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Abstract

Wireless capsule endoscopy (WCE) is the state-of-the-art medical procedure for

scanning the entire digestive tract to diagnose gastrointestinal (GI) diseases. Its non-

invasiveness and ease of usage make it a better option than conventional endoscopy.

However, it is inferior to conventional endoscopy due to low image quality imposed

by capsule’s complexity and power consumption. In one complete scan of GI tract, a

capsule captures between 90000 and 180000 frames during its peristalsis movement.

Diagnosing such a large number of images is a time-consuming and tedious procedure

that needs a gastroenterologist’s undivided attention. The main aim of the research

work is two folds. One involves the development of a low complexity video encoder

that can reduce the computations in the capsule. The other part involves a WCE

video summarization framework to provide an efficient diagnosis.

Developing a low-complexity video encoding architecture that can achieve high

compression performance at a low bit rate while maintaining acceptable reconstruction

quality is a challenging task in WCE. A distributed video coding (DVC) architecture

is proposed to achieve this, which transfers encoder complexity to the decoder side. It

employs a keyframe encoder that takes advantage of GI image textural properties to

reduce the complexity. Furthermore, the low-frequency bands of the Wyner-Ziv (WZ)

frames are used as auxiliary information at the decoder to generate high-quality side

information that enables the encoding of high frequency bands with a low bit rate. The

proposed DVC framework is further enhanced to reduce complexity by eliminating

WZ-chroma component encoding. Exploiting the similarity in colour and texture

properties between consecutive frames in WCE video, a deep convolutional neural

network model is integrated into the decoder side to predict the chroma component.

The proposed methods achieve improvements in coding gain with low complexity

encoder when compared with benchmark compression schemes.

A physician must dedicate lot of time in reviewing the large number of frames,

and there is a considerable risk of missing frames that are associated with lesion

symptoms. Review time can be minimized by extracting the summary of WCE video

by eliminating the redundant frames. To achieve this, a summarization framework

consisting a shot boundary detection and keyframe extraction methods is presented.



The proposed framework achieves better summarization performance measured us-

ing F-score and compression ratio compared to state of the art WCE summarization

methods.

Keywords: Wireless capsule endoscopy, Video compression, Distributed video

coding, Convolutional neural networks, Chroma prediction, Video summarization.
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Chapter 1

Introduction

Endoscopy has become a standard and the most preferred method by physicians

for detecting gastrointestinal (GI) disorders such as gastric cancer, polyps, intestinal

bleeding, Crohn’s disease and Celiac disease. It enables the direct visualization of the

human GI tract and can even detect early cancers. Wired endoscopy is a commonly

used procedure to diagnose the upper GI tract. However, the patients hesitate to

undergo this procedure because of the pain and discomfort induced by inserting a

long, flexible wire into the digestive tract. Moreover, the wired endoscopy cannot

scan the small intestine due to its intricate and curvy nature.

Button Battery

CMOS
Image
Sensor

Image/Video
Compressor

RF Tranceiver

LED

LED

Small bowel images captured by CMOS
image sensor

RF Tranceiver
Image/Video

Reconstruction

Image visualization and assessment by expert
gastroenterologists

Figure 1.1: A typical WCE based GI tract screening process

Wireless capsule endoscopy (WCE) is used in recent days in order to overcome

the drawbacks of wired endoscopy. In WCE, the patient swallows an electronic cap-

sule that moves through the GI tract by peristalsis action. The capsule scans the

entire GI tract including small intestine capturing its images without any discomfort

and pain (Iddan et al. (2000), Wang et al. (2013)). The images captured during the

1



peristalsis movement of the capsule are transferred wirelessly through radio frequency

(RF) transmission to an external recording unit. Later, the image data is transmit-

ted to a computer and reconstructed before being analysed for GI abnormalities. A

typical WCE based GI tract screening process is shown in Figure 1.1. Prior to the

introduction of WCE, it was not possible to diagnose the small intestine without

surgery.

Table 1.1: FDA approved clinically used capsule endoscopes.

Capsule Inventor Weight
(g)

Dimension
(mm)

Frame
rate

Resolution Angle
of View

Capsule Life

Pill-Cam SB3 Given Imaging 3.4 11.0 x 26.0 2-6 fps 256 x 256 160◦ 10-12h

Endo-Capsule Olympus 3.8 11.0 x 26.0 2 fps 256 x 256 160◦ 8-10h

Miro-Cam Intromedic 3.4 11.0 x 24.0 2 fps 320 x 320 170◦ 8-11h

OMOM Jinshan 6.0 28.0 x 13.0 2 fps 320 x 320 140◦ 7-9h

Navi-Cam Ankon Tech. 5.0 28.0 x 12.0 2 fps 480 x 480 140◦ 8-9h

Many commercial swallowable capsule endoscopes have been developed to assist in

the non-invasive scanning of the complete GI tract. The most common clinically used

capsule endoscopes approved by the Food and Drug Administration (FDA) available

are listed in Table 1.1, with their specifications. To make the transition through the

GI tract easier, the capsules are made with a smaller diameter and length. Most

of the commercially available WCE systems operate at modest frame resolutions of

256x256 pixels and a frame rate of 2-6 fps on the battery life of 7-8 hours (Gurudu

et al. (2008), Ciuti et al. (2011)). Even with many benefits of WCE, this technology is

still considered immature due to low diagnostic yield (DI) and the prolonged labour-

intensive diagnosis procedure. DI can be improved by increasing frame resolution,

frame rate, and working duration to achieve quality diagnoses. High frame resolution

is essential for diagnosing early-stage lesions. When the images are zoomed in for an

in-depth diagnosis, the low-resolution images fail to describe the finer details of the

lesions. A higher frame rate enables the identification of more lesions and reduces

the chance of missing frames containing significant information. But, improving the

resolution and frame-rate increases the image data for processing and transmission.

Around 70% to 90% of the power is consumed by RF transmission (Chen et al.
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(2009)), which reduces the capsule battery life. However, the capsule battery must

have enough power to run for more than 16 hours in order to successfully complete

the entire GI tract scan.

One complete examination of the WCE procedure captures thousands of images

of different parts of the GI tract. Transmitting and processing these images at a high

resolution and frame rate consumes a lot of power. In addition, manual assessment

of a large number of frames is a tedious task which requires a lot of attention from

the doctor and is prone to more diagnostic errors (Hernandez-Lara and Rajan (2021),

Zheng et al. (2012)). Diagnostic accuracy is crucial in detecting the abnormalities

and entirely depends on the WCE video reviewer’s expertise. The size of the video

data needs to be reduced without compromising its quality before transmission to

achieve better DI with low power consumption, which can be achieved by video com-

pression (Ou et al. (2015)). When it comes to video compression techniques, it is

apparent that wireless capsule endoscopes experience major limitations in terms of

processing capability and power consumption. Therefore, low complexity compression

algorithms must be used to avoid the capsule being bulky and the image compressor

itself consuming additional power.

Furthermore, because the recorded video is used for medical diagnostics, providing

high quality decoded video with a high compression ratio is essential. In WCE, many

frames with high similarity exist due to slow movement and sometimes no-movement

of the capsule in some areas of GI tract (Barducci et al. (2020)). Similar frames

introduce much redundancy in the WCE video. Hence, developing an algorithm to

generate the WCE video summary to remove the redundancy is important. Removing

redundant frames saves the time required for the laborious task of assessing the video

to find the abnormalities, making WCE a more efficient diagnosis procedure.

1.1 Motivation

Many standard video compression designs such as MPEG standards, H.264/AVC and

H.265/HEVC exist that focus on obtaining optimized compression performance. The

standard video coding architectures compress the video multiple times by removing

the redundancy at the encoder using inter frame motion prediction. These systems
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employ joint encoding and decoding, where the encoder’s computational complexity

is very high and that of the decoder is low. The high computational complexity

of the encoder is due to the motion estimation performed to remove the temporal

correlation existing between the consecutive frames in a video sequence to achieve high

compression performance. Hence, the standard video compression architectures are

unsuitable for attaining efficient video compression with the low power consumption

requirements set by the capsule endoscope. Developing an efficient video compression

method with a low complexity encoder in the context of capsule endoscopy with

limited processing capability and battery life is a challenging problem. The principle

of DVC enables the development of a low complexity video encoding architecture to

reduce processing and transmission power consumption.

In recent years, a lot of effort has been made into developing computer-aided diag-

nosis methods to assist doctors in reducing the time and manpower required for WCE

video examination. The capsule captures the images at the rate of 3 to 6 frames per

second for over 8 hours and acquires around 90000-180000 frames. A physician has

to invest a lot of time or appoint an assistant to inspect these huge number of frames

and summarize the endoscopy video by eliminating redundant frames. The major

disadvantage associated with manual summarizing is the chance of eliminating some

of the frames with lesion symptoms while inspecting thousands of images. Some of

the methods are proposed for the detection of lesions which includes tumours, ulcers,

polyps and Crohn’s disease (Jia et al. (2019), Klang et al. (2020)). A few approaches

are proposed for the detection of lymphangiectasias, Celiac disease and hookworms (Li

et al. (2019), He et al. (2018)). All these methods deal with detecting only one or two

types of abnormalities. The majority of the frames with other abnormalities still need

to be manually assessed by the gastroenterologist. To overcome all the above draw-

backs, developing an algorithm to generate video summary without missing frames

with sensitive information is very crucial. Therefore, video summarization is consid-

ered as the best approach to reduce the review time which provides a comprehensive

view of the entire WCE video. WCE video summarization tool allows the physician

to get a quick glimpse of the overall content in the video and the presence of possible

abnormalities using a summarized video consisting of only keyframes. Any frames

with sensitive information are found, the physician can always refer to the adjacent
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frames in the original video.

Motivated by low complexity encoder requirements for WCE video application

and the importance of an efficient WCE video summarization system, the objectives

of the research work are formulated as follows:

• Design of low complexity video compression algorithm suitable for

WCE and a decoder for high quality reconstruction of the compressed

video.

• WCE video summarization framework to eliminate the redundancy

without losing the significant frames.

1.2 Contributions of the Research

The main focus of this research is to develop strategies to reduce the video encoder

complexity of the capsule while maintaining the compression performance and quality

of reconstruction. The work also investigates the techniques for the WCE video

summarization. The key contributions of the research are as follows:

• Proposed a DVC-based low complexity video encoder to solve encoder complex-

ity constraints in the WCE video application by exploiting the degree of freedom

available for complexity at the decoder.

• Developed a keyframe encoding method, which exploits the textural character-

istics of WCE images to reduce the computations required for processing by

differentiating the keyframe blocks into smooth and non-smooth transformed

blocks. The quality of side-information (SI) production at the decoder deter-

mines the compression performance of DVC. By dividing the WZ frequency

coefficients into intra and WZ bands, a method for generating high-quality SI

is proposed.

• Presents a method where only the luma component of the WZ frame is processed

and encoded. The chroma component of the WZ frame is predicted by a CNN

based deep chroma prediction model. The model is trained to predict chroma by

matching luma and texture information of the keyframe and WZ frame at the
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decoder. The proposed method reduces the computational complexity required

for encoding the WZ chroma component.

• An unsupervised WCE video summarization framework is proposed consisting

of deep feature extraction, video shot detection and keyframe selection. Deep

features extracted by convolutional autoencoder are used to segment the video

into shots based on the similarity between the frames. A technique to construct

a motion profile to extract keyframes from each shot is proposed to generate

the final WCE video summary.

1.3 Simulation Environment and Datasets

1.3.1 Simulation Environment

The presented results of the proposed and benchmark methods are computed using

an Intel core i5-7200 2.5GHz CPU, 8GB RAM and NVIDIA GeForce 940MX GPU.

Implementation of the proposed compression system is done in MATLAB and the

performance is evaluated against MJPEG, TDWZ-DVC and H.264/AVC-Intra codecs.

Deep neural network implementation and training is done using Keras, a deep learning

API using Tensorflow as backend on an NVIDIA Tesla-T4 GPU.

1.3.2 Datasets

The WCE video compression system is evaluated on four test video sequences cap-

tured by Mirocam-Intromedic capsule with a frame resolution of 320 x 320 at different

organs of GI tract. These videos are collected from Department of Gastroenterology,

Manipal Hospitals, Bangalore, India. The details of the test video sequences is given

Table 1.2: Test video sequences used to evaluate the WCE video compression system

Test Video Sequence Captured GI organ Motion Type Video frame length

Video-1 Small intestine No and very less motion 400

Video-2 Stomach Slow to Moderate motion 350

Video-3 Esophagus Fast motion 280

Video-4 Colon Moderate to fast motion 300
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in Table 1.2. For evaluating the performance of the WCE video summarization tech-

nique, keyframes of around 4 video sequences captured at different locations of GI and

3 video sequences of KID-dataset are identified with the help of gastroenterologist.

WCE video summarization dataset details are given in Table 1.3. All the sequences

in the dataset are captured by Intromedic-Mirocam capsule with a frame resolution

of 320 x 320.

Table 1.3: Test sequences used to evaluate the WCE video summarization
performance

Test Video
Sequence

Captured GI organ Video frame
length

Number of
Keyframes

Source

KID-1 All GI organs 65000 12520 KID Dataset-1

KID-2 All GI organs 62000 11700 MDSS research group

KID-3 All GI organs 62500 11904 (KID Dataset (2017))

Video-1 Small intestine 5922 600 Dataset-2

Video-2 Colon 3000 590 Manipal Hospitals,

Video-3 Esophagus 390 150 Bangalore

Video-4 Stomach 450 135

1.4 Evaluation Parameters

1.4.1 Video Compression

The evaluation of the compression system is done by comparing compression ratio

(CR) calculated using (1.1) with the quality metrics PSNR and structural similarity

index (SSIM). PSNR in dB and SSIM determine the amount of quality lost in encoding

process and computed using (1.2) and (1.4) respectively.

CR =

(
1− Total bits after compression

Total bits before compression

)
x100 (1.1)

PSNR = 10 log10
2552

MSE
(1.2)

where

MSE =
1

MN

M∑
i=1

N∑
j=1

|x(i, j)− xr(i, j)|2 (1.3)
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where x and xr are original and reconstructed pixel intensities of an MXN image.

SSIM(x, xr) =
(2µxµxr + C1) + (2σxxr + C2)(
µ2x + µ2xr + C1

) (
σ2x + σ2xr + C2

) , (1.4)

where C1 = 6.5, C2 = 58.52 are constants, µx, µxr are mean intensities and σx, σxr

are standard deviations of x and xr respectively. σxxr is computed using the following

equation.

σxxr =
1

N − 1

N∑
i=1

(xi − µx) (xri − µxr) (1.5)

Other important parameters considered to evaluate a video coding system’s perfor-

mance over reference video coding systems are Bjontegaard-Delta (BD) metrics (Bjon-

tegaard (2001)). BD-metrics are widely used to compare a video coding system’s

performance with the reference codec over a range of quality points or bitrates. BD

metric is often computed as change in bitrate or a change in quality measured using

PSNR and SSIM based on rate-distortion (RD) curves from the tested data points.

The BD-rate represents the average bitrate savings for the same video quality and is

calculated between RD curves of the tested video codec A and a reference codec B.

The bitrate saving difference between the two RD curves belong to codecs A and B

at a given PSNR is computed by (1.6). BD-PSNR and BD-SSIM between two RD

curves A and B at a given bitrate is computed by (1.7) and (1.8).

BD −Rate =
RateA(PSNR)−RateB(PSNR)

RateB(PSNR)
(1.6)

BD − PSNR =
PSNRA(bitrate)− PSNRB(bitrate)

PSNRB(bitrate)
(1.7)

BD − SSIM =
SSIMA(bitrate)− SSIMB(bitrate)

SSIMB(bitrate)
(1.8)

1.4.2 Video Summarization

Video summarization performance is evaluated by using F-score computed using (1.9)

which is a function of precision (p) and recall (r) computed using (1.10) and (1.11)

respectively.

F -score =
2rp

r + p
(1.9)
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p =
TP

TP + FP
(1.10)

r =
TP

TP + FN
(1.11)

• TP (True-positive) is the number of correct matches between keyframes ex-

tracted from proposed method and ground-truth summary.

• FN (False-negative) is the number of frames which are in the result but not

present in ground-truth summary.

• FP ( False-positive) is the number of frames in the ground-truth but not in

result.

Compression ratio (CR) is calculated using (1.12), where Nk is number of WCE

keyframes extracted using proposed method and Nt is total number of frames in a

video sequence.

CR = 1− Nk

Nt

(1.12)

1.5 Outline

The remainder of the thesis is structured as follows:

• Chapter 2 describes the peristalsis behaviour of the GI tract to understand

the capsule’s speed and time spent in different parts of the GI tract, as well

as the colour and texture features of the images captured in the GI tract. It

provides a comprehensive review of prior literature on WCE image compression

and WCE video summarization techniques. The first part of the chapter mainly

focuses on the existing WCE image compression techniques and the need for

the compressor to exploit temporal correlation. It also discusses the limita-

tions of standard video compression architectures in designing low complexity

encoders. A detailed description of H.264-Intra, TDWZ-DVC and MJPEG en-

coding methods used as reference encoding schemes to evaluate the performance

of the WCE compression systems is presented. The chapter describes the video

summarization technique, the necessity to summarize the WCE video and the

review of the prior work.
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• Chapter 3 presents a DVC architecture suitable for WCE video compression,

which encodes the WZ frames by classifying frequency bands into intra and WZ

bands. A technique to reduce the computations of the JPEG based keyframe

encoder by exploiting the textural characteristics is presented. It also explains

the modification done at the transform and quantization blocks to reduce the

complexity. Also, a new way of WZ encoding of subsampled chroma components

is presented in the chapter. The proposed method is evaluated by comparing

RD performance and encoding complexity with the MJPEG, TDWZ-DVC and

H.264-Intra methods.

• Chapter 4 presents the improvisation of the DVC architecture proposed in

Chapter 3. The DVC architecture with deep chroma prediction model incorpo-

rated at the decoder to reduce the complexity of WZ frame chroma components

encoding is presented. The deep chroma prediction model’s architectural de-

tails, loss function and the training details are provided. The chapter presents

the significance of colour space in training the model. The presented DVC

method eliminates the complexity of the encoder required for chroma encod-

ing and achieves better RD performance compared to the method presented in

Chapter 3, MJPEG and TDWZ-DVC at the reduced complexity.

• Chapter 5 introduces a framework to obtain a summary of WCE video using

deep feature matching and motion analysis. A method for deep features extrac-

tion using a convolutional autoencoder and a method for segmenting the WCE

video into shots by using the deep features is presented. The motion profile

creation for a video shot and the method to extract the most representative

frames from each shot using the motion profile is presented. The performance

of the presented method is evaluated by using F1-Score and compression ratio.

• Chapter 6 provides an overall conclusions of the research and future directions.
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Chapter 2

Background

The structure and peristalsis behaviour of GI tract and analysis of the GI tract image

characteristics is necessary to develop an efficient WCE imaging system. This chapter

presents the capsule’s speed and time it spends in each organ, the colour and texture

characteristics of the images captured in various organs of the GI tract. Further,

this chapter provides a comprehensive review of the existing WCE image and video

compression, as well as summarization techniques.

2.1 Structure and Peristalsis Behaviour of GI tract

The capsules are designed to travel through the GI tract organs of different structure

through peristalsis actions. Therefore, it is important to understand the structure and

peristalsis actions of different organs of the GI tract to create an efficient WCE imaging

algorithm. A general description of the structure and peristalsis behaviour of the GI

tract is given in this section. The human GI tract consists esophagus, stomach, small

bowel and large intestine which are tubular structured organs connected in series.

The total approximate length of the GI tract is around 800cm - 900cm. Esophagus

is a long tube-like structure, which tries to propel the capsule towards the stomach

with peristaltic actions. The stomach is a J-shaped organ that tumbles to mix the

food and liquid secreted. Due to this action of the stomach, images captured in the

stomach exhibits an irregular motion. The small intestine is a crucial organ of the GI

tract which can be directly visualized only using the WCE procedure. It is a narrow,

curvy and long tubular like structure where the capsule exhibits very slow motion.

The large intestine, also called the colon, is the last part of the GI tract which is
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broader and shorter than the small intestine.

