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ABSTRACT

One of the biggest challenges in theoretical physics, beyond any doubt, is the lack

of a successful theory that describes how gravity works quantum mechanically. Ex-

ploring black holes provides many promising pathways that might lead us to a positive

solution for the problem at hand. One of the tools in this regard is the thermodynamic

behavior of black holes. To this extent, this thesis deals with certain aspects of black

hole thermodynamics. First, we probe the microstructure of the dRGT massive black

hole in an anti-de Sitter background. The calculations are performed in an extended

phase space with pressure and volume taken as fluctuation variables. We analyze the

microstructure by exploiting the Ruppeiner geometry, where the thermodynamic cur-

vature scalar is constructed via adiabatic compressibility. The nature of the curvature

scalar along the coexistence line of small (SBH) and large (LBH) black holes is inves-

tigated. In the microscopic interaction, we observe that the SBH phase behaves as an

anyonic gas and the LBH phase is analogous to a boson gas. Further, we study the effect

of graviton mass on the underlying microstructure of the black hole.

The thermodynamic study in the massive gravity theory can be extended further by

considering the dynamics of phase transition. The dynamical properties of the stable

small-large black hole phase transitions in dRGT non-linear massive gravity theory are

studied based on the underlying free energy landscape. The free energy landscape is

constructed by specifying the Gibbs free energy to every state, and the free energy

profile is used to study the different black hole phases. The small-large black hole

states are characterized by a probability distribution function, and the kinetics of phase

transition is described by the Fokker-Planck equation. Further, a detailed study of the

first passage process is presented, which describes the dynamics of phase transition. We

have investigated the effect of mass and topology on the dynamical properties of phase

transitions of black holes in dRGT massive gravity theory.

Finally, we concentrate on the characteristics and features of the first law of black

hole thermodynamics. The physical process version of the first law can be obtained

for bifurcate-Killing horizons with certain assumptions. Especially, one has to restrict

to the situations where the horizon evolution is quasi-stationary, under perturbations.



We revisit the analysis of this assumption considering the horizon perturbations of the

Rindler horizon by a spherically symmetric object. We demonstrate that even if the

quasi-stationary assumption holds, the change in entropy in four-dimensional space-

time dimensions diverges when considered between asymptotic cross-sections. How-

ever, these divergences do not appear in higher dimensions. We also analyze these fea-

tures in the presence of a positive cosmological constant. In the process, we prescribe a

recipe to establish the physical process first law in such ill-behaved scenarios.

Keywords: Black hole thermodynamics; Thermodynamic geometry; Massive gravity

theory; Free energy landscape; Physical process version of first law;
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Chapter 1

Introduction

The term “gravity” was introduced to us as the weakest among the four fundamen-

tal forces in nature. Sir Isaac Newton developed the universal law of gravitation in

1687, which explains how two objects attract each other with a force that is directly

proportional to the product of their masses and inversely proportional to the square of

their distance. The quantitative description of gravity was a milestone in the history

of physics and, was successful in explaining many phenomena such as the motion of

planets around the sun. It is worth mentioning that Newton’s law of gravitation sur-

vived nearly 200 years! However, during the late 19th century, as the observational

results become more precise, Newton’s theory of gravitation failed to explain certain

situations such as the perihelion precision of planet Mercury. Later at the beginning of

20th century, the formulation of the special theory of relativity (STR) by Albert Einstein

caused a paradigm shift in the understanding of space and time. In 1915 he extended

the relativity theory by incorporating gravity and formulated the general theory of rela-

tivity(GTR). This theory explains how gravity works classically in an elegant way!

According to the general theory of relativity, it is the curvature in space-time that

makes the planets revolve around the sun. In this description, a matter object can curve

the space-time around it, and the space-time curvature is related to the matter object

through Einstein’s field equations:

Rµn �
1
2

Rgµn = 8pTµn (1.1)

1



Here, Rµn is the Ricci tensor, and gµn is the metric tensor describing space-time.

Note that the LHS of the above equation is purely geometrical. The energy-momentum

tensor Tµn in the RHS represents the matter content in space-time. The above set of

equations can be summed up using the famous quote by John Wheeler “space-time tells

matter how to move; matter tells space-time how to curve”. For a given Tµn , one can

solve the above set of non-linear partial second-order differential equations to obtain the

metric tensor gµn as the solution. The simplest solution is obtained by putting Tµn = 0,

and the corresponding result is known as the Schwarzschild metric, which represents

the space-time outside a spherically symmetric object of mass M.

ds2 =�
✓

1� 2M
r

◆
dt2 +

dr2
�
1� 2M

r
� + r2 �dq 2 + sin2 qdf 2� (1.2)

The above metric predicts some unusual features of space-time, such as space-time

singularity at r = 0, in which the curvature scalar becomes infinite. Further, the region

around the singularity is causally disconnected from the rest of space-time and is called

a black hole. The surface r = 2M is known as the event horizon, which defines the

boundary of the black hole. One can come up with more solutions to Eq. 1.1 by using

the appropriate energy-momentum tensor. A charged black hole solution was obtained

by Hans Reissner and Gunnar Nordström independently in 1918 as,

ds2 =� f (r)dt2 +
dr2

f (r)
+ r2 �dq 2 + sin2 qdf 2� , (1.3)

where,

f (r) = 1� 2M
r

+
Q2

r2 . (1.4)

Here, M and Q are the mass and charge of the black hole, respectively. The inner (r�)

and outer (r+) horizons are obtained from f (r) = 0 as,

r± = M±
p

M2�Q2 (1.5)

In 1963, Roy Kerr found a rotating black hole solution to EFE. The metric of the

2



Kerr black hole is given by

ds2 =�D�a2sin2q
r2 dt2�2a

2Mrsin2q
r2 dtdf

+
(r2 +a2)2�a2Dsin2q

r2 sin2qdf 2

+
r2

D
dr2 +r2dq 2

(1.6)

where D = r2� 2Mr + a2, r2 = r2 + a2cos2q and a,M are angular momentum and

mass of black hole respectively. Using Eq. 1.6, the inner and outer horizon of Kerr

metric can be found as

r± = M±
p

M2�a2 (1.7)

By adding an electric charge to the Kerr black hole, Newman found a new solution for

EFE in 1965. it is known as Kerr- Newman black hole solution. This black hole refers

to an electrically charged rotating black hole. The metric form of the Kerr- Newman

black hole differs from Kerr black only in the definition of D, which is given by D =

r2�2Mr+a2 +Q2. The event horizon of the Kerr- Newman black hole is found as

r± = M±
p

M2�a2�Q2 (1.8)

The background space-time for the above black hole solutions is asymptotically flat.

