffness. It can be seen from

Figure 6.7 (b) that free vibration frequency varies with the type of boundary condition.

Further, the fully clamped (CCCC) nano composite cylindrical panel notes the the high-

est free vibration frequency value. The clamped nano composite cylindrical panel also

shows a similar trend of increase in natural frequency with GOP concentration.

6.4.2.2 Inuence of Type of NEL and Aspect Ratio

It is interesting to know the variation of free vibration frequency and mode with increase

in compressive load for different type of loadings. For this reason, in Figures 6.8 and

6.9, the variation of rst two free vibration frequencies with increase in compressive

load upto lowest critical buckling load for the nano composite cylindrical panel with

aspect ratios 1 and 1.3 respectively are presented.
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Figure 6.7: Variation of non dimensional frequency (Ω = ω(a
2

h


ρm
Em

)) of clamped and
simply supported GOP reinforced cylindrical panel: Inuence of various distribution
and weight fraction of GOP.

The inuence of increase in compressive load on non-dimensional frequencies for

a square (a
b
=1) GOP reinforced cylindrical panel is presented in Figure 6.8. A close

observation of Figure 6.8 reveals that there is a reduction in the rst two natural fre-

quencies with increase in compressive load. The partial edge loading notes the highest

rate of reduction whereas reverse sinusoidal loading notes the lowest reduction rate.

This is expected as panel center has the highest intensity of load for partial edge load-

ing leading to its high effectiveness while panel center has lowest intensity for reverse

sinusoidal loading. In increasing steps, the amount of compressive load is varied upto

lowest critical buckling load corresponding to a type of loading. It is observed that

the natural frequency corresponding to (1,1) mode reduces to zero at critical buckling

load. The application of uniform load, parabolic load, increasing parabolic load shows

a similar trend of reduction in natural frequency according to the effectiveness of the

load as already discussed. The free vibration frequency corresponding to (2,1) mode

also reduces and attains a value according to the type of loading. It is also observed

that frequencies corresponding to all the type of distribution of GOP show a similar
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reduction with values varying according to the distribution.

Figure 6.8: Non dimensional frequency (Ω = ωn(
a2

h


ρm
Em

)) change for a simply sup-
ported GOP reinforced cylindrical panel(aspect ratio 1) : Inuence of increase in com-
pressive load.

To get more insight into the inuence of type of loading on the vibration charac-

teristics of GOP reinforced cylindrical panel, the change in frequencies with increase

in load for aspect ratio 1.3 is plotted in Figure 6.9. The natural frequency reduction

with compressive load increase is observed similar to aspect ratio 1 for loads except

partial edge loading and parabolic loading. The free vibration frequency change with

compressive load increase for partial edge loading and parabolic loading is such that

129



nearby critical buckling load, the frequency corresponding to (2,1) mode reduces to

zero instead of frequency of (1,1) mode. The explanation of the behaviour is given as

follows: for parabolic and partial edge loading, when aspect ratio is 1.3, the mode cor-

responding to minimum buckling load is (2,1) instead of (1,1). Consequently, near by

critical buckling load, the free vibration mode (1,1) changes to (2,1). On the other hand,

corresponding to critical buckling load, (1,1) is the buckling mode for all the other load-

ing conditions. As a consequence, there is no change in free vibration mode and also

(1,1) mode reduces to zero at critical buckling load. The main reason for resemblance

between buckling mode and free vibration mode near critical buckling load is due to

the fact that, nearby critical buckling load a minimum amount of energy is required

for the vibration mode shape which exactly same as buckling mode shape. Thus for

aspect ratio 1.3, free vibration mode shift from (1,1) to (2,1) occurs only for the case of

parabolic and partial edge loading.