Table 2.1: GI tract structure and capsule movement details (Liu et al. (2015))

GI organ Organ
Length (cm)

Capsule
speed (mm/s)

Motion in images Transit time

Esophagus 18 - 25 6 - 10 Fast 18 - 50 sec
Stomach — 3 - 8 Moderate to Slow 100 - 120 min

Small intestine 500 - 650 0.2 - 1 Slow or no motion 241 - 402 min
Large intestine 155 - 170 1 - 10 Moderate to Slow 60 - 100 min

Table 2.1 provides the details of the length of the organs, the capsule’s speed

in various GI organs, the type of motion exhibited in the images captured, and the

amount of time spent in each organ. These parameters are vital in understanding the

capsule motion to design efficient WCE imaging algorithms. The capsule spends a

significant amount of the time in the small intestine because of the slow movement

and the images captured exhibit very low or no motion.

2.2 Analysis of WCE Image Characteristics

2.2.1 Colour Space Conversion

(a) Img1
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(c) img1: Row 200

Figure 2.1: WCE Images and their RGB profile along rows 100 and 200

The image sensor used in the capsule captures the images in RGB colour space

while moving through the GI tract. Human GI system generally looks red except in

abnormal regions. Green and blue components are less significant compared to red
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(a) Video-1
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(b) Video-2
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(c) Video-3
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(d) Video-4

Figure 2.2: Mean Intensity of RGB components for frames of different video
sequences

component. On an average, in most of the GI endoscopic images, the red compo-

nent pixel value is the highest and blue component is the lowest as depicted in the

Figure 2.1. The mean intensity distribution of RGB colour components of different

frames of test video sequences is given in Figure 2.2. Generally, in most of the colour

image and video compression techniques, RGB colour space is transformed into an-

other colour space using reversible colour transformation to de-correlate the colour

components. A reversible colour space transformation is introduced to transform

WCE images captured in RGB colour space to YCbCr colour space at the encoder as

given in (2.1). In YCbCr, Y represents the luminance component and Cb, Cr compo-

nents stores the chrominance components. At the decoder, the YCbCr components

are converted to RGB components using inverse colour space transformation given
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(f) Chroma-Cr

Figure 2.3: Histogram of R, G, B, Y, Cb and Cr components of an endoscopic image

in (2.2).

Y =
R

4
+
G

2
+
B

4
, Cb = B −G, Cr = R−G (2.1)

R = Y − Cb

4
+

3Cr

4
, G = Y − Cb

4
− Cr

4
, B = Y − Cr

4
+

3Cb

4
(2.2)

As we can realize from histogram plots shown in Figure 2.3, in RGB color space

all the three components have high variation in pixel values. However, in YCbCr

color space the variation is quite low in Cb and Cr components. The role of color

space conversion in image compression algorithms is to reduce the high frequency

contents in the image. The relative frequency content of an image in a spatial domain

can be estimated using standard deviation. Table 2.2 shows the average standard

deviation and entropy (in bits/pixel) values for different video sequences of 100 frames.
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The reduction in standard deviation can be observed in case of YCbCr colour space

compared to RGB colour space.

Table 2.2: Statistical measurements of colour space components

Video Sequence Statistical measurements Colour Channels

R G B Y Cb Cr

Video 1 Average standard deviation 73.81 60.06 48.78 59.56 25.07 20.58

Average entropy (bits/pixel) 7.08 6.48 6.99 7.15 5.899 5.67

Video 2 Average standard deviation 73.84 52.09 40.37 53.57 27.32 19.98

Average entropy (bits/pixel) 6.96 6.76 6.63 6.89 5.88 5.39

Video 3 Average standard deviation 71.94 48.62 38.06 50.73 28.35 18.11

Average entropy (bits/pixel) 6.98 6.67 6.48 6.82 5.91 5.23

Video 4 Average standard deviation 72.56 59.21 47.67 58.21 25.32 20.19

Average entropy (bits/pixel) 7.02 6.08 6.72 6.99 5.79 5.67

2.2.2 Subsampling of Chroma Components

(a) Original (b) Red (c) Blue (d) Green

(e) Luma-Y (f) Chroma-Cb (g) Chroma-Cr (h) Reconstructed

Figure 2.4: Original and reconstructed image after chroma subsampling along with
R, G, B and Y, Cb, Cr components of a WCE image

In WCE video frames, chroma pixel intensities are almost same with in a small

region and can be down-sampled without loss of significant information in order to
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reduce the size of the image to be encoded. Original image, RGB, YCbCr compo-

nents and reconstructed subsampled chroma components at 4:2:0 format are shown in

Figure 2.4. Sub-sampling is a simple and efficient method which has been successfully

used in endoscopic image compression algorithms. The 4:2:0 sub-sampling format is

used in compression of endoscopic images where for every 4 pixels of Y-component, 1

pixel of Cb and Cr are selected. The average reconstruction quality of the upsampled

images is around 50dB in PSNR and 0.9998 in SSIM.

2.2.3 Smooth Blocks and Textured Blocks

Block classification method to classify blocks into smooth and non-smooth blocks can

be incorporated to reduce the complexity of quantization and entropy coding. Most

of the region in WCE images is smooth in nature with uniform pixel intensities. This

kind of blocks have significant energy only in low frequency components. WCE images

(a) Smooth:13% (b) Smooth:57% (c) Smooth:59% (d) Smooth:61%

(e) Smooth:71% (f) Smooth:72% (g) Smooth:79% (h) Smooth:85%

Figure 2.5: Percentage of smooth blocks of size 8x8 in various WCE images

with percentage of smooth blocks is shown in Figure 2.5. Smooth and non-smooth

regions are represented using green and red rectangles respectively. The average

percentage of smooth blocks considered in the test video sequences are 70%.
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2.3 Literature Review on Compression in WCE

The WCE procedure is performed mainly to diagnose the GI tract in order to identify

the abnormalities. Images provided for diagnosing should be of high quality. However,

most of the commercial wireless capsules available work at a frame rate of 2-6 frames

per second (fps) with a moderate frame resolution of 256x256 pixels (Alam et al.

(2017)). In most of the cases, these quality standards are insufficient for a thorough

and accurate diagnosis. The power consumption increases as the image resolution and

frame rates are increased. To minimize the power consumption, image compressor

should be used to reduce the size of the image transmitted without losing important

information.

2.3.1 Challenges in WCE Video Compression

Designing a low complexity image compressor with high compression and reconstruc-

tion quality that consumes significantly less power is a challenging problem. Accord-

ing to many literature studies, compressors suitable for WCE should abide by the

following principles.

• Extensive image processing cannot be performed within the data compressor

designed for WCE due to low power supply. So, each pixel can use very few

simple operations.

• Compressor should be memory efficient as memory access consumes more power

that increases the complexity of the compressor. Storing large amounts of data

during processing requires more memory stores and loads. Therefore, the com-

pression algorithm designed should be able to process the data with minimal

intermediate storing.

• To detect some lesions, zooming of the image is required which will introduce

blurriness in the low resolution image and there are greater chances of missing

out on the significant lesions. Higher resolution is required for an accurate diag-

nosis. Therefore studies suggest to have minimum 512 x 512 image resolution.

• An observational study suggests more frames per second detect more features

and lesions, reducing the rate of significant information loss. High reconstructed
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image quality measured in peak signal to noise ratio (PSNR) is required for

high quality images. According to a study (Istepanian et al. (2008)), acceptable

PSNR required for medical images is minimum 35dB.

2.3.2 WCE Image Compression Methods

A basic WCE image compression system includes colour space conversion, prediction

or transformation, quantization, and entropy encoding. A colour space conversion

from RGB to YCbCr colour space is widely used in compressing endoscopic images

as discussed in Section 2.2.1. Images can be encoded in time domain or transform

domain. Time domain encoding uses predictive algorithms such as differential pulse

code modulation (DPCM) and JPEG-LS which are lossless or near-lossless. In trans-

form domain coding, the image is divided into block of pixels where each block is

decomposed into set of frequency coefficients. Most of the low frequency coefficients

are significant than high frequency coefficients. High frequency coefficients can be

removed or reduced by quantization at different levels. Transform coding is lossy and

complex compared to predictive coding. The details of compression methods used in

WCE image compression are given below:

A Lossless and Near lossless Image Compression Algorithms

Lossless compression techniques reconstruct the compressed images without any loss

in quality. Compression is achieved by exploiting the correlation between the pixels to

remove pixel redundancy. In near lossless compression certain measure of quality loss

is accepted without losing remarkable information. Compression is near-lossless when

a small amount of loss is introduced due to quantization of the residue. Prediction

based technique is a lossless compression algorithm, where the difference of a original

and predicted pixel is encoded using Golumb Rice (GR) code. Complete pixel infor-

mation is recovered at the decoder without any loss. These algorithms are very simple

to implement and require very few computations for processing a pixel with low com-

pression performance. JPEG-LS based compression algorithms provides better CR

compared to other predictive techniques. The prediction of the pixel is done by the

edge detection algorithm and the difference of the actual pixel and predicted pixel is

encoded. The difference is encoded using fixed GR coding. When the flat regions are
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Table 2.3: Predictive based WCE compression techniques

Study Loss mode Colour
Space

Method

Simple prediction
(Khan and Wahid
(2011a))

Lossless YUV • Predicted value is computed by subtract-
ing the neighbouring pixel.

• Consists image clipping method and pre-
dicted values are entropy coded by GR en-
coding.

• Compression efficiency is less than 60%.

DPCM+ Subsampling
(Khan and Wahid
(2011b))

Near Loss-
less

YUV • Chroma components are sub-sampled and
DPCM coded.

DPCM (Fante et al.
(2016))

Both Lossy
and Loss-
less

YUV • Quantized and subsampled pixel values
are DPCM coded to in lossy mode.

• Pixels are DPCM coded without quanti-
zation and subsampling in lossless mode.

• Adaptive GR entropy coding is employed.

Hybrid DPCM
(Malathkar and Soni
(2019))

Lossless YEN • An enhanced DPCM method

• A modified signed Golomb code with bits
skip code is used to improve the compres-
sion efficiency.

• It enhances compression ratio by 2.3 %
than conventional DPCM.

JPEG-LS (Chenb et al.
(2009))

Near Loss-
less

RGB • Compress using prediction and low pass
filter before transformation.

• Efficient compared to DPCM based tech-
niques

JPEG-LS (Liu et al.
(2016))

Near Loss-
less

RGB • Before compression interpolation is done
to improve the spatial correlation.

• Due to interpolation compression effi-
ciency reduces with reduced prediction er-
ror.
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identified by the edge detection filter, the method uses run length encoding. The other

type of most popular and low complexity predictive coding algorithms are differen-

tial pulse code modulation (DPCM) methods. Instead of just encoding the difference

computed from previous element, these schemes use the prediction filter. These al-

gorithms can work in lossless and near-lossless mode (Fante et al. (2016)). Lossless

method encodes the residue without using the quantizer and near lossless methods

uses quantizer. A summary of the existing lossless and lossy predictive methods is

given in Table 2.3. Prediction based schemes are ideal for designing WCE image

compressors due to its low complexity. Prediction schemes provide better quality but

performs poor in terms of CR. Due to low compression efficiency, more data is left for

transmission and consumes more power. This leads to fast draining of capsule battery

power and causes incomplete scanning of the GI tract, when it is required to capture

the images with high resolution and frame rate.

B Transform based Lossy Image Compression Methods

Lossy image compression methods use the discrete cosine transform (DCT) and dis-

crete wavelet transform (DWT) to decorrelate images based on the correlation between

pixels at the block level. These methods achieve the compression by exploiting spatial

redundancy. Various transform based lossy compression methods used in WCE image

compression is listed are Table 2.4.

DCT based methods: In DCT based compression methods (Lin and Dung

(2011a), Turcza and Duplaga (2013)), the captured image from RGB colour space is

converted to another colour space consisting of luma and chroma components using

reversible colour space conversion. The chroma components are subsampled in the

ratio 1:4 to achieve compression. These algorithms use 8 x 8 DCT on luma components

and 4 x 4 DCT on chroma components. In the method proposed in (Gu et al. (2012)),

4x4 DCT is applied on R and subsampled GB components. In the work (Turcza and

Duplaga (2017)), DCT is applied on every four pixels of the RGB components and

difference of two DC coefficients is quantized and encoded to achieve near-lossless

compression performance. In DCT based works, compression is achieved by quantizing

the transformed coefficients which are later entropy coded to produce the compressed

bit stream. The DCT transform results in higher compression performance, but the
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Table 2.4: WCE lossy compression techniques

Study Colour
Space

Method

DCT (Lin and Dung (2011a)) YCoCg

• Before colour space transformation G and B
components are subsampled at 2:1 and 4:1.

• The transformed coefficients are quantized and
entropy coded by Limpel-Ziv algorithm.

DCT (Turcza and Duplaga (2011)) YCoCg • Transformed coefficients are DPCM coded along
with variable Huffman length coding.

DCT (Gu et al. (2012)) RGB • G and B components are subsampled at 2:1.
Transformed and quantized coefficients are
Huffman coded.

DCT (Turcza and Duplaga (2017)) RGB • DCT with predictive coding with near lossless
coding.

• Transformed coefficients are GR encoded.

DWT (Thoné et al. (2010)) YCbCr • Haar wavelet transform is used.

• Run length Huffman encoding is used for en-
tropy coding.

• Achieves high compression efficiency compared
to DCT based techniques.

• High computational complexity and memory re-
quirement.

Modified H.264-Intra (Dung et al. (2008)) RGB • Only DC intra prediction mode is used.

amount of information loss in the reconstructed images is significant. DWT does not

have this limitation and can be used to achieve high compression with high quality.

DWT based method: WCE compression method proposed in (Thoné et al.

(2010)) is based on DWT which uses an analysis filter bank, where the image is

passed through a series of lowpass and highpass operations. This process decom-

poses the image into sub-images which are further considered for quanitization and

compression. Though the DWT based method achieves better compression at higher

PSNR compared to DCT based transform methods, it consumes more memory on the

encoder as the entire frame needs to be stored for performing analysis filter bank op-

erations. Also more computations are required for processing the frame and consumes

more power and area.

H.264-Intra method: H.264-Intra is popularly used for medical image compres-

21



sion which requires high quality reconstruction. However, because it uses complex

rate distortion optimization techniques at the encoder, it is more difficult to apply

in WCE image compression, even though it gives superior compression performance

than other WCE image compression techniques with good quality metrics. There-

fore, H.264-Intra method modified to operate only in 4 x 4 DC prediction mode is

proposed to reduce the complexity (Dung et al. (2008)). Detailed functional de-

scription of H.264-Intra is given in this section as it is considered for comparing the

performance and complexity of the methods presented in Chapters 3 and 4.
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Transform Quantization

Inverse
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Frame

(b) H.264-Intra Decoder

Figure 2.6: H.264-Intra frame coding system

The block diagram of the H.264-Intra frame coding system is shown in Figure 2.6.

H.264-Intra encoder consists an encoding path and reconstruction path. Encoding

path consists transform, quantization and entropy coding blocks which takes an in-

put frame and creates a compressed bitstream. The encoded frame is decoded and

reconstructed using the reconstruction path to guarantee that both the encoder and

decoder gets the similar reference frame for intra prediction. This eliminates the

possibility of encoder-decoder mismatches as the decoder never receives the original
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Figure 2.7: Intra prediction modes for 4x4 luma block

frame. For an input frame in YCbCr 4:2:0 sampling format, the luma (Y) component

is divided into macroblocks (MB) of 16x16 pixels and chroma (Cb,Cr) components

are divided into blocks of 8x8 pixels. Each macroblock is encoded by using different

intra-frame prediction modes. Each 4x4 luma block has nine directional prediction

modes (Hamzaoglu et al. (2008)) and each mode predicts 16 pixel values from neigh-

bouring block pixels A to M as shown in Figure 2.7. Pixels A to M are considered

to be encoded and reconstructed previously and the same are available for the en-

coder and decoder to generate the prediction. A 16x16 MB has 4 prediction modes

normally selected for the smooth regions while 4x4 prediction modes are preferred

for textured regions. The 8x8 MB of chroma component consists 4 prediction modes.

The residual frame is generated by subtracting the predicted frame from the current

frame and transformed using integer DCT. The transformed coefficients are quantized

and entropy coded to generate compressed bitstream using context adaptive variable

length coding algorithm. To reconstruct the residual frame, the quantized compo-

nents are inverse quantized, inverse transformed and added to the predicted frame to

reconstruct the current frame.

Limitations: The transform coding methods provides high compression perfor-

mance compared to predictive techniques with acceptable image quality. But these
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methods cannot exploit inter frame correlation to remove temporal redundancy which

is high in WCE video content. This will result in low performance in terms of com-

pression. Low complexity video compression techniques can be employed to remove

the inter frame redundancy to provide better compression performance as explained

in Section 2.3.3.

2.3.3 WCE Video Compression Methods

Better compression can be achieved by removing the spatial and temporal redundancy

which results due to strong correlation between the block of pixels within the frame

and neighbouring frames respectively. The compression system which removes the

temporal redundancy by considering group of consecutive frames is called as video

coding system. The system consists an encoder to compress the video and the decoder

to decompress the encoded video to reconstruct the original video. The compression

performance is assessed using bitrate measured in bits per second (bps) and the qual-

ity. PSNR and SSIM metrics are used to assess the quality of the reconstructed

video.

In the WCE video, consecutive frames are highly correlated due to the slow move-

ment of the capsule. While travelling through the small intestine, the capsule exhibits

slow motion and sometimes no motion. Around 50% of the total frames are captured

in the small intestine are highly correlated in terms of time. The frames captured

in the other GI tract organs have a moderate temporal correlation. The temporal

redundancy can be reduced by using video compression techniques to achieve higher

compression performance. In addition to this, it is apparent that capsule endoscopes

experience major limitations in terms of processing capability and power consump-

tion. Therefore, low complexity compression algorithms must be utilised to avoid the

capsule being bulky and the image compressor itself consuming additional power. Fur-

thermore, as the recorded video is used for medical diagnostics, providing high-quality

decoded video with a high compression ratio is essential.

Standard video coding systems: Many standard video compression schemes

such as MPEG standards, H.264/AVC (Wiegand et al. (2003)) and H.265/HEVC (Sul-

livan et al. (2012)) exist that focus on obtaining optimized compression performance

by exploiting inter frame correlation. These standard video coding architectures com-
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press the video many times by removing the redundancy at the encoder by employing

computationally expensive motion estimation task. Hence, the standard video com-

pression architectures with full inter coding are unsuitable for attaining efficient video

compression at low power consumption with enhanced battery life requirements set

by the capsule endoscope. Motion JPEG (MJPEG) is another standard video coding

system popularly used to compress medical video. MJPEG encodes each frame of a

video sequence separately in JPEG format. It is computationally less complex but

performs poor in terms of compression performance as it does not remove the tempo-

ral redundancies between the successive frames. The main blocks involved in MJPEG

encoding are colour-space conversion, chroma sub-sampling, DCT, quantization and

entropy encoding.

DVC: DVC focuses on developing a low complexity encoder for power and re-

source constrained devices by shifting complex motion estimation from the encoder

side to the decoder side. On the other hand, there is no restriction for resource and

power consumption on the decoder. Therefore, DVC is more suitable for the applica-

tions such as WCE where the video is captured and encoded by a power constrained

device and decoded by the powerful computer without any time restriction. DVC

is framed based on two well-known theorems put forward by Slepian-Wolf known as

SW coding (Slepian and Wolf (1973)) and its extended version Wyner-Ziv coding

popularly called WZ coding (Wyner and Ziv (1976)).

TDWZ-DVC: Transform domain Wyner-Ziv based DVC (TDWZ-DVC) archi-

tecture shown in Figure 2.8 gives better compression performance compared to other

DVC systems and it is the preferred architecture in most of the research. The func-

tional description of TDWZ-DVC is given in this section as it is considered for com-

paring the performance and complexity of the proposed WCE video compression

methods.

In TDWZ-DVC, an input video sequence is split into group of pictures (GOP) and

each GOP consists of the initial keyframe and remaining WZ frames. GOP format

of size 2,4 and 8 is shown in Figure 2.9. Each frame consists only luma component

and coding of chroma components is not addressed in this codec. The keyframes are

encoded by H.264 codec in intra mode and WZ frames are Wyner-Ziv coded. WZ

coding of each frame involves transform coding of blocks, quantization and bit-plane
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Figure 2.8: TDWZ-DVC architecture

Frame Num 1 2 3 4 5 6 7 8 9 10 11 12 .........