This means that far from the matter object, space-time is described by a Minkowski

metric. One can have black holes in space-time that is not asymptotically flat. The

history of such models starts with Einstein. He introduced a parameter called the cos-

mological constant (L) to modify Eq. 1.1 so that the universe would be static, i.e., the

infinite space-time neither expands nor contracts. However, the observational results in

those times proved that the universe was indeed expanding, and subsequently, Einstein

renounced his cosmological constant. Much later, advanced observational results con-

firmed the accelerated expansion of the universe which can be explained by Einstein’s

field equations with a positive L, and the space-time is called de Sitter (dS). Another

important model of space-time that is not asymptotically flat is the Anti-de Sitter space-

time (AdS). The AdS model of the universe is the one with constant negative curvature.

3



In light of AdS/CFT correspondence, AdS space-time is extensively studied, especially

the thermodynamics of AdS black holes. It is essential to outline a few details of AdS

space-time since we will be using this model often in this thesis.

1.1 The AdS Spacetime

Anti-de Sitter(AdS) is a maximally symmetric solution to the Einstein equation. This

is also a Vacuum solution but has a negative cosmological constant. So it’s a nega-

tively curved space-time. It’s the Lorentzian analogue of hyperbolic space. The space

with constant negative curvature is known as hyperbolic space H2. Hyperbolic can be

embedded into three-dimensional Minkowski space. The hyperbolic space is defined

by

ds2 =�dZ2 +dX2 +dY 2 (1.9)

�Z2 +X2 +Y 2 =�L2 (1.10)

Hyperbolic space has SO(1,2) invariance. Any point on the surface can be mapped

to other points by an SO(1,2) Lorentz transformation.In order to solve the constraint1.10,

take a coordinate system

X = Lsinhr cosf , Y = Lsinhr sinf , Z = Lcoshr.

Then metric becomes

ds2 = L2(dr2 + sinh2 rdf 2) (1.11)

It does not have a timelike direction even though it is embedded in Minkowskian space-

time. So it’s a space, not a space-time. Its curvature is constantly negative. Now

we consider AdS2 space-time can be embedded into flat space-time with two timelike

directions.

ds2 =�dZ2�dX2 +dY 2. (1.12)

�Z2�X2 +Y 2 =�L2 (1.13)

The parameter L is the AdS radius. AdS2 spacetime has SO(2,1) invariance. Take a

4



Figure 1.1: The topological structure of anti-de sitter space

coordinate system

Z = Lcoshr cos t̃, X = Lcoshr sin t̃, Y = Lsinhr (1.14)

now the metric becomes

ds2 = L2(�cosh2 rdt̃ +dr2) (1.15)

This coordinate (t̃,r), is called global coordinates. Here we have one time-like di-

rection. The t̃ coordinate has periodicity 2p , so the time like is periodic. But we

can unwrap the time-like direction, then consider space of AdS2 space-time where

�• < t̃ < •. The AdS space-time in AdS/CFT is this covering space. AdS space-time

can be described through different types of coordinate systems.

For static coordinate(t̃, r̃) r̃ is defined by r̃ = sinhr now the metric become

dS2

L2 =�(r̃2 +1)dt̃2 +
dr̃2

r̃2 +1

In conformal coordinate (t̃,q ) q coordinate is defined by tanq = sinhr . q has

values from �p
2 to p

2 . Metric is in the form

ds2

L2 =
1

cos2q
(�dt̃2 +dq 2)

5



. The value at q = ±p
2 is called AdS boundary. This boundary is located at r̃! • in

static coordinate and r! • in Poincare coordinate.

In Poincare coordinates(t,r) coordinate can defined as Z = Lr
2 (�t2 + 1

r2 +1),

X = Lrt, Y = Lr
2 (�t2 + 1

r2 � 1) where r > 0 and t varies from �•! • then metric

becomes
ds2

L2 =�r2dt2 +
dr2

r2

Any space-time which can be conformally compactified to match the conformal struc-

ture of AdS is called asymptotically AdS space-time. Consider Einstein’s equation in a

vacuum with a cosmological constant L

Rµn �
1
2

Rgµn +Lgµn = 0 (1.16)

Here the Ricci scalar R can be written in terms of L,

R =
2d

d�2
L (1.17)

1.2 Black holes and thermodynamics
A black hole is a region of space-time with a strong gravitational field from which even

light cannot escape. A body becomes a black hole when its mass is smaller than the

gravitational radius rg =
2GM

c2 . Any black hole is characterized by the parameters like

mass, angular momentum, and electric charge. The surface boundary of the black hole

in space-time is called the event horizon. It is a light-like surface. Wheeler introduced

the term black hole in 1967. Oppenheimer and Snyder, in 1931, described that the grav-

itational collapse of a massive star results in black holes. Nowadays, we are sure that

black holes with stellar masses exist in many binaries in our galaxies. Also, supermas-

sive black holes exist in the center of the galaxies. If the black hole mass is small, it

decays over a shorter than the universe’s age. Such black holes are known as primor-

dial black holes. They are formed at a very early stage of universe evolution. In 1974

Hawking’s findings were very unexpected. His finding was the instability of a vacuum

in a very strong gravitational field of a black hole, such an object act as a source of ra-

6



diation. Also, it should show a thermal spectrum. These findings stimulate the study of

understanding features of quantum effects in black holes. Grand Unified theory(GUT)

unifies all three fundamental interactions at a higher energy scale of the order 1015GeV

except gravity. Quantum gravity theory is an attempt to unify all interactions together.