6.4.2.3 Comparison of Buckling Loads for Different Types of Nano Filler Rein-

forced Cylindrical Panels

The comparison of buckling load per unit mass ( Ncr

I1ab
) of the cylindrical panel for UEL

under the inuence of different types of materials analyzed in the present study is pre-

sented in this section. The cylindrical panel with a
b
= 1, a

h
= 100 and R

a
= 20 under

simply supported boundary condition is considered for this comparison study. Effect of

volume fraction on the buckling load per unit mass of the cylindrical panel is shown in

Figure 6.10. Four different types of cylindrical panels namely, porous GPL reinforced

cylindrical panel, sandwich cylindrical panel with porous GPL core, GOP reinforced

cylindrical panel and CNT reinforced cylindrical panel are considered. For compari-

son purposes, the epoxy matrix given in Section 6.4 is considered for all the different

kinds of cylindrical panels. For porous cylindrical panels, small amount of porosity (e0

= 0.2) is considered. e0 = 0.2 is selected to compare the lightweight nature of GPL

porous cylindrical panel and GPL porous sandwich cylindrical panel. It is seen that in
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Figure 6.9: Non dimensional frequency (Ω = ωn(
a2

h


ρm
Em

)) change for a simply sup-
ported GOP reinforced cylindrical panel (aspect ratio 1.3) : Inuence of increase in
compressive load.

the absence of nano reinforcement, buckling strength per unit mass is high for sand-

wich cylindrical panel with decreasing porosity distribution. This is due to the ability

of sandwich cylindrical panel with porous core in reducing the overall weight without

much reduction in stiffness. Furthermore, with increase in volume fraction of nano

reinforcement, the buckling load per unit mass increases for all the cases. The GPL

reinforced porous cylindrical panel with higher amount of GPL at the extreme surfaces

exhibits high buckling load per unit mass value. This is expected as GPL enhances the

131



Fi
gu
re

6.
10
:C

om
pa
ri
so
n
of

bu
ck
lin

g
lo
ad

pe
ru

ni
tm

as
s
(N

c
r

I 1
a
b
)f
or

di
ff
er
en
tn

an
o
co
m
po
si
te
cy
lin

dr
ic
al
pa
ne
ls
.

132



structural stiffness even at low concentrations. Next to the GPL reinforced cylindrical

panel, the sandwich cylindrical panel with GPL reinforced porous core is having better

buckling strength followed by this, the GOP reinforced reinforced cylindrical and the

CNT reinforced cylindrical panels are having the lower buckling strength values.

Figure 6.11 depicts the variation in buckling load per unit mass with increase in

porosity for GPL reinforced porous cylindrical panel and sandwich cylindrical panel

with GPL reinforced porous core. The volume fraction of nano reinforcements is con-

sidered as a minimum i.e., 0.011. The GOP and CNT reinforced cylindrical panels are

shown in the graph for comparison. In the absence of porosity, it is seen that highest

value of buckling load per unit mass is observed for GPL reinforced cylindrical panel

with maximum amount of GPL at the extreme surfaces. This is due to inuence of GPL

in improving the stiffness of the cylindrical panel. The next highest value of buckling

load per unit mass is observed for sandwich cylindrical panel then followed by GOP

reinforced cylindrical panel and nally CNT reinforced cylindrical panel. The increase

in porosity lead to a small reduction in buckling load per unit mass for all the case.

This is because the increase in porosity lead to a reduction in structural stiffness of the

cylindrical panel.

6.5 Closure

The investigation carried out on dynamic and buckling characteristics of GOP embed-

ded composite cylindrical panel under different edge loadings are presented. Three

different type of GOP distribution namely, O-GOPRC, X-GOPRC and U-GOPRC are

considered. The inuence of GOP distribution and concentration, aspect ratio and na-

ture of different type of edge loading on the vibration and buckling response is ana-

lyzed in detail. The buckling strength of GOP reinforced cylindrical panel is largely

inuenced by the type of GOP distribution. Highest buckling coefcient value is ob-

served for X-GOPRC distribution and lowest for O-GOPRC distribution. The buckling
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strength enhances by 100 % for X-GOPRC distribution, 70 % for U-GOPRC and 40