GOP-2 Key WZ Key WZ Key WZ Key WZ Key WZ Key WZ ........

GOP-4 Key WZ WZ WZ Key WZ WZ WZ Key WZ WZ WZ ........

GOP-8 Key WZ WZ WZ WZ WZ WZ WZ Key WZ WZ WZ .........

Figure 2.9: GOP formats in DVC

formation. The WZ frames are transformed using 4x4 DCT and the transformed

coefficients are uniformly quantized. The coefficients are then grouped into separate

frequency bands, with each band containing the same frequency coefficients in different

blocks. The bits for each band are extracted and organised into bitplanes. These

bitplanes are encoded to compute parity bits by systematic channel encoder, generally

a low density parity check (LDPC) accumulate. The parity bits generated by LDPC

coding of the bit-planes are stored in the parity buffer and transmitted whenever

the decoder sends a request signal. The amount of parity bits transmitted depends

on the quality of side-information (SI) generated at the decoder using previously

reconstructed frames. SI is considered as the current WZ frame transmitted with

errors. Parity bits are used to correct the errors at the decoder. The decoder will

stop sending the request signal when the LDPC decoder corrects all the errors. This

process is called as Slepian-Wolf coding.
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Figure 2.10: LDPCA Encoder

The LDPCA encoder shown in Figure 2.10 is the combination of parity bits gener-

ator and an accumulator. The bits in each bitplane are EX-ORed at the parity nodes

using the LDPC graph structure constructed using the method proposed in (Var-

odayan et al. (2011)) to produce parity or syndrome bits. The accumulated parity

bits are produced by EX-ORing parity bits and are buffered in the parity buffer. The

buffered bits are transmitted in chunks when the request signal is received from the

decoder.

The side information for every WZ frame is generated by the decoder through mo-

tion compensation of frame interpolation or extrapolation of the previously decoded

closest frames. The bitplanes formed by DCT coefficients of the side information are

LDPCA decoded. The LDPCA decoder modifies its structure when an additional

chunk of the accumulated parity bits are received. Syndrome bits are retrieved on

the decoder side by EX-ORing the consecutive accumulated parity bits and used in

refining side information. The correctness of the side information refinement is tested

by using syndrome bits. The performance of the DVC system relies on the quality

of side information generation at the decoder. Better quality side information need

few parity bits for the refinement and achieves better compression, where as poor

quality SI need more bits for the correction and degrades the performance. After

LDPCA decoding, the decoded quantized symbol streams are formed by combining

the bitplanes of each DCT band. Next, DCT coefficients are reconstructed when all

the quantized symbols are available. The final WZ frame reconstruction is completed
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by inverse quantization and Inverse DCT and the reconstructed WZ frame is saved

in the frame buffer.

DVC techniques proposed for non-WCE applications use interpolation of previ-

ously decoded frames to generate SI. This introduces buffering complexity at the

encoder due to the storage of WZ frame bit-planes and restricts the GOP size to 2.

The limitation on GOP size increases the number of keyframes for encoding. As a

result, the use of temporal correlation in additional frames will be limited, resulting

in poor compression performance. WCE frames exhibit irregular motion, and inter-

polation techniques cannot produce better SI. To overcome the issue of SI generation

for WCE video, hash driven DVC is proposed in (Deligiannis et al. (2011)). Down-

sampled version of WZ frame is used as an hash which is intra coded and transmitted.

At the decoder, block based motion estimation technique is used to generate SI. But

in this method SI generation takes more time and introduces latency in decoding,

which limits the frame rate. Moreover, hash creation and transmission at the encoder

is an extra overhead when low complexity is desirable. In addition to all these, using

H.264 Intra for keyframe encoding increases the complexity of the encoder.

Adapted vector quantization (AVQ) based SI creation for DVC with a highly

computationally intensive searching method is presented for WCE in (Boudechiche

et al. (2017)). Codebook consisting of WCE frames of the entire video is used for SI

creation. Since the code book is used for the SI creation, all the frames are treated

as WZ frames eliminating the keyframe encoding. Although this method reduces the

cost of encoding keyframes to a large extent, using the available image database to

create the SI is not a superior option because capsule motion is unpredictable and

varies from person to person. Another disadvantage of this method is that it results in

a poor frame rate due to the increased complexity of the decoder search. This adds to

the buffering complexity by causing a greater delay in SI creation. Delay complicates

the buffering of parity bits and slows the frame transmission rate.

2.3.4 Compression Algorithms in Commercially Available Cap-
sules

There are many commercial capsules manufactured by three leading companies in

the field of GI endoscopy such as Given Imaging Inc., Intromedic, Olympus America
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which are approved by food and drug administration (FDA). Details and techniques

used in designing compression systems for commercial capsules are not available in

publications. Some abstract information collected from the patents which are publicly

available is provided in Table. 2.5.

Table 2.5: Compression methods used in commercially available capsules

Manufacturer & Capsule Name Patent Inventors Compression method

Glukhovsky
et.al. (Glukhovsky
et al. (2003))

• Compression methods based on JPEG and
MPEG standards.

Zinaty et.al. (Zi-
naty et al. (2015))

• Each image pixel is transformed into another
colour space (Y, Cb,Cr,Gdiff) before compres-
sion.

• Low complexity fast lossless compressions
method is used.

Medtronic Pillcam Avni et.al. (Avni
et al. (2010))

• The difference of two image pixels is encoded
and transmitted rather than the original image.

Horn et.al. (Horn
(2008) )

• Images are acquired with variable frame rate de-
pending on organ of interest in GI tract.

• Images are compressed when they are captured
at higher fps.

Shigemori
et.al (Shige-
mori and Matsui
(2011) )

• JPEG based compression technique is used with
the removal of some pixels.

Olympus America Endocapsule Bandy
et.al. (Bandy
et al. (2013))

• Images are captured with variable frame rate
and resolution with respect to speed.

• Low resolution and low frame rate is used at
lower speed and image is compressed by group-
ing blocks of pixels.

• Higher resolution and high frame rate is used
when the speed is high.

• This concept ensures that most of GI tract is
fully scanned to minimize the missing rate of
lesions.

• A new concept is used where frame rate and res-
olution varies based on the speed of the capsule.

2.3.5 Research Gap in WCE Video Compression

TDWZ-DVC provides a low complexity encoding solution for an application such as

WCE. The performance of the TDWZ-DVC system rely on the quality of SI generation

at the decoder. For SI generation most of the DVC based architectures use motion
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compensated interpolation and extrapolation of previously decoded frames (Borchert

et al. (2007), Brites and Pereira (2008)). An hash is used in DVC to improve SI of

WCE (Deligiannis et al. (2011)). Hash is generated using down-sampling the WZ

frame which is intra coded and at the decoder overlapped block based motion es-

timation (OBME) is used to generate better SI. Another DVC method based on

adapted vector quantization (VQ) with a highly complex searching method is used

for WCE (Boudechiche et al. (2017)). VQ allows for the creation of SI from a code-

book instead of motion compensated prediction of keyframes. Keyframe encoding is

eliminated and all the frames are treated as WZ frames. But it uses an available

database for the creation of SI which might not be a suitable solution as capsule

movement is irregular and varies from patient to patient. Also, high searching com-

plexity at the decoder may cause more delay which increases the parity bits buffering

complexity and limits the frame transmission rate.

The existing TDWZ-DVC architectures cannot be used directly for compressing

WCE video. Some modifications are required to be incorporated to make DVC suit-

able for WCE video compression due to the following:

• Keyframes are encoded by H.264 intra-frame encoder. H.264 intra prediction

employs a RD optimization method which increases the encoding computa-

tional complexity significantly. The computational requirements for intra pre-

diction modes is too high for an application such as WCE. The complexity of the

keyframe encoder should be as low as JPEG compression algorithm which has

color space conversion, sub-sampling, DCT, coefficient quantization and entropy

coding.

• Keyframes are encoded by conventional intra coding methods do not exploit the

textural characteristics of WCE images to achieve better compression.

• Decoding of WZ frames is not possible unless past and future keyframes are

decoded. Till the next keyframe is encoded and decoded, WZ frame is buffered

which introduces latency and causes buffering complexity at the encoder. To

avoid buffering of more number of frames, a GOP is limited to two which in-

creases the number of keyframes and decreases the performance of DVC.
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• OBME method of SI generation takes a long time and induces latency in decod-

ing. Also, the hash information is an extra overhead, though it is transmitted at

a low resolution at a very low quality and formation of the hash at the encoder

increases the complexity.

• Consecutive frames of WCE video captured in a particular GI organ has very

little motion or no motion, or sometimes large motion. Irrespective of the motion

characteristics, a small region in a GI tract exhibits homogeneity in colour and

texture (Khan et al. (2015)). Therefore it is sufficient to transmit only the

luma of WZ frame and chroma components of WZ frame can be generated at

the decoder side by matching luma and texture information of neighbourhood

keyframes. The elimination of WZ-chroma processing and transmission saves

both in terms of processing time and complexity, which is indispensable for

power conservation in battery operated capsule.

2.4 Literature Review on WCE Video Summariza-

tion

The problem of video summarization (VS) can be described as selecting a small batch

of frames from the video stream consisting of a large set of video frames that describe

the whole content of the original video. VS is a technique for parsing the sequence of

video frames into a shot set and extracting the set of keyframes (Zhu et al. (2005)).

Most of the state-of-the-art VS methods use three main common steps (Gygli et al.

(2014)):

• Feature extraction from each frame and latent space representation of extracted

features.

• Temporal segmentation of video into shots. Each shot consists a group of se-

quential frames with certain similar features. Frames in each shot consist of

similar kinds of frames with respect to colour, shape and texture with small

motion.

• Finally, a set of frames called keyframes are extracted from each shot which

describes the entire content of the shot.
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Figure 2.11: Typical keyframe extraction from a video sequence

A typical video summarization method to extract keyframes is shown in Fig-

ure 2.11. The details of the existing WCE video summarization techniques are de-

scribed in the following sections.

2.4.1 Summarization based on Handcrafted Features Extrac-
tion

In most of the methods proposed for WCE video summarization, colour, shape and

texture features are used in finding similarity between frames. In computer-aided

imaging techniques, features such as colour, texture and shape are considered as

handcrafted features representing low level features. These features are acquired by

using various algorithms from the information content of an image itself. Primar-

ily these features are used in conventional machine learning based computer vision

applications such as image classification and recognition. The information from the

handcrafted features is used for similarity estimation between the frames in WCE

video summarization.

In work (Mehmood et al. (2014)), features such as image moments fusion, multi-

scale contrast and curvature are used to calculate the visual saliency map for every

frame. Image statistical moments such as mean, skewness, standard deviation and

kurtosis are computed to describe the structural shape, boundaries and textural fea-

tures in an image. These features are utilized to compute the similarity between two

consecutive frames. Multi-scale contrast for every pixel in a frame produces the grey

level saliency map. The normalized fusion of image moments, contrast and curvature

measures is used to find the final saliency map. The resultant saliency map identifies

the keyframes by using the threshold.
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Table 2.6: WCE summarization techniques using Hand-crafted features

Study Features type Feature extraction tech-
niques

Shot detection
method

Keyframe ex-
traction

Li et al. (2010) Colour Colour histograms Distance K-means clus-
tering

Zhao and Meng
(2011)

Colour, texture
and shape

color moment invariants,
LBP and Fourier coeffi-
cients

Euclidean dis-
tance between
features

Linear discrimi-
nant analysis

Chen et al.
(2012)

Edges Canny detection No shot detec-
tion

Euclidean dis-
tance between
edge shift

Huo et al. (2012) Colour and tex-
ture

HSV and Block edge direc-
tivity descriptor

Frame texture
difference

Relational rank
matrix

Yuan and Meng
(2013)

Colour, texture
and shape

HSV, LBP and HoG Information en-
tropy

Affinity propa-
gation clustering

Ismail et al.
(2013)

Colour and tex-
ture

HSV and Edge Histogram
Descriptor

Fuzzy-C means
Clustering

Only outliers are
eliminated

Lee et al. (2013) Intensity Normalized cross correla-
tion

Frame similarity Motion analysis
with SURF
matching

Liu et al. (2013) Motion features Bee algorithm SIFT de-
scriptor method

Changes in scene
measurement

Forward and
backward mo-
tion estimation

Mehmood et al.
(2014)

Shape, bound-
aries and texture

Mean, skewness, standard
deviation and kurtosis

Fusion of Image
moments, con-
trast and curva-
ture

Saliency map
thresholding

Chen et al.
(2015)

Colour and tex-
ture

HSV and Gray level co-
occurrence matrix (GLCM)

Frame simi-
larity measure
and adaptive
threshold

Adaptive K-
means clustering

Edges are utilized as features in the frames to quantify distance, and the threshold

is used to determine frame similarity. When the edge shift between two frames is less

than a predetermined threshold, the second frame is considered redundant (Chen

et al. (2012)). Multiple features such as colour, texture and shape are extracted

to detect the shot and from each shot the keyframes are extracted using a linear

discriminant analysis algorithm (Zhao and Meng (2011)). In another work proposed

in (Yuan and Meng (2013)), colour features are extracted by Hue, saturation and

value (HSV) and shape features by using histogram of oriented gradients (HoG). For

each feature information, entropy is computed to find the shot. From each shot, the

keyframes are extracted by using affinity propagation clustering algorithm.
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In work (Guo et al. (2010)), mainly the colour features, texture features extracted

by local binary pattern (LBP) and shape features are used. A fixed threshold is used

to segment the video into different shots based on the distance between the features.

However, a fixed threshold is not a desirable choice, and hence other works go for

the segmentation with an adaptive threshold (Chen et al. (2015)). Keyframes are

the most representative frames in a video that may be retrieved using machine learn-

ing techniques including linear discriminant analysis, relational rank matrix, K-means

clustering, and speeded up robust features (SURF) (Bay et al. (2008)). Various meth-

ods along with the performance based on feature based video summary generation

techniques are listed in Table 2.6.

2.4.2 Non-Matrix Factorization based Unsupervised Meth-
ods

The Non matrix factorization (NMF) methods are applied on the clusters to extract

the most representative frames of the video sequence. The input video sequence is

divided into clusters based on the similarity estimation between the frames. NMF

retains much of the structural details of the input video frames by using non-negative

basis and its related weights. NMF algorithm takes a matrix m × n as input and

tries to find W and H. W represents the matrix consisting of the NMF basis and H

is a matrix of non-negative weights. NMF uses low-dimensional subspace to provide

frame reduction by offering the most representative frames that cover the entire GI

examination video.

NMF based frame reduction method, which involves three steps is proposed in (Tsevas

et al. (2008)). Initially, the feature dimensionality reduction technique is used to get

the matrix of non-negative values. Fuzzy-C-means clustering method is used to clus-

ter the frames into a predefined number of groups in the second step. Finally, the

NMF algorithm is used to extract the keyframes. In another clustering based method

proposed in (Iakovidis et al. (2010)), the keyframes are extracted by adaptive based

threshold instead of using a fixed threshold from each cluster to avoid losing the

significant frames.
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2.4.3 Deep CNN based Learning Techniques

Deep learning methods are used to extract the high level features to overcome the

limitations of methods based on handcrafted features. A deep convolutional neural

network (DCNN) can extract the high level features required to classify the consecu-

tive pair of frames as similar and dissimilar pair of images. A video shot boundary is

detected based on the similarity between the frames. From each shot, keyframes are

extracted to remove the redundant frames.

Siamese neural network (SNN) is trained in a supervised manner to extract the

features in work proposed in (Chen et al. (2016)). Support vector machine is trained

using a small set of images to classify the images as similar or dissimilar. The method

proposed in (Biniaz et al. (2020)) used a pre-trained DCNN model to extract the high

level features. The radial basis function is used to construct the high dimensional

model from the high level and low-level feature space. A singular value decomposition

based adaptive sliding window method is used to extract the keyframes.

2.4.4 Research Gap in WCE Video Summarization

In the WCE video, colour and texture content varies slightly from one frame to

the next consecutive frame. Therefore, colour and texture features are insufficient

to detect significant changes between two successive frames (Primus et al. (2013)),

resulting in an inaccurate video summary and the possibility of missing important

frames with significant lesions. This has a lot of practical implications where accuracy

is a primary requirement in medical diagnosis.

Deep learning based summarization approach perform better compared to con-

ventional methods that depend on weighted fusion of handcrafted features and frame

clustering algorithms (Apostolidis et al. (2021)). In deep learning approach, CNNs

are used to extract the high level features from the frames of the input video sequence.

Large set of videos and groundtruth summaries are required to train deep CNNs in a

supervised way. Creating groundtruth summaries for WCE video is a time consuming

and tedious task that also necessitates the assistance of a gastroenterologist. Hence,

there is a need of an unsupervised method to train deep CNN to generate WCE video

summary.
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Chapter 3

Distributed Video Coding
Architecture with Frequency Band
Classification

3.1 Introduction

The low complexity encoder requirement and energy constraint problem of WCE can

be potentially solved by implementing DVC. This chapter presents a DVC architec-

ture for WCE video encoding that attempts to overcome the drawbacks discussed in

Section 2.3.5. The video is encoded in DVC as a group of pictures (GOP), with an ini-

tial keyframe and the subsequent WZ frames encoded using two different techniques.

A JPEG based keyframe encoder with modifications at the transform and quantiza-

tion stages is proposed as a replacement of H.264-Intra to reduce the complexity. To

further reduce the number of computations at the quantization and entropy coding

levels, the proposed keyframe encoder adopts WCE image textural characteristics. A

simple technique is proposed for hash generation to improve the quality of SI. The

proposed method also presents a new approach for encoding subsampled chroma com-

ponents where in the SI generation of chroma components is done by using the low

bands of the luma component without using separate hash explicitly for chroma. SI

generation in the proposed system depends only on the previously decoded frames

which removes the restriction on GOP size and hence improves the compression per-

formance and reduces the encoder buffering complexity. Latency in SI generation is

also reduced as SI generation depends only on previously decoded frames.
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3.2 DVC Architecture for WCE Video Coding

The DVC architecture suitable for WCE video coding is shown in Figure 3.1. The

images captured by WCE image sensor in RGB colour space are transformed into

Y CbCr colour space. Chroma (CbCr) components are subsampled using Y CbCr 4:2:0

subsampling format. Next, the frames in each GOP of the video sequence are split into

keyframe or WZ frame. The JPEG based encoder encodes the keyframe by adopting

WCE image textural properties to classify the image blocks into smooth and non-

smooth blocks in the transform domain to reduce the computational complexity. The

detailed explanation of the proposed keyframe encoding method is given in Section 3.3.

In most of the low complexity image and video compression applications, integer

DCT is widely used due to its good energy compaction properties. But, for the images

with smooth textural properties such as GI tract images, integer discrete tchebichef

transform (DTT) performs better than integer DCT. The implementation of integer

DTT needs only addition and shift operations which reduces the computational com-

plexity compared to integer DCT. Therefore in the proposed system, DTT is used to

transform an image block from spatial to frequency domain and its significance on

compressing WCE images is given in Section 3.3.1. Modified JPEG quantization table

is used for quantizing the transformed coefficients and need only bit-shift operations.

In the proposed system, 8x8 transform is used for luma to reduce the number of intra

bands and bitplane length.

In WZ frame encoding, the three low frequency quantized luma coefficients of

each block are intra coded. Remaining high frequency components are considered

for forming higher frequency bands. The subsampled chroma components are trans-

formed using 4x4 DTT. The quantized higher frequency bands of the luma and lower 6

frequency bands of chroma components of the WZ frame are WZ encoded. The quality

of SI generated at the decoder has a significant impact on WZ encoding performance.

If the quality of SI estimation is not good, WZ coding performs worse than intra

coding. Therefore, the proposed system encodes few luma components in intra mode

using adaptive Golomb Rice (AGR) encoder which is used as an hash to create better

SI at the decoder and the remaining components in WZ mode. The same hash cre-

ated using luma components is used to generate SI for chroma. Detailed explanation
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for WZ coding of luma and chroma components is given in Sections 3.4.1 and 3.4.2.