A black hole is a macroscopically quantum mechanical system. So the study of black

holes helps to connect quantum gravity theory.

The quest for the quantum nature of gravity exploiting the properties of black holes

has been active for a long time. In the early 1970s, Hawking proved that the area of the

event horizon would never decrease under any physical processes (Bekenstein 1973,

Hawking 1975). Considering this property as a characteristic of thermodynamic en-

tropy, Bekenstein argued that black holes could be attributed to entropy, which is related

to the event horizon area. This was the first hint which indicated that black holes be-

have like thermodynamic objects. Soon, four laws were established for a general black

hole in stationary, asymptotically flat space-time, where the first law of thermodynamics

features a relation between the infinitesimal changes in mass, charge, the angular mo-

mentum of a black hole and the change of its horizon area. These infinitesimal changes

are in the space of stationary black hole solutions, and this relation is referred to as the

stationary state version of the first law.

Later the tools of thermodynamics, which are used extensively in an ordinary sys-

tem, are also applied to black hole systems. Accordingly, further studies in black hole

thermodynamics showed that thermally stable black holes exist only in anti-de Sitter

(AdS) space-time. The thermal properties of black holes in AdS space differ signif-

icantly from their asymptotically flat counterpart. The AdS space acts as a thermal

cavity and a black hole can exist in a stable equilibrium with radiation. A milestone

in this direction was provided by Hawking and Page in the 1980s. They found a phase

transition in Schwarzchild AdS black hole known as Hawking Page transition, which

is between radiation and large black hole phases. Later, the inconsistency between the

first law and the Smarr relation led to the identification of the cosmological constant

as the pressure term in the thermodynamics studies of a black hole. Subsequently, it

was observed that the P- V criticality of charged AdS black holes shows a resemblance
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with that of the Van der Waals (vdW) fluid. The thermodynamics of AdS black holes in

the extended phase space with a PdV term exhibits a first-order phase transition similar

to the liquid/gas transition in vdW fluid. In AdS black holes, the transition is between

a small black hole (SBH) and a large black hole (LBH) phases (Hawking and Page

1983a). These thermal properties find new meaning in light of AdS/CFT correspon-

dence which relates classical gravitational theories to strongly coupled conformal field

theory on its boundary.

From the statistical point of view, the thermodynamics of a system always demands

a microscopic description. Even though the thermodynamics of black holes is widely

studied, understanding the microscopic structure of the black hole was a challenging

problem. In this regard, the Ruppeiner geometry approach(Ruppeiner 1995a) is a handy

tool that extracts certain aspects of microscopic information from macroscopic proper-

ties. In this approach, a metric is defined on the thermodynamic state-space, which mea-

sures the distance between nearby fluctuating states. The Ruppeiner curvature scalar

(R), which can be calculated from the metric, provides crucial details about phase tran-

sitions and the nature of interactions in the microstructure of the system under consid-

eration. The important information obtained from this construction is the nature of the

microstructure interaction, the strength of the interaction, and critical behaviour. The

sign of curvature scalar specifies the type of interactions. For a noninteracting system

like an ideal gas, the curvature scalar vanishes. In an interacting system, the positive

and negative values of the scalar curvature represent repulsive and attractive interac-

tions, respectively. Also, the magnitude of the Ruppeiner curvature scalar measures the

strength of interaction. An added feature of the construction is that, for the system with

critical behavior, the curvature scalar shows divergence at the critical point. The singu-

larity of the curvature scalar is related to the singular nature of response functions near

the critical point. The Ruppeiner geometric method was found effective in describing

the microstructure details of a variety of known systems in conventional thermodynam-

ics. This success eventually led to the application of the Ruppeiner geometry method

to a black hole system.

A variety of approaches have been presented within the framework of Ruppeiner

8



geometry to understand the microstructure of black holes. Recently, it was proposed

that the thermodynamic curvature scalar can be constructed by taking the pressure and

volume as fluctuating variables, and the curvature scalar is normalized by adiabatic

compressibility(Dehyadegari et al. 2020). This construction makes an observation that

strong repulsive interactions dominate among the microstructures of small black holes

where the thermodynamic curvature diverges to positive infinity. In our work, we focus

on the microscopic interactions of massive dRGT black holes using the curvature scalar

normalized via adiabatic compressibility.

An innovative move to ponder the black hole phase transition is by investigating

Gibbs free energy landscape together with stochastic Fokker-Planck equation(Wei and

Liu 2015a)(Wei et al. 2019a). That helps one to analyze the kinetics and dynamics

of the transition process. The extremum in the off-shell Gibbs free energy curves are

identified as the stable and unstable states of the black hole. The transition point is iden-

tified from symmetric double wells in the free energy. Nevertheless, in the ensemble

perspective, two stable phases separated by a finite-height barrier of the intermediate

phase can transit into another stable state due to thermal fluctuations. The dynamics of

this probabilistic evolution are governed by the Fokker-Planck equation. Deploying the

free energy landscape, in our work we have studied the dRGT massive black hole in an

anti-de Sitter background.

Apart from the stationary state version of the first law of black hole thermodynam-

ics, there exists a “physical process” version(PPFL). Black holes, as found in nature, are

far from being appropriately described by global stationary black hole solutions. They

evolve due to falling matter, and the area of the horizon changes with time. Unlike the

infinitesimal change in the stationary state version of the first law, which is a change in

the space of solutions, in the physical process” version, there is an evolution in time due

to the process of matter falling into the black hole. Consequently, a different version of

the first law holds and appropriately describes this situation. In this version, one relates

the time evolution of the entropy to the matter influx across the horizon(Hawking and

Hartle 1972, Carter 1979, Wald 1995b). The physical process version of the first law

can be obtained for bifurcating Killing horizons with certain assumptions. Especially,
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one has to restrict to the situations where the horizon evolution is quasi-stationary, un-

der perturbations. We revisit the analysis of this assumption considering the horizon

perturbations of the Rindler horizon by a spherically symmetric object.