% for O-GOPRC with the addition of 0.5 weight fraction of GOP. The type of edge

loading alters the critical buckling load value signicantly. The lowest buckling load

value belongs to partial edge loading while highest value belongs to reverse sinusoidal

loading. An increase in weight fraction of GOP leads to compelling increasing in buck-

ling coefcient of GOP reinforced composite cylindrical panel. The lowest buckling

mode of the cylindrical panel becomes (2,1) from (1,1) at some aspect ratios depending

upon the type of loading. For the partial edge loading the shift happens at very low

aspect ratio while it happens at high aspect ratio for reverse sinusoidal loading. A sig-

nicant increase in free vibration frequency is observed with an increase in GOP weight

fraction. X-GOPRC distribution leads to higher natural frequency and O-GOPRC dis-

tribution of GOP notes the lowest natural frequency. A reduction in frequencies with

increase in compressive load for a nano composite cylindrical panel depends largely

on the type of edge loading. The partial edge loading leads to higher reduction while

lowest reduction is observed for reverse sinusoidal loading. A change in fundamental

free vibration mode in presence of compressive load is observed for partial edge loading

and parabolic loading. Nearby critical buckling load, free vibration mode changes from

(1,1) to (2,1) for parabolic and partial edge loadings for a nano composite cylindrical

panel at aspect ratio 1.3.
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CHAPTER 7

SUMMARY AND CONCLUSIONS

7.1 Summary

The buckling and free vibration characteristics of different types of nano composite

cylindrical panels subjected to uniform and different NELs are presented. The usage of

nano composite reinforced structures for various structural application leads to signif-

icant reductions in overall weight of the structure without compromising the stiffness.

Considering a higher order shear deformation theory, Hamilton’s principle is used to

formulate the governing partial differential equations and buckling and free vibration

solutions are obtained by employing the semi analytical method based on Galerkin’s

method. Initially, the membrane stress resultants due to the applied edge loads are cal-

culated through Airy’s stress function expansion. The Eigen value problems of buckling

and free vibration are obtained by utilizing semi analytical solution method on the gov-

erning differential equations.

Firstly, buckling and free vibration characteristics of GPL reinforced porous cylin-

drical panel subjected to uniform and different NELs are investigated. The inuences

of grading patters of GPL, porosity coefcient on buckling and dynamic character-

istics of functionally graded GPL reinforced porous cylindrical panel under uniform

and non-uniform in-plane loads are investigated. Then, the buckling and free vibration

characteristics of sandwich cylindrical panel with GPL reinforced porous core are also

investigated. The inuence of different distributions of GPL and porosity, core to total

thickness ratio, radius of curvature, GPL weight fraction, porosity coefcient on buck-

ling and free vibration characteristics are analysed. The size dependent buckling and

free vibration behaviour of CNT reinforced cylindrical nano panel considering agglom-



eration considering non local elasticity theory is investigated next. The inuence of

non-local parameter, CNT agglomeration, non-uniform in-plane loads on buckling, and

free vibration response is presented next. Finally, the buckling characteristics of GOP

embedded composite cylindrical panel is investigated. The inuence of GOP distribu-

tion and concentration, aspect ratio and nature of different type of edge loading on the

vibration and buckling response is analyzed in detail.

7.2 Conclusions

The following conclusions are made :

7.2.1 Free Vibration-Buckling Analysis on GPL-Porous Cylindri-

cal Panel

• The type of NEL greatly inuences the critical buckling load of the panel. Highest

critical buckling load is observed for partial tension loading and the lowest critical

buckling load is observed for the uniform edge load.

• The buckling coefcients and natural frequencies varies according to the par-

ticular combination of porosity and GPL distributions. The maximum buckling

strength and free vibration resistance is observed for GPLP-1-PD-A combination.

• The buckling and free vibration parameters are inuenced by changes in the

porosity coefcient and porosity grading pattern. The maximum reduction in

stiffness is observed for porosity distribution B while porosity distribution A has

minimum reduction in stiffness, with increase in porosity.

• The critical buckling mode of functionally graded GPL reinforced porous cylin-

drical panel is inuenced by the aspect ratio of the panel.
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7.2.2 Free Vibration-Buckling Analysis on GPL-Porous Sandwich

Cylindrical Panel

• The critical buckling load is largely inuenced by the type of NEL and uniform

loading has the minimum value while partial tension loading posses the maximum

value.