The method used for SI generation and refinement is given in Section 3.4.3. The

proposed system is referred as DVC with frequency band classification (DVC-FBC)

in the remainder of the thesis.

3.3 Keyframe Encoder

Colour	Space
Conversion

2D	8x8
DTT

2D	4x4
DTT

Sub-
Sampling

Block	Mode
Decision Quantizer

Input
Image

Chroma

Luma

Smooth

Low	Bands

High	Bands

Non	Smooth

Low	Bands

Entropy
Coding

Compressed
Image

Figure 3.2: JPEG based key-frame encoder with block mode decision

Keyframe encoder considers the WCE image texture characteristics to get better

compression performance at reduced computational cost. Block diagram of keyframe

encoder is shown in Figure 3.2. It mainly consists of colour space transformation,

subsampling of chroma, image transformation into frequency domain, block classifi-

cation, quantization and entropy coding. These functional blocks are explained in the

following sections. In the remaining of the chapter the proposed keyframe encoder is

referred as block texture conditioned keyframe encoder (BT-KFE).

3.3.1 Image Transformation using Approximate DTT

WCE images are highly correlated in the spatial domain. On a pixel block of size N×

N , a linear orthogonal transformation is used to reduce the strong spatial correlation

and provide energy compaction into very few coefficients. A linear transformation

T : Rn −→ Rn is said to be orthogonal for all x, y ∈ Rn, if it satisfies 〈T (x), T (y)〉 =

〈x, y〉. Rn is real inner product space, that preserves the inner product between x and

y after the transformation. A 2D 8x8 transform is used for luma channel and 2D 4x4

transform is used for chroma channel. In terms of average bitlength and quality, DTT

performs better than DCT as reported in (Prattipati et al. (2013)) for the images with
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smooth texture. The 2D DTT for a 2D input sequence of order NxN is defined as,

Y (k1, k2) =
N−1∑
n1=0

N−1∑
n2=0

Λ(k1, n1)Λ(k2, n2)x(n1, n2) (3.1)

where k1, k2 = 0, 1,. . . . N − 1 and Λ(k, n) represents the orthogonal basis of DTT

and is given as,

Λ(k, n) = (a1n+ a2) Λ(k − 1, n) + a3Λ(k − 2, n) (3.2)

with

Λ(0, n) =
1√
N

, Λ(1, n) = (2n+ 1−N)

√
3

N3 −N

a1 =
2

3

√
4k2 − 1

N2 − k2
, a2 =

1−N
k

√
4k2 − 1

N2 − k2
,

a3 =

(
1− k
k

)(
2k + 1

2k − 3

)√
N2 − k2 + 2k − 1

N2 − k2
.

(a) (b)

Figure 3.3: Basis images of 8x8 (a) DCT and (b) DTT

Generally, fast integer DCT which is the approximated version of floating point

also called as Exact DCT (Huang et al. (2019)) is used in many compression algorithms

to reduce the computational cost compared to other versions of DCT. In this work,

multiplier less approximate integer DTT (Oliveira et al. (2017)) is used as it requires

only 384 additions and 96 bit-shift operations to compute 2D 8x8 transformation com-

pared to integer DCT which needs 512 additions and 224 bit-shift operations (Gordon

41



et al. (2004)). The complete set of basis images for the DCT and DTT are shown in

Figure 3.3. Average PSNR and Average SSIM have been evaluated for the available

data for both integer DCT and approximate DTT.

(a) (b)

Figure 3.4: (a) Average PSNR and (b) Average SSIM measurements of WCE images
with quantization at different quality factor for the considered transforms

PSNR and SSIM for around 300 endoscopic images are computed and an average

of that is considered for evaluating performance of considered transforms. Average

PSNR and SSIM measurements for WCE images for the transforms considered at

different quality factor (QF) is displayed in Figure 3.4. It is observed that the per-

formance of approximate DTT at reduced computational cost for endoscopic images

is the same as integer DCT.

3.3.2 Smooth and Non-smooth Block Mode Decision

The healthy GI tract has smooth and uniform coloured tissues. The pixel distribution

is consistent in a smooth region. When the blocks in smooth region are represented in

the frequency domain, significant energy is present only in low frequency components

while the high frequency components become zero after quantization. If the block has

edges and is textured, it is treated as non-smooth block resulting in significant high

frequency components. Usually, the abnormal tissue regions exhibit textured pattern

or otherwise endoscopic tissues are smooth in nature. In this method, the blocks are

classified into smooth and non-smooth blocks before quantization based on energy

content in lower frequency bands.
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Smooth block represented in the frequency domain has more energy compaction

in DC component compared to AC components. To detect the block mode of an 8x8

block, magnitude of DC coefficient is compared with the sum of magnitudes of first

two AC coefficients in the first column, first two AC coefficients in the first row and

first two AC coefficients in the diagonal to DC value. Block mode is viewed as smooth

if the energy in DC coefficient is around ten times greater than the sum otherwise

non-smooth. Chroma blocks are considered as smooth blocks as they do not exhibit

much variation in adjacent pixels.

3.3.3 Quantization

(a) (b)

Figure 3.5: (a) PSNR and (b) SSIM for different number of frequency bands
considered in zig-zag scan order for smooth luma 8x8 blocks in WCE images

The coefficients of the DTT are quantized and entropy coded based on the block

mode. A smooth block transformed using DTT results in insignificant high frequency

coefficients which are reduced to zero after quantization. Therefore, only low fre-

quency components in zig-zag order are considered for quantizing and computational

cost of quantizing high components can be reduced by prior block type detection.

Greater PSNR and SSIM are achieved when more coefficients are considered as low.

But after a certain number of low frequency coefficients, the quality becomes constant

and there is no significant improvement. Around 500 images from the esophagus to

the colon are analysed. Based on this, around 12 coefficients for a luma 8x8 smooth

block and 6 coefficients for 4x4 chroma block in zig-zag scan order are quantized,
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(a) (b)

Figure 3.6: (a) PSNR and (b) SSIM for different number of frequency bands
considered in zig-zag scan order for chroma 4x4 blocks in WCE images

while remaining are set to zero. It has been observed that considering more coeffi-

cients, doesnot exhibit significant improvement in quality as shown in Figure 3.5 and

Figure 3.6. JPEG quantization table for QF = 4 is approximated for multiplication

Figure 3.7: Modified JPEG Quantization at QF = 4 requires only bit-shifts

and addition free quantization. The quantization table shown in Figure 3.7 uses only

bit-shift operations and reduces the computational cost incurred by multiplications

and additions.

3.3.4 Coefficient Encoding

Coefficients obtained from quantization are entropy encoded in zigzag order using

a low-complexity and low-memory encoder suitable for WCE. Zigzag ordering maps

8x8 transformed and quantized block into 1x64 one dimensional sequence starting

from low frequency coefficients to high frequency coefficients. This type of reordering

contributes to the increase in compression performance of the run-length entropy
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coding schemes (Wallace (1992)).

The encoder algorithm uses run-length encoding. In this approach, non-zero AC

coefficients are adaptive Golomb Rice (AGR) encoded using (3.3) and run of zero

coefficients are Exponential Golomb coded (EGC) using (3.5). DC coefficients of

neighbouring blocks exhibit strong correlation. Therefore, the difference between the

adjacent DC coefficients is entropy coded using an AGR encoder.

GR(x, k) = [q zeros, 1, k least significant bits of x] (3.3)

where

q =
⌊ x

2k

⌋
(3.4)

EGC(x) = [kzeros, 1, binary(x, k)] (3.5)

where k is computed by

k = blog2(x+ 1)c (3.6)

Since AGR can encode only non-negative integers, mapping function M(resdc) given

in (3.7) is used to convert difference residue to non-negative integers.

M(resdc) =

{
2resdc, resdc ≥ 0

2|resdc|−1, resdc<0
(3.7)

where,

resdc = currentDC − previousDC (3.8)

where, currentDC is the DC coefficient of the current block considered for encoding

and previousDC is the DC coefficient of the previously encoded block.

The algorithmic description for encoding the coefficients is shown in Algorithm 3.1.

In the algorithm Qb is the block of quantized coefficients and Bm is the block tex-

ture mode. If Bm == 0, the block is considered as smooth otherwise non-smooth.

if Cr == 0 the block is considered as luma otherwise chroma block. The AC coef-

ficients of a smooth block are encoded in two steps. The cluster of first twelve low

frequency coefficients are scanned in zigzag order and converted into a sequence of

pair of elements (z,v), where v is the non-zero AC coefficient and z is the number of

run of zero-valued coefficients preceding v. The signed elements in v are mapped to
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Algorithm 3.1: Algorithmic description of quantized coefficients encoding

function bitstream = entropy encode(Qb, Bm, Cr)

bs = ””
resdc = currentdc − prevdc
bs = GR(M(resdc), kdc)
[kdc, Ndc, Adc] = update(kdc, resdc, Ndc, Adc
if Cr == 1 then
N == 6

else
if (Bm == 0) then
N == 12

else
N == 64

end if
end if
z = 0
for n = 2 : N do
v = Qb(n)
if v == 0 then
z ← z + 1

else
bs = [bs, EGC(z)]
bs = [bs, GR(M(v), kv)]
[kv, Nv, Av] = update(kv, abs(v), Nv, Av)
z = 0

end if
end for
if v == 0 then
bs = [bs,

′EoB′]
end if
bitstream = bs

end

non-negative integers using (3.9).

M(v) =

{
2v − 1, v>0

2(|v| − 1), v<0
(3.9)

All of the remaining majority symbols are almost zero in the smooth block. There-

fore after scanning the first few coefficients, to indicate the end of the block, a single

symbol EOB=’111’ is used. By using pre-identification of the block type, computa-

tions required for scanning and encoding of all the insignificant coefficients are reduced

which saves computational power. Quantized coefficients in non-smooth blocks are

encoded in the same fashion as smooth blocks except all the elements in a block are
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scanned in zigzag order. Magnitude of z coefficients is always non-negative and small,

therefore mapping is avoided for converting. Instead of AGR encoding ((Rice, 1979))

of z coefficients, EGC is used which is ideal for encoding small values. Initial value

of k is computed using (3.6). Initial Nc and Ac values are set to zero for both resdc

and v coefficients. Similar procedure is followed for encoding chroma component.

Parameter k is estimated using the method described in (Memon (1998)).

Algorithm 3.2: k-parameter updating based on values Nc and Ac.

function [k,Nc, Ac] = update(k, coeff,Nc, Ac)
d = abs(coeff)
while Nc2

k ≥ Ac do
k ← k + 1

end while
Nc ← Nc + 1
Ac ← Ac + d
if Nc > N0 then
Nc ← Nc

2

Ac ← Ac

2

end if
end

(a) (b)

Figure 3.8: Compression efficiency of (a) Luma component and (b) Chroma
component as function of No

Method for updating k based on Nc and Ac is as given in Algorithm 3.2. Threshold

value No=16 for luma and No=6 for chroma constitutes a good estimation accuracy

of k as shown in Figure 3.8a and Figure 3.8b. It has been observed that compression

efficiency is maximum around the considered threshold values.
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3.4 WZ Frame Encoder

3.4.1 WZ Coding of Luma Component

B11 B12 B13 B1L

B21 B22 B23 B2L

BL1 BL2 BL3 BLL

DC AC1 65 14 15 2827

AC2 4 137 16 26 4229

3 8 1712 25 30 4341

9 11 2418 31 40 5344

10 19 3223 39 45 5452

20 22 3833 46 51 6055

21 34 4737 50 56 6159

35 36 4948 57 58 AC6362

DC AC1 65

AC2 4 127

3 8 1311

9 10 1514

Image	with	N	rows	and	N
coloumns		is	divided	into	L	x	L

non-overlapped	blocks	of	size	8x8
for	luma	and	4x4	for	chroma Frequency	coefficients	in	zig-zag

order	after	transforming	an	8x8
Luma	block

Frequency	coefficients	in
zig-zag	order	after
transforming	4x4
Chroma	block

Non-overlapped
block	

(a)

	DC						DC						DC							DC 		DC						DC						DCSubband	1

Block	names

	AC1				AC1				AC1				AC1 	AC1				AC1				AC1Subband	2

	AC2				AC2				AC2				AC2 	AC2				AC2				AC2Subband	3

	AC2				AC2				AC2				AC2 	AC2				AC2				AC2	Subband	k	

k=64	for	Luma	and	k=16	for	Chroma

	ACm				ACm				ACm									ACm 	ACm				ACm				ACm	Subband	m	

Most	Significant	Bits:							Bitplane			1

Bits	in	j-1	th	Plane:													Bitplane			2

Bits	in	j-2	th	Plane:													Bitplane			3

Least	Significant	Bits:							Bitplane			j

				BL-1,L	BL,L		B11				B12					B13				B14

(b)

Figure 3.9: (a) Subband formation from frequency components of each block and (b)
Bitplane extraction from subbands

Luma component obtained from colour space conversion is transformed into the

frequency domain by applying 8x8 DTT on non-overlapped blocks. In WCE images,

most of the region is smooth with uniform pixel distribution and applying smaller

transform, e.g. 4x4 results in poor RD performance. Another advantage of using

larger transforms is reduction in complexity of bit-plane encoding. For smaller trans-

form, the frame results in more blocks with less number of subbands of larger bitplane

length. Higher bitplane length need more number of gates to generate parity bits,

resulting in higher complexity. Parity bit computation complexity can be minimized
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by reducing the bitplane length which is possible by increasing the block size. From

the quantized subbands, lower three subbands (DC, AC1 and AC2) are intra coded

using AGR encoding which is described in Section 3.3.4.

Process of subband formation and bitplane extraction are shown in Figure 3.9a and

Figure 3.9b. Bitplanes are extracted based on the maximum absolute value within

each frequency band from remaining high frequency bands. From each subband j

bitplanes are extracted where j = log2[max(suband)]. High quality SI is generated,

when more low bands are intra coded. However, with an increase in the number

of low bands, only fewer high bands are left to take advantage of WZ coding thus

decreasing the performance. Therefore, only three components DC, AC1 and AC2

are intra coded and the remaining are considered as high-frequency bands which are

WZ encoded.

Each bitplane in the subband is Slepian-Wolf encoded. Slepian-Wolf coding pro-

vides lossless encoding of two correlated frames. It achieves optimal bit-rate by inde-

pendent encoding and joint decoding of two correlated frames. It consists of LDPCA

encoder and a buffer to store parity bits. Extracted bitplanes from quantized coeffi-

cients are encoded independently to generate parity bits using LDPCA encoder which

are stored in parity bit buffer. The generated parity bits serve as error correcting in-

formation at the decoder. These parity bits are transmitted in chunks upon reception

of the request signal from the decoder. The low bands which are transmitted to the

decoder assists in generating better quality SI, as the temporal correlation of low

frequency bands is high.

3.4.2 WZ Coding of Chroma Component

Non-overlapped blocks of subsampled chroma component in 4:2:0 format is trans-

formed into frequency domain using 4x4 DTT. Larger transform is not required for

domain conversion as the chroma component has less homogeneous region due to sub-

sampling. The chroma subband length is same as luma subband of length N (for k=1

to 16), which facilitates using same LDPCA encoder to generate parity bits. This con-

cept avoids using another LDPCA encoder of different rate. All the chroma subbands

are Slepian-Wolf encoded and transmitted in a similar fashion of luma component

without splitting into low and high bands.
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3.4.3 Side Information Generation and Decoding

The intra coded low bands of the luma component of the WZ frame is received first at

the decoder side. Previously decoded frame is used for SI generation for WZ encoded

frequency bands. Received DC, AC1 and AC2 frequency components from each block

are entropy decoded. Motion estimation for each block is performed by using a block

matching algorithm (BMA) considering the previously decoded frame. The BMA

divides the current frame into macroblocks and compares each of the macroblock with

the co-located block and its neighbouring blocks in the previously reconstructed frame.

The three low frequency components from each block of WZ frame is matched with

transformed blocks of the similar size in the previous frame. Since only reconstructed

DC, AC1 and AC2 coefficients of luma component of WZ frame are available at the

decoder side, the best match is selected based on minimum mean squared error (MSE).

The MSE of two blocks X and Y with three low bands is calculated as given in (3.10).

MSE = (XDC − YDC)2 + (XAC1 − YAC1)
2 + (XAC2 − YAC2)

2. (3.10)

where, X corresponds to the transformed block of WZ frame and Y is the transformed

block in the previously reconstructed frame located in the search area.

Reconstructed
Y Component

Cb

Cr

SI for Cb,Cr 
Components

Cb,Cr in
4:2:0

Subband 1
Subband2
Subband 3

Subband 16

Subsampled
Chroma

Subbands obtained
after DTT

Figure 3.10: Side Information generation for chroma components from Intra-coded
luma lowbands

The motion compensated frame is the new SI for the remaining WZ coded fre-

quency bands. Motion estimation with Full search algorithm in a ±7 pixel search area

is used in SI generation. The co-located block in chroma component of the previous

frame is considered as best match for SI creation in case of WZ chroma as shown in

Figure 3.10. Luma lowbands are used to search the best matching block with in the
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search area. After the best match is found, its co-located chroma pixels can be used

for the creation of chroma SI. Once the SI is found for chroma, Cb and Cr compo-

nents are down-sampled and transformed using DTT to find the chroma SI frequency

bands. SI is used to decode the remaining luma bands and chroma bands. SI refined

using Slepian-Wolf decoder is reconstructed and stored in the frame buffer which is

used for SI reconstruction of the future WZ frames.
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Figure 3.11: Average PSNR (dB) and SSIM of side information for different video
sequences at GOP=2 ,4, 8

Quality of the SI is a very important parameter in deciding the performance of

DVC techniques. To analyse the quality of SI generated, the four test videos of

different motion characteristics are considered. Average PSNR and SSIM of SI for

different WZ frames at different GOP size are shown in Figure 3.11. Quality of

decoded WZ frames is better at GOP 2 compared to GOP=4, 8, but degrades the

performance of the system due to increase in number of keyframes. In case of GOP

8, decrease in SI quality of higher WZ frames reduces the compression performance.

GOP of 4 gives better SI quality with average PSNR of more than 30 dB for all WZ

frames with one key-frame for every 4 frames. This method is expected to generate

better SI quality compared to motion compensated frame interpolation. Table 3.1

shows a comparison between SI quality, generated by the DVC-FBC method and

interpolation algorithm proposed by (Artigas et al. (2007)).

The visual quality of the SI frames for selected images is shown in Figure 3.12. SI

is better for the video sequences with smooth translation and low motion, however can

be poor due to absurd motion between frames when there is irregular and fast motion
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(a) PSNR = 34.58 dB, SSIM
= 0.9146

(b) PSNR = 31.98 dB, SSIM
= 0.8929

(c) PSNR = 34.67 dB, SSIM
= 0.9098

(d) PSNR =29.12 dB, SSIM
= 0.8498

(e) PSNR =36.19 dB, SSIM
= 0.9213

(f) PSNR =30.58 dB, SSIM
= 0.9050

(g) PSNR =35.63 dB, SSIM
= 0.9213

(h) PSNR =35.59 dB, SSIM
= 0.9196

(i) PSNR =36.59 dB, SSIM =
0.9096

(j) PSNR =33.59 dB, SSIM
= 0.8879

(k) PSNR =32.99 dB, SSIM
= 0.9421

(l) PSNR =30.12 dB, SSIM =
0.8983

(m) PSNR =29.82 dB, SSIM
= 0.8752

(n) PSNR =29.09 dB, SSIM
= 0.8749

(o) PSNR =28.73 dB, SSIM
= 0.8712

(p) PSNR =26.27 dB, SSIM
= 0.8602

(q) PSNR =33.18 dB, SSIM
= 0.8829

(r) PSNR =29.48 dB, SSIM
= 0.8764

(s) PSNR =28.31 dB, SSIM
= 0.8742

(t) PSNR =27.91 dB, SSIM
= 0.8771

Figure 3.12: Visual quality of side information with PSNR and SSIM for frames of
different test video sequences
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Table 3.1: Comparison of SI quality between DVC-FBC and Motion compensated
frame interpolation (MCFI) method for GOP of 2

DVC-FBC MCFI (Artigas et al. (2007))

Avg PSNR Avg SSIM Avg PSNR Avg SSIM

Test Video1 33.86 dB 0.9418 26.23 dB 0.7830

Test Video2 33.22 dB 0.9013 25.98 dB 0.7734

Test Video3 29.59 dB 0.8502 22.45 dB 0.6931

Test Video4 31.08 dB 0.8702 23.23 dB 0.7112

of the capsule. Images with better SI require a less rate and bad SI need more rate.