1.3 Massive gravity
Even though recent observations from LIGO/VIRGO collaborations confirm the pre-

dictions of the general theory of relativity, there are enough reasons to look beyond

Einstein’s theory of gravity. There is no doubt that Einstein’s general relativity gives an

accurate model for gravitational interactions at a low energy scale, where the quantum

effect does not come to play. But when energy increases, quantum effects start to dom-

inate. We know the general theory of relativity is a purely classical theory of gravity. It

does not account for the impact of quantum mechanics. So it is impossible to explain

what was going on at energy thigh as the Planck energy or at distances as small as the

Planck length. On the observational side, the mass content expected from general the-

ory relativity exceeds the mass estimated from astronomical observations. It is believed

that such discrepancies can be accounted for by considering the presence of an un-

known form of mass known as dark matter. Also, the presence of dark matter is proven

through many observations of the motions of galaxies and gravitational lensing. So the

general relativity prediction fails and hence the gravity laws should be modified. An-

other discrepancy is about the expansion of the universe, which accelerated expansion.

It is confirmed by the measurements done on cosmic microwave background radiation

(CMBR). This accelerated expansion of the universe demands a positive cosmologi-

cal constant to exist. The measured value of the cosmological constant is many orders

of magnitude smaller than the estimated value in quantum field theoretic calculations.

This difference can not be incorporated into Einstein’s general relativity. These issues

related to general relativity point out the incompleteness in our understanding of either

matter or gravity or both. So, problems like the cosmological constant problem, the hi-

erarchy problem, and the accelerated expansion demand a modification to the General

theory of relativity. In the history of modified theories of gravity, many models were

proposed, which include Lovelock gravity, Einstein-Yang-Mills theory, f (R) theories,

Massive gravity, Hořava gravity(Capozziello and Laurentis 2011, Clifton et al. 2012).
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The general theory of relativity is a unique massless spin two-field theory. Among

the several modified versions, massive gravity theories explain the universe’s acceler-

ated expansion without introducing a cosmological constant or dark energy. Massive

gravity theories have a long and remarkable history. The initial studies were carried

out by Fierz and Pauli in 1939(Fierz and Pauli 1939). The proposed theory was lin-

ear and ghost-free but did not reduce to general relativity in the massless limit. Non-

linear modifications of Fierz and Pauli’s theory lead to ”Boulware-Deser” ghost in-

stability(Boulware and Deser 1972). Later, de Rham, Gabadadze, and Tolley (dRGT)

came up with a special class of non-linear massive gravity theory, which is ”Boulware-

Deser” ghost free(de Rham et al. 2011). Further, the thermodynamics of the black holes

in massive gravity were widely investigated (Cai et al. 2015, Xu et al. 2015, Hendi et al.

2017a, 2016, Mirza and Sherkatghanad 2014, Fernando 2016, Ning and Liu 2016).

1.4 Objectives of the present research work
The main objective of this thesis is the study of “Properties of Rindler Horizon and

Some Aspects of Black Hole Chemistry in Massive Gravity”. The work specifically

focuses on:

• Study the phase transitions in the dRGT massive black hole in an anti-de Sitter

space-time by analysing Hawking temperature, mass, entropy, heat capacity and

Gibbs free energy in the extended phase space.

• Probe the microstructure of the dRGT massive black hole in an anti-de Sitter

background in an extended phase space with pressure and volume taken as fluc-

tuation variables.

• Analyse the dynamics and kinetics of phase transition via Gibbs free energy land-

scape aided with stochastic Fokker-Planck equation.

• Investigate physical process version of first law (PPFL) and the entropy change

of Rindler horizons.

• Explore the first law in PPFL version of thermodynamics and its modification in

the presence of positive cosmological constant.
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1.5 Organization of the thesis

The thesis is organised as follows:

Chapter 1 gives a brief introduction to black holes, AdS space-times and massive

gravity. The scope and objectives of the present research work, together with the organ-

isation of the thesis, are also included at the end of this chapter.

Chapter 2 presents a brief introduction to black hole chemistry and VdW like phase

transition of RN AdS black holes.

In Chapter 3, Thermodynamic geometry and microstructure of black holes are dis-

cussed. Microstructure of the dRGT massive black hole in an anti-de Sitter background

in an extended phase space with pressure and volume taken as fluctuation variables are

discussed.

In Chapter 4, a thermodynamic study in the massive gravity theory can be extended

further by considering the dynamics of phase transition. The dynamical properties of

the stable small-large black hole phase transitions in dRGT non-linear massive gravity

theory are studied and discussed on the underlying free energy landscape.

In Chapter 5, we concentrate on the characteristics and features of the first law

of black hole thermodynamics. The physical process version of the first law can be

obtained for bifurcate-Killing horizons with certain assumptions. We discussed the

analysis of this assumption considering the horizon perturbations of the Rindler horizon

by a spherically symmetric object.

Chapter 6 summarises the important findings of the present research work by high-

lighting the remarkable results of the thesis along with conclusions.
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Chapter 2

An overview of black hole chemistry

Thermodynamics is one of the classical theory in physics. It developed through the

work of Carnot, Clausius, Joule, Kelvin and many others. Thermodynamics is an em-

pirical science which describes the macroscopic behaviour of systems. The fundamen-

tal principles of thermodynamics are stated in three laws. The zeroth law establishes

temperature as a fundamental property of matter. It states that if two bodies are in sepa-

rately thermal equilibrium with the third body, then they are also in thermal equilibrium

with each other. The first law assures the principle of conservation of energy, and the

second law introduces the concept of entropy. The key highlight of thermodynamics is

that the microscopic details are not necessary to explore the macroscopic behaviour of

systems.