• The sandwich cylindrical panel with D-PD & I-GPL-P core has the higher buck-

ling resistance and better free vibration frequency while the panel with I-PD &

D-GPL-P core has the lower values.

• The enhancement in buckling resistance and free vibration frequency with respect

to core to total thickness ratio depends on the amount of porosity in the core.

– For the low porosity coefcient, in the presence of high GPL content the

buckling coefcient and free vibration frequency increases with the core to

total thickness ratio.

– For the high porosity coefcient, in the presence of high GPL content the

variation of buckling coefcient and free vibration frequency depending on

porosity distribution and GPL pattern.

• The shifting of buckling mode shape from (1,1)(single half wave) to (2,1) (double

half wave) occurs at different values of aspect ratio for different loads.

• The reduction of natural frequency with increase in compressive load intensity

depends on the type of the non-uniform edge load.
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7.2.3 Free Vibration-Buckling Analysis on CNT Reinforced Cylin-

drical Panel

• The buckling response of cylindrical nano panel depends primarily on the non-

local parameter, type of edge load and degree of CNT agglomeration.

• The free vibration frequency of cylindrical nano panel depends largely on non-

local parameter, degree of CNT agglomeration and boundary conditions.

• The critical buckling load is inuenced by the type of edge load. The highest

value of buckling load is observed for partial tension loading and the lowest value

is observed for uniformly distributed load.

• For the CNT reinforced cylindrical nano panel, the consideration of size effect

reduces the stiffness thus the buckling load and free vibration frequencies are

reduced.

• The reduction in natural frequency with the increase in buckling load is different

for various NELs. The reduction rate is high for the uniform load case and low

for partial tension loading.

7.2.4 Free Vibration-Buckling Analysis on GOP Reinforced Cylin-

drical Panel

• The buckling strength of GOP reinforced cylindrical panel is largely inuenced

by the type of GOP distribution. Highest buckling coefcient value is observed

for X-GOPRC distribution and lowest value occurs for O-GOPRC distribution.

• The buckling strength is enhanced by 100% for X-GOPRC distribution, 70% for

U-GOPRC and 40 % for O-GOPRC with the addition of 0.5 weight fraction of

GOP.
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• The type of edge loading alters the critical buckling load value. The lowest buck-

ling load value belongs to partial edge loading while highest value belongs to

reverse sinusoidal loading.

• The lowest buckling mode of the cylindrical panel becomes (2,1) from (1,1) at

different aspect ratios depending upon the type of loading. For partial edge load-

ing the shift happens at very low value of aspect ratio while it happens at higher

aspect ratio for reverse sinusoidal loading.

• X-GOPRC distribution leads to higher natural frequency and O-GOPRC distri-

bution of GOP notes the lowest natural frequency.

• A reduction in frequencies with increase in compressive load for a nano compos-

ite cylindrical panel depends largely on the type of edge loading. The partial edge

loading leads to higher reduction while lowest reduction is observed for reverse

sinusoidal loading.

• A change in fundamental free vibration mode in presence of compressive load is

observed for partial edge and parabolic loading cases.

• Nearby critical buckling load, free vibration mode changes from (1,1) to (2,1)

for parabolic and partial edge loadings for a nano composite cylindrical panel at

aspect ratio 1.3.
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7.3 Scope for Future Work

The current research work analyses the buckling and free vibration characteristics of

various light weight cylindrical panel structures under the inuence of uniform and non

uniform edge loads. Various future extensions of the present work can be summarised

as:

• The buckling and free vibration characteristics of nano composite structures un-

der various multi physics loadings such as hygrothermal loading, thermal loading

and supersonic air ow can be studied.

• Non linear vibration and buckling characteristics of these nano composite struc-

tures can be studied.

• Vibro acoustic characteristics of nano composite cylindrical panels under various

multi physics loadings including non uniform edge loads can be studied.
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