The SI generated by the DVC-FBC method is close to 35 dB which is the minimum

threshold for acceptable medical image quality as suggested by the study (Istepanian

et al. (2008)) which enables transmission of fewer parity bits for decoding and in

turn saves transmission energy. SI which is an estimate of the WZ frame along with

transmitted parity bits is used to reconstruct the WZ frame. Reconstructed WZ frame

is stored in frame buffer after inverse quantization and inverse transform.

3.5 Complexity Analysis

3.5.1 Complexity Analysis of Keyframe Encoding

Table 3.2: Computations required per 8x8 block for transformation and quantization

Functional
Block

Conventional Method Proposed Method

Image Integer DCT Approximate DTT

Transformation 512 Additions, 224 Bit-shift
Operations

384 Additions, 96 Bit-shift
Operations

Quantization JPEG Qunatization Modified JPEG Quantiza-
tion

64 Multiplications 64 Bit shift operations

The complexity of the keyframe encoder and JPEG baseline encoder are evalu-

ated with respect to the average number of computations needed for processing an

8x8 block. The analysis of complexity reduction is summarized in Table 3.2 and Ta-
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Table 3.3: Computation reduction for an 8x8 block with block mode decision for
BT-KFE

Functional stage Without block mode decision With block mode decision

Quantization 64 Bit-shifts 12 Bit-shifts for smooth, 64
Bit-shifts for non- smooth

Coefficient Encoding 64 comparisons for generating
pairs of non-zero and zero co-
efficients

12 comparisons for coeffi-
cient encoding in case of
smooth block

Reduction in computations with the texture based
keyframe encoder

(0.81) x (% of number of
smooth blocks)

ble 3.3. Using the block texture conditioned keyframe encoder, significant reduction

in computations is achieved compared to JPEG baseline encoder. JPEG standard

uses Huffman tables to encode the pairs of non-zero AC coefficients with a run of

preceding zero coefficients. Huffman encoding requires two passes through the im-

age which is very complex for WCE application and need extra memory for storing

Huffman tables which can be the bottleneck for hardware implementations. The co-

efficients are fed to the encoder in the first pass. Huffman tables are created based

on the frequency of occurrence of quantized coefficients. Huffman coding generates

different tables for DC and AC coefficients of luma and chroma components (Wallace

(1992), Pennebaker and Mitchell (1992)). In the second pass encoding of data using

tables as reference is done. Constructing Huffman tables need extra computations

which increases the complexity and also demand more memory. Along with encoded

data, even tables need to be transmitted to the decoder which increases the power

required for transmission. Proposed algorithm uses adaptive Golomb Rice encoding

of quantized coefficients which does not employ table creation.

3.5.2 Complexity Analysis of WZ Frame Encoding

To develop a low complexity encoder, the following techniques are incorporated in the

proposed DVC architecture.

• Elimination of hash creation and transmission: Capsule endoscopy video ex-

hibits irregular motion. Therefore, sending hash to the decoder as extra infor-
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mation helps in better SI generation which improves the rate-distortion perfor-

mance. Hash based DVC architectures (Aaron et al. (2004), Deligiannis et al.

(2012a, 2011), Ascenso et al. (2010)) result in better performance compared to

conventional DVC architectures. But creating hash on the encoder side at block

or frame level requires complex computations and it is extra overhead for the

transmission. The DVC-FBC system does not employ any method to create and

code the hash data. Instead, only a few low frequency bands of luma component

are considered as intra bands that are used as hash to estimate SI at the de-

coder. The intra coded low bands are again not WZ coded and there is no extra

overhead in the transmission of data. Thus, the proposed method reduce the

encoding complexity compared to other hash based TDWZ-DVC architectures.

• Complexity reduction in WZ frame computational elements: Encoding of WZ

frame in DVC-FBC comprises integer approximation of DTT, quantization, ex-

traction of bit-planes and parity bit generation by LDPCA encoding. These

computational elements need low computations compared to conventional TDWZ-

DVC computational elements. DTT offers reduction in computations compared

to DCT used in conventional TDWZ-DVC architectures. Quantizer need only

bit shift operations. LDPCA is performed by just EX-ORing of a binary array

with parity-check matrix bits. Very low amount of memory is required to store

parity matrix bits since this matrix is sparse. Bit-plane length of chroma com-

ponents is same as luma component. Therefore, separate LDPCA encoder of

different length is not required to encode chroma bit-planes.

• Reduced latency in SI creation at the decoder: For an application such as WCE,

the encoder complexity needs to be low, but the complexity of the decoder can

be high. In the DVC-FBC system, a decoder with the feedback channel is

implemented to control the rate. Generated parity bits are accumulated in a

parity buffer are transmitted in chunks whenever the decoder sends the request

signal. Parity bits received by the decoder are used for SI refinement. When

the SI refinement is not satisfied, decoder requests encoder to transmit another

chunk of parity bits. Parity bits are retained in the buffer till the decoder stops

sending request signals to the encoder. This introduces delay in decoding the
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WZ frame and limits the frame transmission rate. When another WZ frame is

available for encoding, encoder cannot send the available WZ frame for decoding

before completing the decoding of previous frame. So, encoder is compelled to

store more parity bits in the buffer which increases the buffering complexity.

Total delay in decoding of WZ frame depends on many factors (Deligiannis

et al. (2012b)) and is given in (3.11).

Td =
tfa + tSI + F × ttr + F × tLDPC

tfa
(3.11)

where tfa = frame acquisition period, tSI = time to generate side information,

ttr = time for transmission, tLDPC = LDPC decoding time and F = number of

feedback requests from the decoder.

In the proposed system, latency at the decoder is low since the encoding of the

bitplanes to generate parity bits and SI creation on the decoder side happen

simultaneously. Parity bits transmission in chunks of 25 bits to the decoder

starts immediately after all the subbands are encoded. tSI can be ignored as

the encoding and transmission of intra bands of the WZ frame happen for each

block whenever the transform of the block is available. Also, SI is generated with

the simple motion compensation process on the previously decoded key-frame

and it does not take much time. The time for transmission ttr can be ignored as

it is in the order of 15ns (Andreuccetti (2012)). Therefore, latency in decoding is

due to the number of feedback requests F and tLDPC . The calculation of frame

rate (fr) depends only on F and tLDPC as given in (3.12). The total delay in

decoding the frame is much reduced compared to (Boudechiche et al. (2017))

and (Deligiannis et al. (2012a)) as the time to generate SI is negligible.

fr =
1

Td
=

1

F x tLDPC
(3.12)

The time required to LDPC decode a codeword of length of maximum 1944 bits

with 27 to 81 iterations is tLDPC = 6µs per iteration (Brack et al. (2007)). For

a frame resolution of 320 x 320 with 8 x 8 transform, the bit-plane length is

1600 bits. To transmit 1600 bits with the chunk length of 25 bits, 64 chunks

are needed. Calculation of total number of chunks and time to decode the

bitplanes of luma and chroma are given in Table 3.4. In luma, DC band, first
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and second AC bands are intra coded. There are maximum 215 bit-planes of

remaining subbands for luma, 48 for Cb and 48 for Cr components (calculated

based on content based quantization). In the worst case, when entire bit-plane is

transmitted at once, around 2ms is required to decode a bit-plane. Transmitting

in 64 chunks, results in F=19904 for luma and chroma. To decode all the chunks,

the decoder needs just 0.12s time in worst case with a frame rate of 8 fps. The

frame rate can be greater than 8 fps because the decoder terminates its operation

before requesting all the chunks, once all the bits are corrected. Also, frame rate

can be further increased by decoding the bitplanes in parallel when a high frame

rate is required.

Table 3.4: Computation of time required to decode the luma and chroma bitplanes
of length=1600 in worst-case scenario

Component #WZ
bands

# bit-
planes

n=Number of
chunks per
component

Time required to de-
code bitplanes in each
component=n ×tLDPC

Y 61 215 13760 82.56 ms

Cb 6 48 3072 18.3 ms

Cr 6 48 3072 18.3 ms

Total 73 311 19904 119.42ms

Total Number of chunks
in one WZ frame
F=19904

Time required to decode all the
chunks=119.42 ms

Encoder of the WZ frame computes all the parity bits and stores in fixed size

buffer. These bits are transmitted to the decoder whenever encoder receives

the feedback request from the decoder. Buffer size need not be changed if

the decoder can complete decoding according to the frame capture rate. If

the decoder can complete its operation before another frame is available at

the encoder (frame decoding is faster than frame rate), decoder can wait until

another frame is available. If the decoder cannot complete decoding within the

available time, then an additional buffer at the encoder is required to store the
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syndrome bits of the next WZ frame. However, because the required frame rate

for the WCE application is just 10 fps, this method suffices (more than 10 fps)

without employing an additional buffer due to the availability of SI before WZ

decoding. Therefore, the DVC-FBC system can work at the higher frame rate

and high resolution with decoding by using sufficient resources mainly parallel

decoding of bit planes.

3.6 Simulation Results

The DVC-FBC system is evaluated for four test video sequences captured at different

areas of the GI tract by Mirocam-Intromedic capsule which exhibits different motion

characteristics. The performance evaluation is done by plotting average frame quality

versus the average bitrate. The frame quality is measured in PSNR and SSIM. Medical

image compression applications demand minimum reconstruction quality of at least

35 dB. Therefore, DVC-FBC is evaluated for GOP size of 2 and 4.

3.6.1 Performance Evaluation of BT-KFE

Table 3.5: Quality (PSNR) in dB and compression rate of the WCE luma images for
the key frame encoder. (Qjpeg is JPEG quantization table, QModified is modified

quantization table)

Image Without block mode decision With block mode decision

PSNR (dB) Smooth PSNR (dB)

Qjpeg QModified CR(%) blocks in % Qjpeg QModified CR(%)

Img 1 40.33 40.29 89 82 40.25 40.21 90

Img 2 42.79 42.76 87 72 42.77 42.74 89

Img 3 40.14 40.08 84 42 39.98 39.89 84

Img 4 40.30 40.28 84 45 40.22 40.19 84

To assess the performance of the keyframe encoder with block classification, images

with smooth and non-smooth textural properties are considered. Img1 and Img2

has more number of smooth blocks and only low frequency coefficients in luma and
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chroma blocks are encoded which saves bits required to encode the few high frequency

coefficients. Ignoring higher coefficients from encoding slightly reduces the quality

with improvement in CR. Img3 and Img4 consists less number of smooth blocks and all

the frequency coefficients of most of the blocks are considered for encoding. Therefore,

there will not be any improvement in CR. The compression-quality performance of

the keyframe encoder without and with block classification is given in Table 3.5.

Table 3.6: Performance comparison between BT-KFE and other compression
methods for WCE

Method PSNR SSIM CR(%)

DPCM (Malathkar and Soni (2019)) ∞ 1 60.28

DPCM (Fante et al. (2016)) 34.85 0.9913 86.34

DPCM (Khan and Wahid (2011a)) ∞ 1 67.47

DPCM+Subsampling (Khan and Wahid (2011b)) 37.27 0.9964 77.14

DPCM (Chen et al. (2009)) 42.24 0.9976 62.95

DCT (Turcza and Duplaga (2013)) 35.21 0.9842 83.05

DCT (Lin and Dung (2011a)) 25.31 0.9581 93.99

DCT (Wahid et al. (2008)) 28.19 0.9606 89.06

DCT (Lin et al. (2006)) 31.77 0.9646 89.46

DTT (BT-KFE) 37.14 0.9915 89.73

By applying block classification, complexity will be reduced without forgoing the

quality of the reconstructed signal. As seen from the table, CR can be improved by

1-2% without change in PSNR for images with higher % of smooth blocks. The block

classification technique is more useful in compression of endoscopic images due to

smooth and homogeneous structure of GI tract. Table 3.6 compares the compression

performance of the BT-KFE with the other compression methods. From the table,

it can be observed that the BT-KFE provides better quality for the achieved CR

compared to the other methods with lower complexity. This method outperforms the

DPCM methods in terms of CR for nearly same quality and the DCT based methods

in terms of quality for nearly the same CR.
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3.6.2 RD Performance of DVC-FBC

The assessment of the DVC-FBC system is done by comparing the experimental

results for YCbCr sequences with Motion JPEG, TDWZ-DVC and H.264/AVC intra

(Main profile) at 8 fps. H.264 is very important for comparison as it is recognized codec

for medical video compression (Yu et al. (2005)). The original test video sequences

are in RGB format converted to YCbCr 4:2:0 format for testing using H.264 intra and

TDWZ based DVC codecs.

The graphical comparison of RD results of the DVC-FBC system with benchmark

codecs is shown in Figure 3.13. It can be observed that the performance of the

DVC-FBC is better than Motion JPEG, but still less efficient compared to H.264-

Intra. Though, H.264-Intra performs better than the DVC-FBC, intra prediction

used in H.264-Intra is complex and not suitable for an application such as WCE.

The results are also compared with MCFI based TDWZ codec. The DVC-FBC with

frequency band classification gives better performance. RD performance of the DVC-

FBC system with GOP=4 is better than GOP=2.

3.6.3 Bjontegaard-Delta Metrics

The Bjontegaard delta (BD) rate savings and PSNR improvement introduced by

the DVC-FBC compared to MJPEG, TDWZ-DVC and H.264-Intra for GOP=4 and

GOP=2 is presented in Table 3.7 and Table 3.8. DVC-FBC performs better than

MJPEG in terms of BD rate savings of around 60% with PSNR gain of 8 dB for

GOP=4 and 42% with PSNR gain of 5 dB for GOP=2. Compared to TDWZ-DVC,

DVC-FBC achieves BD rate savings of 40% and 20% with PSNR gain of 5 dB and

2 dB for GOP=4 and 2 respectively. The gain in compression performance is achieved

at reduced encoder complexity. H.264-Intra performs better than DVC-FBC and gives

better BD rate savings of around 45% with PSNR improvement of 3 dB.

3.6.4 Encoding Time

The encoding time depends on two components: WZ coding and the keyframe coding.

The encoder complexity is determined by the encoding time for the entire sequence in

seconds. The encoding time can give a reasonably accurate estimation of the encoder
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Figure 3.13: Rate-distortion performance for 320 x 320 endoscopic test video
sequences with 8 frames/second
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Table 3.7: The BD bit-rate saving, PSNR gain in dB and SSIM gain of the
DVC-FBC with GOP=4 compared to other coders

Test Video MJPEG TDWZ-DVC H.264-Intra

sequences BD (%) BD BD BD (%) BD BD BD (%) BD BD

bit-rate PSNR SSIM bit-rate PSNR SSIM bit-rate PSNR SSIM

Video1 -63.86 +8.48 +0.0173 -49.72 +5.75 +0.0150 +39.42 -2.39 -0.0102

Video2 -56.20 +7.59 +0.0122 -47.77 +5.60 +0.0098 +47.87 -2.73 -0.0124

Video3 -49.18 +6.93 +0.0103 -28.68 +3.34 +0.0053 +60.69 -3.12 -0.0114

Video4 -59.72 +8.22 +0.0136 -46.32 +5.32 +0.0064 +51.39 -3.01 -0.0122

Table 3.8: The BD bit-rate saving, PSNR gain in dB and SSIM gain of the
DVC-FBC with GOP=2 compared to other coders

Test Video MJPEG TDWZ-DVC H.264-Intra

sequences BD (%) BD BD BD (%) BD BD BD (%) BD BD

bit-rate PSNR SSIM bit-rate PSNR SSIM bit-rate PSNR SSIM

Video1 -46.54 +5.62 +0.0110 -24.32 +2.52 +0.0077 +77.14 -5.50 -0.0146

Video2 -44.25 +5.66 +0.0059 -32.46 +3.56 +0.0026 +88.55 -4.59 -0.0187

Video3 -40.89 +5.22 +0.0061 -11.97 +1.27 +0.0060 +82.42 -4.37 -0.0138

Video4 -42.05 +5.45 +0.0068 -19.57 +2.07 +0.0030 +79.77 -6.02 -0.0174

complexity under appropriate simulation conditions. Table 3.9 compares the encoding

time of the DVC-FBC and time reduction computed using (3.13) over the reference

encoders at four different RD points.

Time Reduction in % =
TRef − TDV C−FBC

TRef
X100 (3.13)

Where, TRef is the encoding time of the reference encoder in seconds and TDV C−FBC

is the encoding time of the DVC-FBC in seconds.

The RD points selected are at different quantization parameters which encodes the

video sequences at approximate bitrates close to 300, 600, 1000 and 1500 kbps. Time

reduction indicates by how much the complexity of the proposed codec is reduced

compared to reference codec. Positive reduction indicates that the proposed encoder

requires less time and negative reduction indicates the proposed consumes more time

compared to reference encoders. The average encoding time per frame computed
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Table 3.9: Comparison of encoding time and time reduction by the proposed
(DVC-FBC) over the reference encoders at various bitrates

Test Bitrate Encoding Time in seconds Time reduction in% over reference encoders

sequences (kbps) MJPEG TDWZ-DVC H.264-Intra DVC-FBC MJPEG TDWZ H.264-Intra

500 57 132 240 62 -8.77 +53.03 +74.16

Video-1 1000 58 132 241 66 -15.72 +50.21 +72.61

1500 58 168 306 78 -36.84 +53.65 +74.50

2000 59 190 346 80 -40.25 +57.95 +76.87

500 52 115 210 56 -7.69 +51.52 +73.33

Video-2 1000 53 127 232 60 -13.20 +52.98 +74.13

1500 53 146 267 66 -24.52 +55.06 +75.28

2000 53 156 303 71 -33.35 +57.40 +76.56

500 41 92 168 45 -9.75 +51.30 +73.21

Video-3 1000 42 102 186 47 -11.90 +54.06 +74.73

1500 42 117 214 54 -28.57 +54.12 +74.76

2000 43 132 241 54 -25.58 +59.26 +77.59

500 44 99 180 48 -9.01 +51.52 +73.33

Video-4 1000 45 110 200 51 -15.90 +53.64 +74.50

1500 45 154 280 57 -29.54 +62.99 +79.64

2000 45 176 320 61 -38.63 +65.34 +80.93

+ and - indicates complexity reduction and increase in proposed compared to reference encoders respectively
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Figure 3.14: Comparison of DVC-FBC encoder complexity with reference encoders,
averaged over all the frames in test video sequences

over all the four video sequences at different bit-rates is provided in Figure 3.14.

Proposed DVC-FBC encoder needs an average encoding time of 0.0420 seconds per
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frame. Though MJPEG needs 0.0372 seconds per frame which is faster than DVC-

FBC, it results in poor RD performance. H.264-Intra consumes average encoding

time of 0.2 seconds per frame and substantially much complex than DVC-FBC due

to RD optimization. TDWZ need more time as 50% of the frames are keyframes and

H.264-Intra coded.

3.6.5 Visual Performance

The visual quality of the reconstructed WZ frames of the DVC-FBC codec for GOP=4

with different rates along with original and SI frames is shown in Figure 3.15. SI frame

has very good quality in some regions and distorted in some regions. Distortion can

be corrected just after decoding the first few subbands and thus require less bitrate.

But finer details of the texture are clearly visible only after decoding all the subbands.

It can be observed that higher quality requires higher rate. Medical imaging demands

greater than 35 dB image quality which requires more than 800kbps rate when the

frame transmission rate is 8 frames per second.

3.7 Summary

Motivated by low complexity encoder requirements for WCE video application, a

simple encoder based on distributed video coding that exploits temporal correlation

with novel texture conditioned key-frame encoder is designed. Most of the WCE

video content has insignificant high frequency coefficients due to homogeneous and

smooth textured regions of the GI tract. Texture conditioned key-frame encoder

reduces the complexity of quantizing and entropy coding of insignificant frequency

components using a simple block classifier for the smooth region without compro-

mising on the quality. To combat the irregular motion characteristics of WCE video

content, the DVC-FBC system intra codes lower frequency coefficients of each 8x8

luma block which acts as a hash to generate good quality SI at the decoder. This

reduces the complexity of hash creation and transmission. The generated SI quality is

high and can go upto 36 dB for the video sequences with low motion characteristics.