Black holes are important objects in physics. It is the region of spacetime where a

large amount of mass is concentrated with strong gravity, and nothing can escape from

it. It is one of the best candidates to study the theory of quantum gravity because where

gravity and quantum mechanics hold simultaneously. The understanding of the ther-

modynamic behaviour of black holes using the concepts of chemistry will be discussed

here. To establish the complete correspondence between the thermodynamics of an or-

dinary system and that of black holes, the recent literature suggests that identification

of the mass of a black hole, cosmological constant, surface gravity, and horizon area of

a black hole with the chemical enthalpy, pressure, temperature, and entropy of an ordi-

nary thermodynamic system respectively. Consequently, the thermodynamics of black
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holes behave analogously to a variety of everyday phenomena.

2.1 Black hole chemistry
The subject of black hole physics serves as a bridge between gravity and quantum me-

chanics. Taking into account the quantum mechanics at the black hole horizon, Stephen

Hawking found that the black hole emits radiation proportional to its surface gravity

(Hawking 1975). Prior to the Hawking’s work, Jacob Bekenstein had suggested that in

order to have consistent second law, the entropy of the black hole should depend on the

area of a black hole (Bekenstein 1973). This enables one to consider a black hole as

a thermodynamic object. Hence, in parallel with ordinary thermodynamics, four laws

of black hole mechanics were proposed (Bardeen et al. 1973b). Later studies in black

hole thermodynamics showed that the thermally stable black hole exists only in anti-de

Sitter (AdS) space. A milestone in this direction was provided by Hawking and Page

in the 1980s. They found that a phase transition, the so-called Hawking-Page phase

transition, is exhibited by Schwarzchild- AdS black hole, which is a transition between

radiation and large black hole phase (Hawking and Page 1983a).

Since then, the thermodynamic phase transitions in AdS black holes have been ex-

tensively studied. Later, the inconsistency between the first law and the Smarr relation

leads to identifying the cosmological constant as the pressure term in thermodynamics

(Kastor et al. 2009a). Subsequently, with the pressure and volume term, it was observed

that the P�V criticality of charged AdS black holes shows a resemblance with that of

the van der Waals (vdW) fluid (Kubiznak and Mann 2012). The thermodynamics of

AdS black holes in this extended phase space with a PdV term exhibits a first-order

phase transition between a small black hole (SBH) phase and a large black hole (LBH)

phase. Also, various other thermodynamic features of AdS black holes analogous to

the van der Waals fluid, like the Joule-Thomson effect and heat engine, were observed

(Ökcü and Aydıner 2017, Johnson 2014). This was the beginning of a new domain in

black hole research called ‘black hole chemistry’.

An arbitrary black hole can be treated as a thermodynamic system. A stationary

black hole in an equilibrium state is completely described by three parameters mass(M),

angular momentum (J) and charge(Q). Also, the area of a black hole is written as the
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function of these parameters,

A = 4p

 
2M2�Q2 +2M

r
M2�Q2� J2

M2

!
(2.1)

from this internal energy of a black hole in terms of three parameters can be obtained

M = M(A,J,Q) =

s
p(Q2 + A

4p )
2 +4J2

A
(2.2)

The differential of internal energy is written as the slight change of area(dA), angular

momentum (dJ) and electric charge (dQ),

dM =
k
8p

dA+WdJ+FdQ (2.3)

where k =
4p
q

M2�Q2� J2
M2

A is surface gravity. W = 4pJ
MA is angular velocity. F = 4pQr+

A is

electric potential of black hole. This equation is very similar to the first law of classical

thermodynamics. Hawking’s remarkable finding of radiation of stationary black hole

gives the relation between temperature and surface gravity.

T =
h̄k

2pck
(2.4)

Where c is the speed of light and k is the Boltzmann constant. Bekenstein- Hawking

entropy relation relates the area of a black hole with entropy

S =
A

4l2
p

(2.5)

where l2
p = h̄G

c3 is plank length. These arguments strongly support taking an analogy

between black hole physics and thermodynamics.

2.2 Four laws of black hole thermodynamics

Bardeen, Carter and Hawking 1973 formulated four laws of black hole physics, which

are similar to four laws in thermodynamicsBardeen et al. (1973a).
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1. Zeroth law: The surface gravity k is constant over the event horizon of a station-

ary black hole. As similar to the zeroth law in thermodynamics, where tempera-

ture is constant for a thermodynamic equilibrium state.

2. First law: First law of thermodynamics features a relation between the infinites-

imal changes in mass, charge, angular momentum of a black hole and the change

of its horizon area. These infinitesimal changes are in the space of stationary

black hole solutions

dM =
k

8pG
dA+WdJ+FdQ (2.6)

Where k is surface gravity, M is mass, Q is the charge, A is event horizon area, J

is angular momentum, Fis electric potential.

3. Second law (Hawking’s Area theorem): The area of the event horizon of a black

hole never decreases i.e. dA� 0

4. Third law: it is never possible to reduce the surface gravity k to zero by a finite

number of processes. In other words, it is difficult to form an extremal black hole.

2.3 Smarr relation and black holes

Smarr relation is the relation which connects the black hole parameters. Eulers theorem

provides a bridge between the first law of black hole mechanics and the Smarr formula

for a stationary black hole. It states that if a function f (x,y) takes the scaling relation,

f (a px,aqy) = ar f (x,y), then it should satisfy the relation

r( f (x,y)) = p
✓

∂ f
∂x

◆
x+q

✓
∂ f
∂y

◆
y. (2.7)

Even though the correspondence between the thermodynamics of a physical system and

a black hole exists, they were not comparable for the first law. We know the first law of

thermodynamics as,

dE = T dS�PdV +work term (2.8)
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and black hole first law can be written as,

dM =
k
8p

dA+WdJ+FdQ, (2.9)

where WdJ, fdQ are refers to work term and here we chosen c = h̄ = k = 1. By

comparing these two Eq. 2.8 and 2.9, we can easily conclude that there is no counter-

part term for pressure and volume in black hole thermodynamics. For d-dimensional

Schwarschild AdS black hole solution(Kastor 2008),

ds2 =� f (r)dt2 +
dr2

f (r)
+ r2dW2

d�2 (2.10)

where

f (r) = 1� 1
d�2

16p
ld�2

M
rd�3 �

2L
(d�1)(d�2)