A novel approach for WZ coding of subsampled chroma component and generation of

SI for chroma is introduced. Experimental results show that, this system outperforms
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(a) Endoscopic Test Video1; (i) Original, (ii) SI frame and reconstructed frames at (iii)
622kbps; 33.71 dB; 0.9786 (iv) 861kbps; 36.37; 0.9867 (v) 1124kbps; 40.18 dB; 0.9909 (vi)

1371kbps; 41.55 dB; 0.9941

(b) Endoscopic Test Video2; (i) Original, (ii) SI frame and reconstructed frames at (iii)
644kbps; 33.77 dB; 0.9806 (iv) 850kbps; 36.23; 0.9874 (v) 1163kbps; 39.07 dB; 0.9914 (vi)

1437kbps; 41.56 dB; 0.9943

(c) Endoscopic Test Video3; (i) Original, (ii) SI frame and reconstructed frames at (iii)
508kbps; 33.82 dB; 0.9813 (iv) 655kbps; 36.91; 0.9876 (v) 892kbps; 40.18 dB; 0.9920 (vi)

1147kbps; 42.85 dB; 0.9947

(d) Endoscopic Test Video4; (i) Original, (ii) SI frame and reconstructed frames at (iii)
605kbps; 34.13 dB; 0.9788 (iv) 817kbps; 36.59; 0.9866 (v) 1082kbps; 39.54 dB; 0.9910 (vi)

1362kbps; 42.05 dB; 0.9943

Figure 3.15: Visual performance of 320 x 320 endoscopic test video sequences at 8
frames/second with PSNR and SSIM index of SI frames decoded at different rates

for GOP=4
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MJPEG by 60% and TDWZ-DVC by 40% in compression with an average encoding

time of 42ms per frame. The DVC-FBC achieves better RD performance compared

to TDWZ-DVC with 50% reduction in complexity.
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Chapter 4

DVC Architecture with Deep
Chroma Prediction Model

4.1 Introduction

The consecutive frames in the WCE video exhibits homogeneity in colour and tex-

ture. Considering this, it is sufficient to transmit only the luma components of the

WZ frames while the chroma components can be predicted using keyframes. In WCE,

decoding is done using a powerful computing system with no memory and power con-

straints. This chapter presents a DVC architecture with a CNN based deep neural

network to predict chroma components of the WZ frame from keyframe at the de-

coder. This eliminates the processing of WZ-chroma components thus reducing the

computational complexity with improved compression performance. The proposed

deep neural network for chroma prediction achieves better prediction performance

with less computation time. The deep chroma prediction model consists of a merg-

ing block with a spatial attention mechanism to merge the feature maps extracted

from reference and target frames. So, the model can exploit the non-local similarities

between the two frames. Thus, the chroma prediction model can efficiently transfer

color from the keyframe to similar regions in the WZ frame.

4.2 Proposed DVC Architecture with Deep CNN

(DVC-DCP) at the Decoder

A short sequence of frames captured in a particular GI organ has a lot of similarity in

colour and texture. Due to similarity in colour and textural characteristics it is suf-

ficient to transmit only the luma components of WZ frames and chroma components
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can be generated using keyframes. The modified DVC framework which consists of a

deep CNN at the decoder side to predict chroma components of WZ frame is shown in

Figure 4.1. Y , Cb and Cr components of keyframe and Y component of WZ frames are

encoded using the technique proposed in Chapter 3. At the decoder, the keyframes

are decoded and stored in the frame buffer. Only Y component of the reconstructed

keyframes is used for SI generation of Y component of the WZ frame. The recon-

structed WZ frame Y component and the keyframe from the same GOP are given as

inputs to the deep chroma prediction model. The proposed compression technique,

intends to reduce the encoder complexity by encoding only the luma components of

WZ frames.

4.2.1 Deep Chroma Prediction Model
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Figure 4.2: Proposed Deep CNN architecture for WZ frame chroma prediction

Many chroma prediction techniques are proposed for general images and videos,

where the chroma of the reference frame is transferred to the gray scale target frame by

mapping luma and related texture information of the small rectangular image patches

within an image (Welsh et al. (2002), Yatziv and Sapiro (2006)). Some methods

generate chrominance maps for the target image by using global colour statistics of

the source such as histogram, mean and variance (Freedman and Kisilev (2010)).

Since these methods ignore spatial pixel details, they yield improper results. Pixel,

superpixel and segment levels of colour correlation are considered in other set of
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(c)

Figure 4.3: Main building units of the CNN architecture (a) CCBC unit (b)
CTACCB (c) Merging block, H and W is the height and width of the feature maps,

Nf is the number of feature maps

approaches (Liu et al. (2008)). Dictionary-based methods are proposed for chroma

map generation using a reference image. The target image is colourized using a chroma

map by matching luma pixels with the colour map dictionary (Khan et al. (2016)).

The main problem in the above conventional colour mapping approaches lie in the

selection of a reference patch in the source image for generating the correct colour

map. It is very difficult to find an appropriate matching for all the image patches in

the reference image. This leads to a lot of problems in medical diagnosis as the colour

information is very important.

To overcome the issues in above methods, a deep-learning based CNN architecture

shown in Figure 4.2 is proposed to generate appropriate chrominance map for the WZ

frame by accepting a keyframe as reference and WZ frame as a target input image.

Later the map is fused with the luma component of WZ frame to obtain the final
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colourized WZ frame. In the figure, N represents number of kernels in each layer.

fkey and fWZ are the keyframe and WZ frame features. Detailed representation of

the main components used in the architecture is shown in Figure 4.3

a. CIELab Colour Space: In literature, many studies have suggested that deep

CNNs trained using images from a specific domain perform better when represented

in a particular colour space. This is because, CNN learning and decision making

depends on the input and converting an image from one colour space to another

generates an entirely different input comprising different numbers. Motivated by

this, the proposed CNN model is trained using images in YCbCr and CIELab colour

space. Training the model using the other color spaces such as RGB and HSV is not

possible, because at the decoder only Y component of the WZ frame is available. The

model performs better in predicting the chroma when trained in CIELab colour space

compared to YCbCr. Therefore, luma component of the WZ frame and keyframe

luma and chroma components in CIELab colour space are given as inputs to the deep

chroma prediction model. The prediction performance of the model trained using

two different colour spaces measured in terms of PSNR and SSIM is given in Table

4.2 of Section 4.3.1. Images in CIELab colour space exhibits wider colour spectrum

compared to other colour spaces and gives better performance. It also generates a

better perceptually linear colour space and is ideal for training computer vision models

due to its perceptual uniformity (Ishikura et al. (2017)). The L component is same

as a Y component of YCbCr colour space. Hence, it is sufficient to predict only the

a and b chroma components of CIELab space. All these features of CIELab colour

space makes it more effective for training the deep learning models compared to other

colour spaces Gowda and Yuan (2018).

b. Model Details: The deep chroma prediction model is based on deep CNN

encoder and decoder based architecture, consisting of ten feature blocks. The model is

trained to transfer the chroma of a similar region from keyframes to WZ frames. Deep

CNN encoder and decoder based architecture is selected because this architecture is

proven to be more effective in many image generation applications (Badrinarayanan

et al. (2017)). The merging block connects the encoder part of the chroma predic-

tion model (ECPM) and the decoder part of the chroma prediction model (DCPM).

ECPM takes reconstructed keyframe components and reconstructed WZ frame luma
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component as an input. DCPM extracts the features from the input, which are the

compact representations of the input components. The merging block merges the rel-

evant keyframe and WZ-frame spatial details using feature maps extracted by ECPM.

This layer utilizes the non-localized texture and colour similarities between the refer-

ence keyframe and the WZ frame. Merged features are transmitted to DCPM. It will

learn to generate the chrominance information by matching similar textural regions

of the luma. This is performed by converting the combined key and WZ features to

chrominance features in three stages using temporal convolutions. Thus the model

learns to transfer the chroma to the similar areas of the WZ frame from the keyframe.

Table 4.1: Details of the deep colour-prediction model

(a) Reference (Keyframe) deep CNN encoder

Layer # Filters Filter Size Output Size

Input - - 320 x 320 x 3

Conv-1 16 3x3 320 x 320 x 16

Conv-2 32 3x3 320 x 320 x 32

Conv-3 32 3x3 320 x 320 x 32

Conv-4 32 3x3 160 x 160 x 32

Conv-5 64 3x3 160 x 160 x 64

Conv-6 64 3x3 160 x 160 x 64

Conv-7 64 3x3 80 x 80 x 64

Conv-8 128 3x3 80 x80x1286

Conv-9 128 3x3 80 x80x128

Conv-10 128 3x3 40 x40x128

(b) Target (WZ) deep CNN encoder

Layer # Filters Filter Size Output Size
Input - - 320 x 320 x 1

Conv-11 16 3x3 320 x 320 x 16
Conv-12 32 3x3 320 x 320 x 32
Conv-13 32 3x3 320 x 320 x 32
Conv-14 32 3x3 160 x 160 x 32
Conv-15 64 3x3 160 x 160 x 64
Conv-16 64 3x3 160 x 160 x 64
Conv-17 64 3x3 80 x 80 x 64
Conv-18 128 3x3 80 x80x1286
Conv-19 128 3x3 80 x80x128
Conv-20 128 3x3 40 x40x128

(c) Merging block

Layer # Filters Filter Size Output Size
Input - - 40 x 40 x 128

Conv-21 128 1 x 1 40 x 40 x 128
Conv-22 128 1 x 1 40 x 40 x 128
Conv-23 128 1 x 1 40 x 40 x 128⊕

Matrix addition⊗
Matrix multiplication

l l learnt constant parameter

(d) Decoder part of chroma prediction model

Layer # Filters Filter Size Output Size
Conv-
Transpose-1

128 3x3 80 x 80 x 128

Conv24 128 3x3 80 x 80 x 128
Conv25 128 3x3 80 x 80 x 128
Conv-
Transpose-2

64 3x3 160 x 160 x 64

Conv26 64 3x3 160 x 160 x 64
Conv27 64 3x3 160 x 160 x 64
Conv-
Transpose-3

32 3x3 320x320x32

Conv28 32 3x3 320x320x32
Conv29 32 3x3 320x320x32
Conv30 2 3x3 320 x 320 x 3
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The ECPM consists of a convolution layer and three CCBC blocks. C represents a

convolution and B represents a batch normalization (BN) layer. CCBC block consists

of two convolution layers followed by a BN layer. The output of the BN layer is reduced

by half in size by a convolution layer with stride=2. The structure of the CCBC unit

is shown in Figure 4.3a. DCPM consists of three CTACCB blocks. Where, CTA

represents a transposed convolution layer, C represents convolution and B represents

a batch normalization layer. Each CTACCB block consists of three convolution layers

and a BN layer as shown in Figure 4.3b. The input to each block consists of up-

sampled version of the features from the previous layer. The final layer of the DCPM

consists of the convolution layer and sigmoid activation layer. These two layers convert

the multi-level feature maps into two-level WZ frame chrominance map. The proposed

deep colour prediction model consists of 33 convolution layers; 20 in the encoder path

(conv1-conv20), 3 in the link connecting ECPM and DCPM (conv21-conv23) and 10

in the decoder path (conv24-conv33). The output of all the convolution layers is

activated by the ReLU activation function. The details of convolution layers in terms

of filter-size, the number of filters and the output size is described in Table 4.1.

c. Model Loss Function: To train the model both the luma component of the

WZ frame (WZL), luma-chroma components of the keyframe (KLab) are fed to the

CNN. The network predicts the chroma component of WZ frame with the trained

parameters of the network θ as:

ŴZab = CNN(KLab,WZL; θ) (4.1)

The predicted WZ chroma component ŴZab should be same as ground truth WZab

if the network transfers the chroma by proper texture matching. To evaluate the

chrominance loss while training the model, the smooth L1 distance is computed for

every pixel and integrated over the entire image. As a distance metric, Smooth L1

loss is considered that eliminates the averaging problem (Zhang et al. (2017)). The

network consisting of parameters θ should learn to minimize the chrominance loss

function given in (4.2).

Loss =
∑
pixels

Smooth L1

(
ŴZab(pixel),WZab(pixel)

)
(4.2)

Where Smooth L1(x1, x2) is defined as :
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Smooth L1(x1, x2) =

{
1
2
(x1 − x2)2, if |x1 − x2| < 1

|x1 − x2| − 1
2
, otherwise

(4.3)

d. Dataset and Training Details of Chroma Prediction Model: Training

dataset is generated by extracting around 10000 frame pairs from different WCE

videos. Videos captured from different organs such as esophagus, stomach, small

bowel, colon of GI tract are considered to generate dataset consisting keyframes, WZ

frames and groundtruth. Frames extracted from these videos consists various GI

anomalies such as intestinal bleeding, Crohn’s disease, colon polyps etc., while others

are normal without any abnormalities. Luma component of the WZ frames considered

as target frames in this work are stored in WZ frame folder. Keyframe folder consists

every fourth frame extracted from considered videos which is paired with all the WZ

frames. Keyframes are considered as reference frames, from which colour is transferred

to WZ frame by matching luma and texture by deep colour prediction model. Original

WZ frames are treated as ground truth labels to compute chrominance loss.

The proposed CNN is trained with the batch size of 8 using adam optimizer. Model

is trained in an entirely supervised style with a smooth L1 chrominance loss. Network

parameters are initialized using He-normal initialization. Network implementation

and training for 50 epochs is done using Keras, a deep learning API using Tensorflow

as backend on an NVIDIA Tesla-T4 GPU. The initial learning rate is fixed to 0.0001

which decays for every 10 epochs by a factor of 2. Chrominance loss computed using

(4.2) is used to update the network parameters during back propagation.

4.3 Simulation Results & Discussions

The proposed DVC-DCP is evaluated for four test video sequences given in Table 1.2.

The performance of the compression system is evaluated by plotting the average

bitrate versus average frame quality measured by PSNR in dB and SSIM. The colour

similarity between the WZ frame after the colour transfer from the keyframe and

the original WZ frame is computed by CIE76-∆E colour difference and structure and

hue similarity (SHSIM). CIE76-∆E and SHSIM are computed using (4.4) and (4.5)
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respectively.

∆E =
1

MN

M∑
i=1

N∑
j=1

√
(Lo − Lc)2 + (ao − ac)2 + (bo − bc)2 (4.4)

where L, a, b are the CIE-Lab colour space components of the original and colourized

image.

SHSIM(xo, xc) =
SSIM(xo, xc) + 0.2H(xo, xc)

1.2
(4.5)

where H(xo, xc) is the hue similarity computed between original image xo and colour-

ized image xc using (4.6).

H(x, y) =
2λxλy
λ2x + λ2y

(4.6)

where the λx and λy is the mean hue of x and y.

4.3.1 Evaluation of Deep Colour Prediction Model

Table 4.2: Chroma prediction performance comparison for test video sequences in
YCbCr and CIELab colour space

Video Number of YCbCr CIELab

Sequence WZ frames PSNR (dB) SSIM SHSIM ∆E PSNR (dB) SSIM SHSIM ∆E T

Video-1 300 42.21 0.9894 0.9903 4.23 44.67 0.9956 0.9938 3.94 25

Video-2 263 40.34 0.9889 0.9911 4.86 42.23 0.9942 0.9926 4.50 25

Video-3 210 36.75 0.9923 0.9893 4.46 40.41 0.9962 0.9936 4.38 23

Video-4 225 37.27 0.9888 0.9864 3.49 38.98 0.9922 0.9892 3.15 23

T: Time taken for predicting chroma components of the WZ frames in each video sequence in seconds

The proposed deep chroma prediction model is is tested on WCE videos captured

at different locations of the GI tract. Colour transfer performance from keyframes

to WZ frames for the test videos in YCbCr and CIELab colour space is measured

by using PSNR, SSIM, SHSIM and ∆E. Average of the measurements along with

processing time for the entire video sequence is given in Table 4.2. In comparison to

YCbCr colour space, the chroma prediction model performs better in CIELab colour

space.

Visual performance of the chroma prediction model for pair of key and WZ frames

which exhibits very less motion and high similarity is shown in Figure 4.4. It can
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(a) Keyframes

(b) Gray WZ frame

37.51dB; 0.9882;
 0.9890; 2.70

35.74dB; 0.9841;
 0.9857; 3.38

36.42dB; 0.9864;
 0.9859; 2.98

37.12dB; 0.9820;
 0.9867; 2.67

34.68dB; 0.9814;
 0.9860; 3.07

39.51dB; 0.9870;
 0.9887; 1.48

(c) WZ frames after colour transfer evaluated with PSNR, SSIM, SHSIM and ∆E

(d) Groundtruth WZ frames

Figure 4.4: Visual performance of colour transfer between keyframe and WZ frame
with very less motion

(a) Keyframes

(b) Gray WZ frame

40.77dB; 0.9883;
0.9894; 1.37

30.53dB; 0.9873;
0.9897; 1.48

41.76dB; 0.9941;
0.9966; 0.97

34.76dB; 0.9641;
0.9292; 3.59

38.93dB; 0.9826;
0.9887; 2.29

40.37dB; 0.9874;
0.9912; 1.98

(c) WZ frames after colour transfer evaluated with PSNR, SSIM, SHSIM and ∆E

Bleeding Diverticulam Esophagitis Celiac Ulcer Tumor

(d) Groundtruth WZ frames

Figure 4.5: Visual performance of colour transfer between the frames with
abnormalities

76



(a) Keyframes

(b) Gray WZ frame

34.13; 0.9846;
0.9823; 3.24

34.64; 0.9851;
0.9849; 3.19

33.67; 0.9849;
0.9882; 3.04

32.06; 0.9310;
0.9459; 4.66

35.94; 0.9793;
0.9814; 3.04

36.47; 0.9891;
0.9895; 2.31

(c) WZ frames after colour transfer evaluated with PSNR, SSIM, SHSIM and ∆E

(d) Groundtruth WZ frames

Figure 4.6: Visual performance of colour transfer between frames with fast-motion

be observed that colourized WZ frame is similar to original WZ frame and indicates

accurate colour transfer by perfect matching of luma component and texture. Colour

plays an important role in detection of some GI tract related abnormalities like bleed-

ing, ulcer and inflammation (Li and Meng (2009), Yuan et al. (2015)). In Figure 4.5,

visual performance of the colour transfer between frames with various anomalies is

shown. It can be observed that bleeding, ulcerated and other lesioned image regions

are perfect coloured. Colourized WZ frames shows high colour similarity with origi-

nal WZ frames. When the capsule moves fast there will be a large variation between

the consecutive frames. The visual performance of the colour transfer in such case

is shown in Figure 4.6. A very slight degradation in the colour pertaining to these

frames is observed that will not affect the diagnosis performance when image analysis

is done by the physician.

4.3.2 Evaluation of DVC-DCP Architecture

The proposed DVC-DCP is evaluated by comparing the rate distortion (RD) per-

formance and encoder complexity with MJPEG, TDWZ, DVC-FBC and H.264-Intra
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codecs for the considered test video sequences. To assess the RD performance, PSNR

and SSIM are plotted against the average bit rate. Encoder complexity is measured

using encoding time. The encoding time can give a reasonably accurate estimation of

the encoder complexity under appropriate simulation conditions.