(2.11)

dW2
d�2 is the line element of unit sphere Sd with volume ld�2 = 2p

d�1
2

G( d�1
2 )

. The Smarr

relation for such a black hole can be derived using dimensional analysis and Euler’s

theorem. For a d-dimensional black hole, mass M(A,J) is the function of the area of

event horizon (A) and angular momentum (J). From dimensional analysis,

M µ Ld�3, A µ Ld�2, J µ Ld�2. (2.12)

Under the scaling L! aL

M! ad�3M, A! ad�2A, J! ad�2J. (2.13)

Now the relation using the scaling relation M(A,J) can be written as

ad�3M = M(ad�2A,ad�2J). (2.14)

Differentiating with respect to a gives

(d�3)ad�4M = (d�2)
∂M

∂ (ad�2A)
ad�3A+(d�2)

∂M
∂ (ad�2J)

ad�3J, (2.15)
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by setting a = 1, we will have Smarr formula,

(d�3)M = (d�2)TA+(d�2)WJ. (2.16)

Where T = ∂M
∂S = 4G∂M

∂A and W = ∂M
∂J . Thus Smarr relation for a 4-d case can be written

as,

M =
k

4pG
A+2WJ. (2.17)

In charged Kerr solution, we see that M is a homogeneous function horizon area A,

angular momentum J and charge Q.

M = M(A,J,Q2) (2.18)

M =

✓
A

16p
+

4pJ2

A
+

Q2

2
+

pQ4

A

◆1/2

(2.19)

Now using scaling relation, we write,

aM = M(a2A,a2J,a2Q2) (2.20)

Then, Euler’s theorem tells,

M = 2
∂M
∂A

A+2
∂M
∂J

J+
∂M
∂Q

Q. (2.21)

From equation2.17 L.H.S can be replaced,

k
4pG

A+2WJ+fQ = 2
∂M
∂A

A+2
∂M
∂J

J+
∂M
∂Q

Q. (2.22)

Comparing the coefficients, one gets ie,

2A
⇢

k
8pG

� ∂M
∂A

�
+2J

⇢
W� ∂M

∂J

�
+Q

⇢
f � ∂M

∂Q

�
= 0. (2.23)

∂M
∂A

=
k

8pG
;

∂M
∂J

= W;
∂M
∂Q

= f (2.24)
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Differential of M(A,J,Q) can be obtain,

dM(A,J,Q) =
∂M
∂A

dA+
∂M
∂J

dJ+
∂M
∂Q

dQ (2.25)

Using Eq. (2.24), we obtain differential mass relation,

dM =
k

8pG
dA+WdJ+fdQ (2.26)

This is the differential mass formula, which is commonly known as the first law of black

hole thermodynamics, similar to the first law in classical thermodynamics given by,

dE = T dS+work terms. (2.27)

Analysing various terms in the first law, one can easily identify the mass (M) of the

black hole with energy(E) in classical thermodynamics. Similarly, horizon area (A)

and surface gravity (k) are identified with entropy (S) and temperature (T) in ordinary

thermodynamics, respectively. The remaining terms in the first law ( WJ and fQ) are

identified as work terms in thermodynamics.

E !M

S ! A
4G

T  ! k
2p

2.4 Smarr relation in AdS black holes

Smarr formula does not remain the same in spacetime with the cosmological constant.

As we know from gravitational action for AdS black holes,

S =
1

8pG

Z
ddx
p
�g(R�2L), (2.28)
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cosmological constant L has the dimension of (length)�2. The quantity M is a function

of horizon area(A) and cosmological constant L. The quantities scale as

M µ Ld�3, A µ Ld�2, L µ L�2. (2.29)

Using the Eulers theorem and dimensional analysis, we can write the mass of a black

hole, which satisfies the Smarr relation by,

(d�3)M = (d�2)
✓

∂M
∂A

◆
A�2

✓
∂M
∂L

◆
L (2.30)

Here, by setting L = 0 and ∂M
∂A = k

8pG gives well-known Smarr formula for an asymp-

totically flat black hole. From the Komar integral formalism, we get the Smarr formula

for AdS/dS (AppendixA) as,

(d�3)M = (d�2)
kA

8pG
�2

Q
8pG

L (2.31)

Calculation of Q for 4-d Schwarzschild AdS black holes found to be,

Q =�4prh
3

3
=�V (2.32)

which is the volume of a 3-dimensional sphere. Comparing two different version of

Smarr relation (Eq. 2.30 and 2.31) we get,

(d�2)
✓

∂M
∂A

◆
A�2

✓
∂M
∂L

◆
L = (d�2)

kA
8pG

�2
Q

8pG
L (2.33)

This helps us to identify ∂M
∂A = kA

8pG and ∂M
∂L = Q

8pG . Differentiation of Smarr relation

gives the first law of black hole thermodynamics in this new extended phase space,

dM =
kA

8pG
dA+

✓
∂M
∂L

◆
dL (2.34)
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The result of Q equal to geometrical volume led to the idea of considering the conjugate

quantity L as the thermodynamic pressure(Teitelboim 1985).

P =� L
8p

(2.35)

The second term in the Smarr relation and the first law fills the obvious omission of

PV term in black hole thermodynamics. The addition of P�V term in the phase space

modifies the Smarr relation and first law.

M = 2(T S+WJ�V P)+fQ (2.36)

dM = T dS+V dP+fdQ+WdJ (2.37)

where J and W are angular momenta and angular velocity, respectively. Similarly, Q

and f are electromagnetic charges and potential, respectively. This version of black

hole thermodynamics is popularly known as ‘extended phase space’. The immediate

implication of P�V addition is that the mass is replaced with enthalpy rather than

internal energy.

2.5 P-V criticality

Since thermodynamically stable black holes exist only in AdS space-time, thermody-

namical studies of the black hole were mainly focused on asymptotically AdS black

holes. The thermodynamics in the extended phase space with a PdV term exhibits a

first-order phase transition similar to the liquid/gas transition in vdW fluid (Kubizňák

and Mann 2012). In AdS black holes, the transition is between a small black hole (SBH)

and a large black hole (LBH) phase. Also, a variety of other thermodynamic properties

of vdW fluids, like the Joule-Thomson effect and heat engine, were found in AdS black

holes (Ökcü and Aydıner 2017, Johnson 2014).

2.5.1 Van der Waals fluid

The ideal gas equation PV = RT was modified by Van der Waals in 1879 with the

consideration of intermolecular attraction and the finite size of a molecule. He added
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Figure 2.1: P-V isotherms and Gibbs free energy is plotted against temperature for
VdW gas

some correction terms for pressure and volume and wrote a new equation state for a real

gas.
⇣

P+
a

V 2

⌘
(V �b) = RT (2.38)

P =
RT

(V �b
� a

V 2 (2.39)

where a and b are Van der Waals constants. The pressure-volume (P-V) isotherms are

plotted for various temperatures using the vdW equation of state. The plot is shown in

figure 2.1. From the plot, we can determine the critical point using the condition, dP
dV = 0

and d2P
dV 2 = 0. Using this condition, the critical parameters for VdW gas are determined.

The critical volume Vc = 3b, temperature Tc =
8a

27bR and the pressure Pc =
a

27b2 . The

universal value PcVc
kTc

= 3
8 predicted for all fluids. Below the critical point, a phase change

occurs between a liquid and gaseous phase. More signatures about first-order liquid/gas

phase transition can be obtained from Gibbs free energy plots in the G-T plane. A

swallowtail behaviour appears in the plots below the critical point, as shown in figure

2.1.

2.5.2 Phase transitions in charged AdS black hole

The metric of the charged RN-AdS black hole is given by,

ds2 =� f (r)dt2 +
dr2

f (r)
+ r2dW2 (2.40)
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where dW2 is the standard line element on a two dimensional unit sphere and,

f (r) = 1� 2M
r

+
Q2

r2 +
r2

l2 . (2.41)

The mass function M(r) gives the distribution of black hole mass as,

M(r) =
r3

2l2 +
r
2
+

1
2r

. (2.42)

In the extended phase space, the cosmological constant L is treated as the thermody-

namic pressure as P = �L/8p , and the volume as the conjugate quantity. With this

identification, one can interpret the mass of an AdS black hole as the enthalpy of the

spacetime(Kastor et al. 2009b). The Hawking temperature of the black hole is associ-

ated with the surface gravity T = k
2p , with k = f 0(r+)

2 ,

T =
f 0(r+)

4p
=

r
2pl2 +

M
2pr2 �

1
2pr3 (2.43)

The entropy of the RN-AdS black hole is simply the area of the event horizon, S = pr2.

The equation of state is thus obtained from Eqn. 2.43 as,

P =
1

8pr4 �
1

8pr2 +
T
2r

. (2.44)

With the specific volume v = 2r+, the equation has the proper dimensions, and then we

have the physical equation of state,

P =
T
v
+

2
pv4 �

1
2pv2 . (2.45)

Using the above expressions for pressure Eqn. 2.45 and temperature Eqn. 2.43), we

obtain the isotherms in the P� v plane . It is clear from the figures 2.2 and 2.3 that the

black hole under consideration exhibits a van der Waals (vdW) like critical behaviour.

The P� v isotherms in figure 2.2 have an oscillatory behaviour below a certain critical

temperature Tc . The positive slope regions in the curve below Tc, correspond to an

unstable state of the system. And the negative slope region indicates stable phase of
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Figure 2.2: P-v isotherms for charged AdS Black holes.Took v = 2r+ for AdS black
holes

the system. This slope disappears at critical point T = Tc, which is an inflection point.

Above the critical temperature, the isotherms moves towards the ideal gas behaviour. It
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Figure 2.3: Gibbs free energy is plotted against pressure and temperature for charged
AdS Black holes

is interesting that van der Waals gas and AdS black holes have similar phase structures.

The Gibbs free energy G =U�T S together with P�v isotherms are important to study

the critical phenomenon during a phase transition. Phases in a black hole are named as

Small black hole phase (SBH) and Large black hole phase(LBH)(Kubizňák and Mann

2012). Further, a coexistence curve is obtained in figure 2.4, along which temperature
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and Gibbs free energy coincide for both phases SBH and LBH. On the coexistence

line, both SBH and LBH phases coexist, and the line terminates at a critical point. The
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Figure 2.4: Coexistent curve for Charged Black holes. Critical points are labelled with
a circle.

singular behaviour around the critical point is characterised by four numbers known

as critical exponents a,b ,g,d . All the critical exponents of SBH-LBH phase transition

exactly match with that of van der Waals fluid and belong to the same universality class.

Critical values are

2.6 Discussions
Black holes are, hopefully, an excellent tool that could be used to unravel the nature

of gravity at the quantum mechanical level. The well-established connection between

black holes and thermodynamics has laid a strong foundation for this prospect. Un-

derstanding gravity from the viewpoint of thermodynamics and statistical physics has

made a great deal of advancements in recent years. One of the profound results of

this prospect is the analogy between the van der Waal liquid-gas system and a charged

black hole in AdS space. This formulation was achieved by treating the cosmological

constant as thermodynamic pressure in the extended phase space. Subsequently, a gear

deal of thermodynamics was studied in asymptotically AdS black holes resembling a

first-order vdW phase structure.
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Chapter 3

Ruppeiner geometry and interacting

microstructures of black holes in

dRGT massive gravity

3.1 Introduction

A variety of approaches have been presented within the framework of Ruppeiner ge-

ometry to understand the microstructure of black holes (Wei and Liu 2015b, Wei et al.