A Encoding Complexity

Table 4.3: Comparison of encoding time and time reduction by DVC-DCP over the
reference encoders at various bitrates

Test Bitrate Encoding Time in seconds Time reduction in% over reference codecs

sequences (kbps) MJPEG TDWZ H.264-Intra DVC-FBC DVC-DCP MJPEG TDWZ H.264-Intra DVC-FBC

500 57 132 240 62 47 +17.54 +64.39 +80.41 +24.19

Video-1 1000 58 132 241 66 50 +13.79 +62.12 +79.25 +24.24

1500 58 168 306 78 66 -13.79 +60.71 +78.43 +15.38

2000 59 190 346 80 68 -15.25 +64.21 +80.34 +15.00

500 52 115 210 56 42 +19.23 +63.67 +80.00 +25.00

Video-2 1000 53 127 232 60 45 +15.23 +64.56 +80.60 +25.00

1500 53 146 267 66 57 -7.54 +60.95 +78.65 +13.63

2000 53 156 303 71 60 -13.20 +61.53 +80.19 +15.49

500 41 92 168 45 35 +14.63 +61.95 +79.16 +22.22

Video-3 1000 42 102 186 47 35 +16.66 +65.68 +81.18 +25.53

1500 42 117 214 54 48 -14.28 +58.97 +77.57 +11.11

2000 43 132 241 54 48 -11.62 +63.63 +80.08 +11.11

500 44 99 180 48 36 +18.18 +63.63 +80.00 +25.00

Video-4 1000 45 110 200 51 39 +13.33 +64.54 +80.50 +23.52

1500 45 154 280 57 51 -13.33 +66.88 +81.78 +10.52

2000 45 176 320 61 51 -13.33 +71.02 +84.06 +16.39

Positive reduction indicates the proposed encoder requires less time and negative reduction

indicates the proposed consumes more time compared to reference encoder.

In DVC-DCP, the encoding of chroma components of WZ frames are eliminated,

instead predicted at the decoder using keyframes as reference frames. In a video se-

quence encoded with GOP size=4, 75% of the frames are WZ frames, the chroma com-

ponents of which are not encoded. This saves the time required for chroma processing

and hence reduces the complexity of the encoder. Encoding complexity measured in

terms of time taken to encode the entire sequence and complexity reduction of the

proposed method as compared with MJPEG, TDWZ, H.264-Intra and DVC-FBC is

given in Table 4.3.
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B Rate Distortion Performance

To assess the performance of the proposed DVC-DCP model, the graphical comparison

of the RD results is done with MJPEG, TDWZ, H.264 Intra and DVC-FBC as shown

in Figure 4.7. It can be observed that the performance of the proposed technique is

much better than MJPEG, TDWZ and DVC-FBC and close to H.264 Intra.

Proposed method performs better in-terms of quality loss, compared to DVC-

FBC which involves sub-sampled WZ frame chroma transmission along with luma.

In DVC-FBC, WZ chroma subsampling is done before encoding in which only one

chroma pixel is selected for every 4 pixels of WZ luma. At the decoder during the

reconstruction of the transmitted image, the sub-sampled chroma component is up-

sampled by interpolation of pixels. This is one of reason for the quality loss incurred

after reconstruction. Another major cause for the quality loss is quantization at the

encoder. Since the chroma component is not encoded in the proposed method, chroma

reconstruction is not performed. Instead the chroma components are predicted at the

decoder and the quality loss is introduced when the prediction is not accurate.

The quality comparison of chroma prediction by deep CNN model with chroma

reconstruction using dequantization and upsampling for the test sequences is shown

in Figure 4.8. From the comparison it can be observed that, deep chroma prediction

method performs nearly same as chroma reconstruction. Slight quality degradation

can be observed for the video sequences with fast motion. But in WCE, the 75% of

the images are captured in stomach and small intestine where the capsule motion is

very slow or sometimes shows no motion. Therefore the rate distortion performance

of the proposed method with chroma prediction is better compared to DVC-FBC.

The DVC-DCP method achieves better Bjontegaard delta (BD) bit-rate sav-

ings than MJPEG and DVC-FBC. BD rate savings and improvement in PSNR over

MJPEG and DVC-FBC is given in Table 4.4. BD rate savings and improvement in

SSIM over MJPEG and DVC-FBC is given in Table 4.5. The savings in bit-rate

are achieved at reduced encoder complexity. Compared to the proposed method,

H.264 Intra performs better with PSNR improvement of 1.2 dB and bit-rate savings

of around 20% for the video sequences captured in esophagus and colon. DVC-DCP

performs same as H.264 Intra for the video captured in intestine which exhibits very
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Figure 4.7: RD performance for test video sequences with 8 frames per second
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Figure 4.8: Quality comparison of WZ-chroma deep prediction and chroma
reconstruction methods using (a) PSNR (dB), (b) SSIM (c) SHSIM and (d)∆E.

Lower ∆E indicates better performance

Table 4.4: The BD bit-rate savings in % and PSNR gain in dB of the DVC-DCP
compared to MJPEG, DVC-FBC, TDWZ-DVC and H.264-Intra

Test Video MJPEG DVC-FBC TDWZ-DVC H.264-Intra

Sequences Bitrate PSNR Bitrate PSNR Bitrate PSNR Bitrate PSNR

Video1 -74.32 +11.22 -29.47 +2.83 -64.45 +8.63 +6.48 -0.21

Video2 -67.18 +10.32 -25.02 +2.52 -60.82 +8.05 +10.69 -0.45

Video3 -57.03 +8.95 -17.75 +2.06 -36.16 +4.25 +35.04 -2.06

Video4 -69.08 +10.95 -25.00 +2.34 -59.71 +7.74 +22.27 -1.09
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Table 4.5: The BD bit-rate savings in % and SSIM improvement of the DVC-DCP
compared to MJPEG, DVC-FBC, TDWZ-DVC and H.264-Intra

Test Video MJPEG DVC-FBC TDWZ-DVC H.264-Intra

Sequences Bitrate SSIM Bitrate SSIM Bitrate SSIM Bitrate SSIM

Video1 -61.93 +0.0208 -15.36 +0.0037 -55.24 +0.0186 +19.08 -0.0071

Video2 -56.84 +0.0192 -25.09 +0.0067 -48.82 +0.0167 +13.51 -0.0065

Video3 -43.93 +0.0125 -11.68 +0.0023 -26.12 +0.0084 +39.55 -0.0117

Video4 -63.61 +0.0205 -17.38 +0.0057 -43.44 +0.0127 +17.95 -0.0081

slow changes from frame to frame. The RD results obtained are with reduced encoder

complexity when compared to other encoding systems.

C Performance Comparison with WCE Image Compression Methods

Table 4.6: Performance comparison between proposed method at different bitrates
and existing WCE image compression methods

Method PSNR (dB) SSIM CR (%)

DPCM (Malathkar and Soni (2019)) ∞ 1 60.27

DPCM (Fante et al. (2016)) 34.84 0.9912 86.33

DPCM (Khan and Wahid (2011a)) ∞ 1 67.46

DPCM+Subsampling (Khan and Wahid
(2011b))

37.25 0.9962 77.14

DPCM (Chen et al. (2009)) 42.23 0.9975 62.94

DCT (Turcza and Duplaga (2013)) 35.22 0.9841 83.04

DCT (Lin and Dung (2011b)) 25.32 0.9582 93.98

DCT (Wahid et al. (2008)) 28.18 0.9605 89.05

H.264-Intra modified (Dung et al. (2008)) 36.24 0.9828 82.12

DVC-FBC at 437kbps 33.18 0.9691 93.17

DVC-FBC at 575kbps 36.12 0.9757 91.02

DVC-FBC at 1039kbps 41.42 0.9931 83.77

DVC-DCP at 327kbps 34.18 0.9654 94.89

DVC-DCP at 582kbps 40.58 0.9885 90.91

DVC-DCP at 1128kbps 46.57 0.9988 82.37

The proposed work is also compared with other WCE image compression tech-

niques in terms of PSNR and SSIM at different compression ratios. Individual frames

in the video sequences are compressed using WCE image compression methods and
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average CR, PSNR and SSIM is taken for comparison. To compare the proposed

method with the image compression techniques CR is calculated using (4.7).

CR = 1− E

R
(4.7)

Where,

E= Total bits transmitted from encoder to decoder,

R= F ×M ×N× Bits per pixel,

F= Number of frames in the video,

M, N= Number of rows and columns in each frame,

Average PSNR and SSIM is computed between each frames of the original video and

reconstructed video for comparison of compression and quality is listed in Table 4.6.

From the results it can be observed that the method provides better PSNR and SSIM

at the high CR, maintaining low complexity encoder.

4.4 Summary

A low complexity DVC based WCE video compression algorithm with deep chroma

prediction model at the decoder is proposed. The proposed chroma prediction model

is trained to effectively transfer the colour from the keyframe to WZ frame using

a spatial attention mechanism. It uses the inter-spatial correlation of feature maps

extracted from the encoder part of the chroma prediction model to build a visual

attention map and learns effectively to colourize similar areas of the target image

using the chroma from the reference image. Also, the effect of colour space in training

the deep CNN is illustrated. The proposed model is trained in CIELab colour space

and performs better than Y CbCr colour space. Overall, the achieved quality of chroma

prediction is relatively the same as chroma reconstruction.

In the DVC-DCP technique, the WZ-frame chroma components are ignored from

encoding which improved the compression efficiency at reduced encoder complexity.

In the DVC-DCP, SI generation is required only for luma. Since the entire chroma

is predicted at the decoder, the SI quality does not have any impact on chroma

reconstruction. This improved the quality with reduction in bit-rate. Chroma SI

refinement is not done at the decoder which saves the decoding time and leads to an

improvement in frame rate.
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The proposed DVC-DCP method achieved better BD bit-rate savings than MJPEG,

DVC-TDWZ and DVC-FBC. The video sequences are encoded with a GOP size=4

and the chroma components of the 75% of the WZ frames are not encoded which

reduces the encoding complexity of the chroma components. The encoding complex-

ity of the proposed DVC-DCP is almost same as MJPEG achieved at much lower

bitrate. RD performance of the DVC-DCP model is better than DVC-FBC model by

25% in bitrate savings with PSNR gain 2.5 dB which is achieved at reduced encoder

complexity. The DVC-DCP outperforms DVC-TDWZ in terms of RD and encoding

complexity performance. The RD performance of the DVC-DCP is close to H.264

Intra achieved at much lower complexity.
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Chapter 5

WCE Video Summarization

5.1 Introduction

This chapter proposes a WCE video summarization (WCE-VS) framework consisting

of a convolutional autoencoder that can extract deep semantic features in an unsuper-

vised way. The similarity measure in the extracted deep features is used to segment

the video into shots. From each shot, the keyframes are extracted with the help of

the motion profile obtained by inter-frame motion energy and direction. In WCE, the

change in each frame is due to movement of the capsule. Therefore, it is possible to

extract keyframes which covers the entire WCE video space of a shot with the help of

motion analysis. The presented method achieves better summarization performance

measured in terms of F-Score and compression ratio compared to the existing WCE

video summarization techniques depend on handcrafted feature selection methods.

5.2 WCE Video Summarization Framework

Pretrained
Encoder of CANN

WCE Video Sequence

Extracted feature
maps of  consecutive

frames

Similarity
Measure

Shot
Segmentation

Keyframe
Extraction

WCE Video
Summary

V

Figure 5.1: Proposed WCE video summarization framework; Fi and Fi+1 are the
feature vectors of ith and (i+ 1)th sequential frames

WCE video sequence V consists of an ordered set of consecutive frames represented
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as V = I1, I2, I3, ...., Im, where Ii denotes ith frame of the video and m is the number

of frames in video. Slow movement of the capsule in some parts of the GI tract such as

small intestine results in small or no changes from frame to frame. In esophagus, WCE

video exhibits large changes from frame to frame due to the fast movement of capsule.

Therefore, a set of frames φ called as keyframes can be found which summarizes V by

eliminating redundant frames. The task of finding φ given V involves the following

function. {
Iφ1V , I

φ2
V , ....I

φJ
V

}
= arg min

φJ

{D(φ, V )|1 ≤ φJ ≤ κ} . (5.1)

where D is measure of dissimilarity representing the criterion of video summarization.

Proposed WCE-VS framework for constructing φ from V is shown in Figure 5.1.

5.3 CANN for Feature Extraction

Convolution

Max Pooling

Convolution

Max Pooling

Convolution

Max Pooling

Feature Vector

Convolution

Unpooling

 Convolution

Unpooling

 Convolution

Unpooling

Encoder

Decoder

Convolution

Figure 5.2: Convolutional autoencoder architecture showing encoder and decoder
networks for extracting feature vector in endoscopic images

Convolutional autoencoder neural network (CANN) enables to extract features of

endoscopic images using an unsupervised learning approach. Many research outcomes

have shown that unsupervised feature extraction of medical images lead to signifi-

cant improvement compared to conventional convolutional neural network (Kallen-
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Table 5.1: Layer parameters of convolutional autoencoder

Layer Type Number of maps Kernel Size Output

1 Convolution 16 5x5 16x256x256

2 Max Pooling 16 2x2 16x128x128

3 Convolution 32 3x3 32x128x128

4 Max Pooling 32 2x2 32x64x64

5 Convolution 64 3x3 64x64x64

6 Max Pooling 64 2x2 64x32x32

7 Unpooling 64 2x2 64x64x64

8 Convolution 64 3x3 64x64x64

9 Unpooling 32 2x2 32x128x128

10 Convolution 32 3x3 32x128x128

11 Unpooling 16 2x2 16x256x256

12 Convolution 16 5x5 16x256x256

13 Convolution 3 3 x 3 3x256x256

berg et al. (2016), Kumar et al. (2015), Chen et al. (2017)). CANN consists of an

encoder and decoder networks. Encoder of the CANN generates high level feature

map of the input by using several convolution and max-pooling layers. Decoder recon-

structs the input from the feature map by using unpooling and convolution layers. The

proposed CANN is designed based on the autoencoder network described in (Masci

et al. (2011)) and its architecture is shown in Figure 5.2. Proposed feature extraction

approach utilizes convolutional filtering to train CANN in an unsupervised way.

Encoder consists of three convolution layers and three max pooling layers. Max

pooling layers down sample the feature maps extracted by convolution layers. Decoder

consists stack of unpooling and convolution layers. Unpooling layers are used to

upsample the feature maps extracted on the encoder side. Adding more layers will

make the CANN more deeper and will improve the reconstruction of the input images

at the decoder. But this increases the complexity of the model. CANN encoder with

three convolution layers is capable of extracting the high level features from an image

which can effectively discriminate the images into similar and dissimilar pairs. The

final goal of the CANN is to find a feature vector for each input image by minimizing

the mean squared error (MSE) between input and output image samples. The details

of the encoder and decoder layer parameters are given in Table 5.1.
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(a)

(b)

(c)

Figure 5.3: Visualization of extracted features and reconstructed images of CANN
(a) Input images to CANN, (b) Features extracted by encoder network and (c)

Decoded images by decoder network

Each convolution layer uses a non-linear activation function called Scaled Expo-

nential Linear Unit (SELU) instead of Rectified Linear Units (ReLU) used in other

convolutional networks. SELU activation function is close to zero mean and unit

variance. When propagated through multiple network layers, SELU automatically

converge towards zero mean and unit variance. All these self normalizing parameters

of SELU makes learning highly robust in network with many layers and utilizes strong

regularization schemes (Klambauer et al. (2017)). For an input image matrix xi, the

encoder network computes encoder output ei using (5.2).

ei = σ(xi ∗ fn + b) (5.2)

where σ denotes SELU activation function, ∗ represents 2D convolution operation, fn

is nth convolutional filter kernel and b denotes encoder bias. The decoder reconstructs
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the encoded output using (5.3).

zi = σ(ei ∗ f̃n + b̃) (5.3)

where zi is the reconstruction of the ith input xi, f̃
n is the nth decoder convolutional

filter and b̃ is the bias of the decoder. Unsupervised training of the CANN aims to

minimize the loss function given in (5.4).

J(θ) =
m∑
i=1

(xi − zi)2 (5.4)

The gradients are computed using the loss function given in (5.4) and the network

parameters are optimized through adam optimizer to minimize the reconstruction

loss.

Similarity between the two consecutive frames is decided based on the features

extracted from the frames. To extract the features of an input image in an unsuper-

vised method, both the encoder and decoder networks are trained together. Input

image is reconstructed by the decoder using encoder extracted features. Level of

feature extraction is decided based on the reconstructed quality of images at the de-

coder. After the encoder is trained to extract the high level features, the decoder

part of the CANN is removed and only the encoder is retained. Encoded features

and reconstructed images of the CANN along with the input images are shown in

Figure 5.3.

5.4 Similarity Estimation

Two consecutive frames in WCE video sequence is considered as an image pair. For

any input image Ii to the CANN, the corresponding extracted feature Feai is gener-

ated as,

Feai = G (Ii,W ) (5.5)

where G(.) is a non-linear mapping function of the trained encoder and W is the

network parameters of the encoder part of the CANN. SELU activation function is

used as the non-linear activation function in convolution layers. Euclidean distance

between features of the image pair is computed and classified as similar or dissimilar

pair based on the fixed threshold. To learn the threshold, Euclidean distance between
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6000 consecutive WCE image pairs in feature space is computed and the observations

made are: i) Euclidean distance varies between around 0 to 270, ii) Similar pair of

images have distance close to 0, iii) Dissimilar pair of images have larger distance close

to 270, iv) Images with few dissimilar patches have distance approximately equal to

20. Based on all the above observations, a threshold of 20 is fixed for classification.

Losing frames with significant lesions can be avoided by selecting small threshold.

Euclidean distance for similarity judgement is calculated as:

Disi,i+1 = ||(Feai − Feai+1)| |2 (5.6)

where Disi,i+1 is the Euclidean distance of the features Feai and Feai+1 extracted

from ith and (i+ 1)th WCE frames respectively. Based on Disi,i+1, the image pair is

considered as similar or dissimilar by (5.7). Similar and dissimilar pair of images are

labelled as 1 and 0 respectively.

Si =

{
1, Disi,i+1 < 20

0, Disi,i+1 ≥ 20
(5.7)

5.5 Shot Segmentation

A video shot is defined as group of contiguous frames segmented based on similarity

changes between two consecutive frames. Proposed shot segmentation method is

shown in Figure 5.4. Shot boundary is detected when the similarity label is set

to 0. WCE shot segmentation which incorporates frame matching, separates shots

consisting of frames with high similarity.

5.6 Keyframe Extraction

Video summarization of WCE video can be concluded with keyframe extraction in

each shot. Frames in each shot has high similarity with a lot of redundancy. These

redundant frames contributes very less or no information for covering the entire WCE

video. Motion analysis between frames within a shot gives an idea of redundant

frames (Zhu et al. (2005)). If a pair of frames exhibit larger motion then the frames are

likely to be considered as less redundant. Inherent intra-shot redundancy is reduced

to retrieve keyframe representation by analysing capsule’s motion. Motion profile
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Figure 5.4: WCE video shot segmentation based on frame similarity

which constitutes motion score, motion direction and motion energy denoted as Ms,

Md, Em respectively is derived from every shot before extracting keyframes.

First, the relative inter-frame motion score is estimated for a considered ith shot

Shi given as

Msi = {Msi(n), n = 1, 2, .....ni}, (5.8)

where ni is the number of frames in Shi and Msi(n) is intra-shot motion score between

successive pair of frames.

Motion score Ms for a frame pair (I, I ′) consisting of matched feature positions

(X,X ′), which is also the difference in average distance between (I, I ′) given by

Ms =
1

α

{
α∑

m=1

d(xm, x̂m)−
α∑

m=1

d(x′m, x̂
′
m)

}
(5.9)

where x̂ is the X features center of mass computed by:

x̂ =
1

α

α∑
m=1

xm (5.10)

where α is number of matched feature pairs detected (Sargent et al. (2009)) and each

(xm, x
′
m) is a matched feature pair in (X,X ′). d(xm, x̂m) is the euclidean distance

between xm and x̂m.
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(a)

(b)

(c)

Figure 5.5: Keyframe selection of a 40 frame shot in video sequence captured in
stomach based on motion profile. (a) Keyframes. (b) Motion signal partitioned into

segments. (c) Motion energy signal.
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(a)

(b)

(c)

Figure 5.6: Keyframe selection of a 14 frame shot in colon video based on motion
profile. (a) Keyframes. (b) Motion signal partitioned into segments. (c) Motion

energy signal.
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(a)

(b)

(c)

Figure 5.7: Visualization of a small bowel video shot with motion profile. (a)
Keyframes (b) Partitioning of Motion signal. (b) Keyframe extraction based on

motion energy
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Next, the motion direction sequence Mdi = {Mdi(n), n = 1, 2, .....ni} is computed

using (5.11), which classifies the motion direction as forward, backward and no-motion

depending on the capsule’s movement inside GI tract.

Mdi(n) =


forward = 1, if Msi(n) ≤ THf

backward = −1, if Msi(n) ≥ THb

nomotion = 0 otherwise

(5.11)

Considering a wide range of motion analysis through a large number of experi-

ments, threshold values THf and THb are selected as -0.12 and 0.12. Finally, motion

energy Emi
= {Emi

(n), n = 1, 2, .....ni} is computed for the features associated with

each frame pair by:

Em =
α∑

m=1

||xm − x′m| |2 (5.12)

An example motion profile of a 40 frames in a shot from a video sequence captured

in stomach in which the frame sequence exhibits forward, backward and no-motion is

shown in Figure 5.5. Based on the obtained motion direction signal Md of the capsule

endoscope, an example shot is segmented into 8 different continuous runs consisting of

forward, backward and no-motion indicated as F, B and NM respectively. Frame with

minimum motion energy is selected as keyframe in each segment. Another motion

profile of a short shot of 14 frames of video captured in colon which exhibits only

forward and no-motion is shown in Figure 5.6. Keyframe selection in a video shot of

70 frames captured in a small bowel with motion profile is shown in Figure 5.7. In all

the frame shots the keyframe indicators are marked by green circles.

5.7 Results & Discussions

5.7.1 Datasets

The proposed WCE-VS method is evaluated on two datasets given in Table 1.3 in

Chapter 1. Around 5000 WCE frames resized to a resolution of 256 X 256, captured at

different location of the GI tract from different patients are used for training CANN.

Batchwise training is performed using mini-batch size of 8 samples and the number

of epochs used for each batch is 50. For evaluating the performance of the proposed

technique, keyframes of around 20 video sequences including 3 video sequences of the

KID-dataset are identified with the help of an expert gastroenterlogist. Around 1000
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similar and dissimilar pair of frames are identified to test the similarity judgement

performance. These frame pairs and keyframes are used as ground-truth summary to

compare the performance of the proposed technique with the other WCE VS methods.

The details on frame resolution, frame motion characteristics and GI organ at which

the frames are acquired are given in Table 1.3. Video sequences in KID dataset covers

all the GI organs and exhibits organ dependent motion characteristics.

5.7.2 Performance Comparison

Proposed method is compared with the other unsupervised methods which involves

different feature extraction, shot segmentation and key frame extraction methods.

Methods with which the proposed method is compared are discussed below:

• Hue saturation value colour feature with K-means clustering (HSV-KMC) (Huo

et al. (2012)): WCE images exhibits different mucosal feature characteristics.

Color is one of the significant feature. GI organ vary in color features for different

organs. These color features are extracted in Hue Saturation Value (HSV) color

space, since the information associated with H component is more indicative in

representing the differences in WCE images. Color feature vector is extracted

by using histogram of H and S. Shot is detected when the consecutive pair of

frames are having different color feature vector. In each shot the key frames are

extracted by using K-means clustering (KMC) method.

• Colour, texture and shape features with K-means clustering (CTS-KMC) (Yuan

and Meng (2013)): In this method, fusion of color, texture and shape (CTS) fea-

tures are considered for shot detection. Color feature vector is created in HSV

color space. Local binary pattern (LBP) algorithm is used to extract texture

features. Shape features are represented using HoG. Entropy of extracted fea-

tures for each frame is used for segmenting the video into different shots. KMC

algorithm is used for key frames extraction.

• Scale-invariant feature transform with motion analysis (SIFT-MA) (Lowe (2004)): This

method uses SIFT algorithm for feature extraction and matched feature points

retrieved from two consecutive frames are used to detect a shot. Key frames are

extracted based on motion analysis.
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• Speeded up robust features with motion analysis (SURF-MA) (Bay et al. (2008)):

This method uses SURF method for feature extraction and matched feature

points from two consecutive frames to detect a shot. Key frames are extracted

based on motion analysis.

Table 5.2: Comparison of Recall, Precision and F-score values of the proposed
method with other methods on KID dataset

Parameters Test Video HSV-KMC CTS-KMC SIFT-MA SURF-MA Proposed
Method

KID-1 0.57 0.79 0.80 0.78 0.94

Recall KID-2 0.54 0.74 0.79 0.73 0.92

KID-3 0.51 0.72 0.83 0.76 0.93

Average 0.54 0.75 0.81 0.75 0.93

KID-1 0.58 0.78 0.61 0.81 0.92

Precision KID-2 0.61 0.76 0.63 0.91 0.94

KID-3 0.55 0.81 0.69 0.88 0.95

Average 0.58 0.78 0.64 0.86 0.94

KID-1 0.57 0.78 0.69 0.79 0.93

F-Score KID-2 0.57 0.75 0.70 0.81 0.93

KID-3 0.53 0.76 0.75 0.81 0.94

Average 0.56 0.76 0.72 0.80 0.93

In the above SIFT and SURF based methods, matched feature points are retrieved

between the pair of consecutive frames. The ratio of number of matched features to

total number of features detected in both the frames is used to detect the shot. If

the ratio is less than 0.15, it is considered that the two frames are in different shots.

The comparison results for F-score on both the datasets are shown in Table 5.2 and

Table 5.3. As seen from the table, the proposed method achieves better accuracy by

32%, 14%, 18% and 11% compared to HSV-KMC, CTS-KMC, SIFT-MA and SURF-

MA methods respectively. The CR comparison results are given in Table 5.4. The

proposed method provides the gain in CR by 10%, 9%, 8% and 7% compared to

HSV-KMC, CTS-KMC, SIFT-MA and SURF-MA respectively. When compared to

the benchmark methods, the proposed WCE-VS performs better in terms of both
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Table 5.3: Comparison of Recall , Precision and F-score values of the proposed
method with other methods on Dataset-2

Parameters Test Video HSV-KMC CTS-KMC SIFT-MA SURF-MA Proposed
method

Video-1 0.76 0.89 0.70 0.82 0.91

Recall Video-2 0.72 0.85 0.71 0.75 0.89

Video-3 0.69 0.78 0.72 0.78 0.90

Video-4 0.64 0.72 0.69 0.77 0.92

Average 0.70 0.81 0.70 0.78 0.90

Video-1 0.72 0.84 0.94 0.89 0.94

Precision Video-2 0.58 0.79 0.90 0.88 0.92

Video-3 0.51 0.79 0.82 0.82 0.95

Video-4 0.53 0.81 0.81 0.89 0.91

Average 0.59 0.80 0.86 0.87 0.93

Video-1 0.74 0.86 0.80 0.85 0.92

F-Score Video-2 0.64 0.82 0.79 0.80 0.90

Video-3 0.58 0.78 0.76 0.80 0.92

Video-4 0.59 0.76 0.74 0.82 0.91

Average 0.64 0.80 0.77 0.82 0.91

Table 5.4: Comparison of the proposed method with other methods interms of
F-score (FS) and compression ratio (CR) results in %

Test Video HSV-KMC CTS-KMC SIFT-MA SURF-MA Proposed
Method

FS CR FS CR FS CR FS CR FS CR

KID-1 57.24 74.60 78.37 71.5 68.87 63.4 79.21 63.80 92.78 88.80

KID-2 56.98 72.30 74.72 68.6 70.04 69.57 81.37 72.20 93.06 86.20

KID-3 53.43 70.96 76.25 66.3 74.86 68.78 80.91 73.62 94.21 85.62

Video-1 74.16 89.50 86.19 86.2 80.12 85.31 84.79 85.27 91.91 91.27

Video-2 64.38 77.90 81.88 74.2 78.76 81.5 79.79 82.60 89.92 90.60

Video-3 57.78 75.7 78.36 73.3 76.21 79.26 80.03 81.09 92.06 75.09

Video-4 58.84 82.5 73.14 81.59 76.81 79.32 81.89 75.16 91.14 69.16

Average 60.40 73.61 78.89 74.32 74.71 75.39 81.14 76.24 92.15 83.82
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F-score and CR.

It is very critical to achieve high accuracy in medical image analysis. The proposed

method achieves high accuracy and high compression performance compared to other

works. This indicates that it can eliminate redundant frames by extracting few key-

frames which preserve informative frames.
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Figure 5.8: Performance test on similarity threshold. (a) F-score test on similarity
threshold (b) Compression ratio test on similarity threshold

The frame similarity threshold used for shot detection has a direct impact on the

F-score as shown in the Figure 5.8a. Each plot for a specific test video sequence

indicates the performance measure variation according to the change in similarity

threshold. Also it can be observed from Figure 5.8b that similarity threshold has

less impact on the compression performance. Setting high similarity threshold can

tend to reject frames with significant lesions. Therefore, it is necessary to choose low

threshold value. In shot detection, a threshold of 20 is set for similarity estimation

which detects even a small significant change between pair of frames and avoids loss

of informative frames.

Video shot is partitioned into different motion segments based on a threshold and

a keyframe is extracted in each segment. Construction of motion profile proved to be

strong over thresholds THf and THb. Low threshold values -0.12 and 0.12 are chosen

to detect even a weak motion between the frames, because THf and THb has direct

impact on F-score and CR. F-score and CR for datasets considered in this work for
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different motion direction thresholds are shown in Figure 5.9. From the performance

graph, it can be observed that F-score is maximum at 0.12. Video shot is partitioned

into less number of segments at higher threshold and less keyframes are selected.

Therefore, CR increases for the larger thresholds. But accuracy is very important

and threshold at which high accuracy is achieved is considered in the work.

As shown in Figure 5.10, the summarization performance in-terms of F-score de-

creases as CR increases. Each plot for a particular test video sequence indicates how

the F-score varies as CR varies. It can be observed from Figure 5.10b that video

with slow motion (Video-1 in dataset-2) has high F-score of around 93% at high CR

of 95%. Video with fast motion (Video-4 in dataset-2) achieves high F-score of 91%

with 70% CR. The accuracy drastically drops as the CR increases which is directly

influenced by increase in THf and THb. Larger THf and THb gives high CR as more

number of frame pairs are considered as no motion frames and this results in less

motion segments. This will lead to an excessive rejection of the significant frames and

affects summarization performance interms of accuracy. The results clearly indicate

that the proposed method is potential with consistent performance with greater than

90% accuracy achieved for video sequences of different motion characteristics.
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Figure 5.9: F-score and Compression performance for different motion direction
thresholds . (a) KID-dataset (b) Dataset-2.
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Figure 5.10: Comparison of summarization performance in-terms of F-score with
compression ratio on (a) KID-dataset (b) Dataset-2.

5.8 Summary

A framework to obtain summary of WCE video content is presented. Convolutional

autoencoder is trained to extract high level features in an unsupervised way, which

are used to estimate the similarity between the consecutive frames. Based on the

similarity measure the video is segmented into different shots. The unsupervised

training method avoids laborious procedure of labelling large number of WCE image

pairs to detect video shots. The change in two successive frames of WCE video is

due to capsule motion, which varies in different parts of GI tract. Therefore, the

keyframes are extracted based on the motion profile constructed for each video shot.

This method eliminates frames with slight temporal differences and retains candidate

keyframes covering sufficient WCE video. Similarity and motion detection thresholds

have a key role in deciding the summarization performance interms of F-Score and

compression ratio. Thresholds are set to get maximum accuracy in this work. With

the set thresholds, the proposed method achieves an average F-measure of 91.1% with

compression ratio of 83.12%.
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Chapter 6

Conclusions and Future Directions

6.1 Conclusion

Although WCE is the most preferred modality for diagnosing and assessing small

intestinal disorders, the diagnostic yield is limited due to low video resolution. En-

hancement in resolution improves the diagnostic performance but increases the video

data for processing and transmission. An increase in video data consumes more pro-

cessing and transmission power, which is not feasible due to limited capsule battery

power. Video data can be substantially reduced by using a low complexity video

compression technique that does not consume much power. In this research work, a

low complexity video encoder of the wireless capsule endoscope with a decoder for

reconstructing the compressed video at acceptable medical image quality is proposed.

The WCE procedure captures a video with a huge number of frames, which is con-

sidered for review by a physician after completing the entire procedure. Reviewing a

large number of frames at once is a tedious task that requires attention and exper-

tise. Moreover, most of the frames in the video are redundant, which can be removed

by extracting only the keyframes. A video summarization framework to generate a

summary consisting only keyframes is proposed in this research work.

A low complexity DVC-FBC architecture is proposed in Chapter 3 for WCE video

compression. The complexity reduction in keyframe encoding is achieved by exploit-

ing GI image textural characteristics. Further, modifications have been made in the

transform and quantization functional stages to reduce the computations. The quality

of SI creation at the decoder determines the compression performance of DVC. This is

accomplished by generating good SI quality at the decoder by employing intra coded
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low frequency components as the hash. The quality of SI goes upto 36 dB and SI

refinement can be done with few transmitted parity bits which improves the compres-

sion performance. SI generation depends only on the previous encoded frames which

enables increase in GOP size and reduces the number of keyframes. Therefore, more

number of WZ frames can exploit the temporal correlation to improve the compres-

sion performance. Latency in SI generation is reduced as the process depends only on

available reconstructed frames. A new approach for encoding of chroma component of

WZ frame and SI generation for chroma is presented. The assessment of the proposed

DVC system is done by using rate-distortion performance and encoding complexity.

Better performance is achieved compared to MJPEG by 60% of BD-bitrate savings

with PSNR gain of 6 dB at increased encoding complexity. Compared to TDWZ based

DVC, the proposed achieved 40% bitrate savings with 5 dB PSNR gain at reduced

encoder complexity. Though, H.264-Intra performs better than proposed in terms of

RD, its complexity is 3 - 4 times higher than the the proposed.

In Chapter 4, an improvised version of DVC-FBC referred to as DVC-DCP is

presented which achieves better RD performance with reduced encoder complexity.

Reduced encoder complexity is achieved by eliminating WZ frames chroma processing

at the encoder. A deep CNN model is trained to predict chroma of the WZ frame

at the decoder by matching luma and texture information of the keyframe and WZ

frames. The deep chroma prediction model comprises a merging block with a spatial

attention mechanism to make use of spatial inter frame correlation for accurate match-

ing of similar regions for transferring chroma. The performance of the deep chroma

prediction model is evaluated by colour similarity and quality metrics. The model

used at the decoder to predict chroma using keyframe and WZ-luma performs bet-

ter compared to chroma reconstruction obtained by dequantization and upsampling.

When the video is encoded at GOP=4, 25% of the frames are keyframe encoded and

while the remaining are WZ encoded. Encoding complexity of chroma component of

75% of the frames is reduced at the improved compression efficiency. DVC-DCP model

achieved an RD performance close to H.264-Intra with a much lesser encoding com-

plexity comparable with that of MJPEG. DVC-DCP achieves BD-bitrate savings of

65%, 54% and 25% with PSNR gain 10 dB, 7.16 dB and 2.43 dB for MJPEG, TDWZ-

DVC and DVC-FBC respectively. H.264-Intra performs better in RD performance,
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but the encoder complexity is 3 - 4 times greater than DVC-DCP. The simulation

results justify that the proposed DVC-DCP achieves improved RD performance with

reduced encoding complexity.

Manual reviewing of the huge amount of frames captured during the WCE pro-

cedure is challenging for the physician in terms of time and accurate diagnosis. To

overcome this, a computer-aided WCE video summarization framework consisting

convolutional autoencoder to extract deep features is presented in Chapter 5. A

video is segmented into shots based on the similarity between the extracted deep fea-

tures. Deep features provide better segmentation compared to handcrafted features.

Keyframes from each shot are extracted based on the motion profile created using

motion energy, motion direction and motion score between two consecutive frames.

The proposed method achieves an average F-measure of 91.1% with compression ratio

of 83.12%. Reduction in 83% of the total frames results in fewer number of frames

for the review and hence improves diagnostic performance.

6.2 Future Directions

WCE is the most preferred procedure for diagnosis and analysis of GI abnormalities.

The major drawback of this procedure is the poor image resolution which limits

both the manual and computer-aided diagnosis techniques. Many studies have found

that the high resolution medical imagery provides better diagnostic performance.

In WCE, improved image resolution can be achieved by increasing the area of the

lens and camera sensor array, however this is not always a viable option for many

endoscopic applications due to computational cost and resource constraints. The

computational cost can be reduced upto some extent by using high performance low

complexity encoder techniques. To solve this problem, the computer vision research

has developed a set of super-resolution techniques, which are used to generate high-

resolution images from low-resolution imaging devices. High resolution images can

improve the identification and locating of abnormalities in the images. Therefore,

methods to generate high resolution video from low resolution WCE video can be

considered as future work.

When the capsule travels in the GI tract, the frames captured are sometimes com-
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pletely or partially degraded due to poor illumination and obscured by secreted fluids.

These frames are either completely uninformative or partly informative. Methods to

detect and remove the uninformative frames to reduce the video content for the review

and restoration techniques for improving the quality of partially degraded frames can

be considered as future work.

106



Appendices

A Distributed Coding of Correlated Frames

In conventional or predictive video encoding the probabilistic correlation between two

frames F1 and F2 is available to both encoder and decoder. As per Shannon’s source

coding theorem lowest rate bound achievable for lossless compression is joint entropy

H(F1,F2) of F1 and F2. In distributed video coding, the two frames are encoded

independently and joint decoded by exploiting the inter-frame correlation.

A.1 Slepian-Wolf Coding

According to Slepian-Wolf (SW) theorem, two frames called as keyframe and WZ

frame are encoded by different encoders and decoded by a combination of two decoders

to reconstruct the frames. For a lossless compression, the achievable rate for decoding

F1 and F2 with small probability of error is given by:

RF1 ≥ H(
F1

F2
)

RF2 ≥ H(
F2

F1
)

RF1 +RF2 ≥ H(F2, F1)

Where, H(F2
F1

) and H(F1
F2

) are the conditional entropies.

In parity-bits generation approach of SW encoding, parity-check bits of a system-

atic code are employed. In order to encode n-bits, (n+r,n) systematic channel code

defined by generator matrix GnX(n+r) = [In|PnXr] is used. Compressed data repre-

sented in the form of parity bits of length r-bits are computed at the encoder by

using parity matrix P and transmitted to the decoder. At the decoder these parity

bits are concatenated to the n-bits generated from the side-information to form a bit-

plane of length n+r. The decoded codeword is produced by parity-based SW decoder

G′nX(n+r). Lossy compression achieved by quantization and SW encoding is called as

Wyner-Ziv coding.
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Figure A1: LDPCA encoding structure (Varodayan et al. (2011))

A.2 Low Density Parity Check (LDPC) codes in SW coding

The encoder transmits a weak channel code initially, and the decoder performs decod-

ing using approximate channel statistics in the rate-adaptive LDPC coding method.

If decoding is successful, the decoder instructs the encoder to move on to a new block.

If decoding is unsuccessful, the encoder creates a lengthier syndrome depending on a

lower-rate code to complement the broadcast channel code. This process is repeated

until the syndrome meets the criteria for effective decoding. This strategy is appropri-

ate under the conditions of feedback channel availability and low-delay requirements.

LDPC accumulate (LDPCA) codes are created by concatenating an LDPC syn-

drome with an accumulator. The LDPCA encoder generates syndrome bits s by

applying mod-2 addition of the source bits x according to the LDPC factor graph,

just like in traditional syndrome-based LDPC schemes. Unlike other procedures, the

resultant syndrome bits are then mod-2 accumulated to produce the accumulated syn-

drome bits. This operation is depicted in Figure. A1 for illustrative purposes. The

encoder keeps track of the accumulated syndrome bits in buffer and sends them to

the decoder when requested.

The LDPCA decoder may accomplish a variety of rates by adjusting the LDPC

decoding factor graph in response to the receipt of a new increment of the accumu-

lated syndrome. As a result, the graph resulting from the various punctured syndrome

patterns retains the degree of all variable nodes as described by the non-punctured

LDPC code’s parity-check matrix shown in Figure. A2. As a result, this approach

allows for more soft information to be exchanged between the variable and the punc-
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(a) (b)

(c)

Figure A2: LDPC decoding structure (Varodayan et al. (2011)). (a) Entire LDPC
structure, (b) Resultant LDPC structure for even indexed syndrome bits, (c)

Resulting structure for even indexed accumulated syndrome bits
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tured check nodes, resulting in a more effective iterative decoding than traditional

punctured LDPC codes. To conclude, the complexity of encoding and decoding of

LDPCA code depends on the length of bit-plane.
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