2019b, Xu et al. 2020b, Miao and Xu 2018, Xu 2020, Xu et al. 2020a, Ghosh and

Bhamidipati 2020b,a, Yerra and Bhamidipati 2020b, Wu et al. 2021). Recently, it was

proposed that the thermodynamic curvature scalar can be constructed by taking the

pressure and volume as fluctuating variables, and the curvature scalar is normalized

by adiabatic compressibility (Dehyadegari et al. 2020). This construction makes an

observation that strong repulsive interactions dominate among the microstructures of

small black holes where the thermodynamic curvature diverges to positive infinity. Fur-

ther, this method has been successfully applied to the Gauss-Bonnet AdS black hole

spacetime (Naveena Kumara et al. 2020). In this chapter, we focus on the microscopic

interactions of massive dRGT black holes using the curvature scalar normalized via

adiabatic compressibility.

The van der Waals like feature of dRGT massive gravity black holes and other ap-
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plications such as triple point, Reentrant phase transitions, heat engines, and throttling

process were also studied (Zou et al. 2017, Liu et al. 2020, Hendi et al. 2018, Yerra and

Bhamidipati 2020a, Lan 2019). In addition, several works to probe the microstructure

were also studied using various thermodynamic-geometry approaches (Chabab et al.

2019, Wu et al. 2021, Yerra and Bhamidipati 2020b).

3.2 Thermodynamics of black holes in massive gravity

In this section, we discuss the spacetime and thermodynamic structure of black holes

in massive gravity theory. Here we consider dRGT non-linear massive gravity theory.

In four-dimensional AdS space, the action for the Einstein-dRGT gravity coupled to a

non-linear electromagnetic field reads as

S =
Z

d4x
p
�g

"
1

16p

"
R+

6
l2 +m2

4

Â
i=1

ci Ui(g, f )

#
� 1

4p
FµnFµn

#
, (3.1)

where Fµn = ∂µAn �∂nAµ is the electromagnetic field tensor with vector potential Aµ ,

l is AdS radius, m is related to the graviton mass, and ci are coupling parameters. Fur-

ther, fµn is a symmetric tensor as reference metric coupled to the space-time metric

gµn . Graviton interaction terms are represented by symmetric polynomials Ui, and are

obtained from a 4⇥4 matrix K
µ
n =
p

gµa fna , which have the following forms,

U1 = [K]

U2 = [K]2� [K2]

U3 = [K]3�3[K2][K]+2[K3]

U4 = [K]4�6[K2][K]2 +8[K3][K]+3[K2]2�6[K4]

The solution to the above action for various horizon topologies are given by(Hendi et al.

2017b, Cai et al. 2015),

ds2 =� f (r)dt2 +
1

f (r)
dr2 + r2hi jdxidx j, (3.2)
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where hi j is the metric for two dimensional hypersurface. The topological parameter

(k) can take values 0,�1 or 1, representing planar, hyperbolic, and spherical topology,

respectively. With the choice of reference metric fµn = diag(0,0,c2
0hi j), the values of

Ui becomes U1 =
2c0
r , U2 =

2c2
0

r2 , U3 = U4 = 0. Now, the metric function reduces to,

f (r) = k� m0

r
� Lr2

3
+

q2

r2 +m2
⇣c0c1

2
r+ c2

0c2

⌘
, (3.3)

where integration constants m0 and q are related to black hole mass and charge, re-

spectively. m is the parameter for graviton mass, and in the limiting case of m = 0 the

spacetime reduces to Reissner- Nordstrom black hole solution.

With this quick review of spacetime, we now turn to its thermodynamics in the ex-

tended phase space. Here the cosmological constant L is dynamic and is related to the

pressure as P = �L/8p , and its conjugate quantity gives the black hole volume (nor-

malized) (Kastor et al. 2009a). In extended thermodynamics, the mass of the black hole

is interpreted as enthalpy of the spacetime rather than energy. The Hawking temperature

of the black hole is associated with the surface gravity T = k
2p , with k = f 0(rh)

2 , where

rh is the horizon radius. Another important thermodynamic parameter, the entropy of

the black hole can be obtained from the Bekenstein area law. These thermodynamics

quantities can easily be obtained as,

M =

✓
rh

2
(k+ c2

0c2m2)+
c0c1m2rh

2
+

8
3

pPr2
h +

q2

4r2
h

◆
,

T =

 
2Prh +

k+ c2
0c2m2

4prh
� q2

16pr3
h
+

c0c1m2

4p

!
,

S =pr2
h.

The first law of black hole mechanics can be readily written using the above quantities,

using which we can calculate the remaining thermodynamic quantities. Thermody-

namic volume is,

V =

✓
∂M
∂P

◆

S,Q
=

4
3

pr3
h =

p
6

v3, (3.4)
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Figure 3.1: P�V isotherms of the massive dRGT-AdS black hole. The shaded region
below the solid black line corresponds to the unstable states. (Parameters are in reduced
terms and the x axis is in the log scale).

where v = 2r is the specific volume. The equation of state of the system is,

P =
q2

2pv4 �
k+ c2

0c2m2

2pv2 +
T
v
� c0c1m2

4pv
. (3.5)

The black hole exhibits a vdW like behaviour. The critical values can be derived

from the conditions,

✓
∂P
∂v

◆

T
= 0, and

✓
∂ 2P
∂v2

◆

T
= 0, (3.6)

we obtain,

Pc =
(k+m2c2c2

0)
2

24pq2 , vc =

p
6pq

(k+m2c2c2
0)

1/2 , Tc =
2
�
k+m2c2c2

0
�(3/2)

3
p

6pq
+

m2c1c0

4p
.

(3.7)

Using the above critical values, we define the reduced thermodynamic quantities as,

Pr =
P
Pc
, Tr =

T
Tc
, vr =

v
vc
, Vr =

V
Vc

. (3.8)
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In the reduced parameter space, the equation of state reduces to,

Pr =
8
3v

(
Tr

"
1+

c0c1m2q
16

✓
6

k+ c2
0c2m2

◆3/2
#

�c0c1m2q
16

✓
6

k+ c2
0c2m2

◆3/2
)
+

1
3v4 �

2
v2 . (3.9)

In fact, we can write the equation of state in terms of thermodynamic volume V as,

P =
�4c0

2c2m2�4k

8 62/3 (p)1/3V 2/3
+

16pT �4c0c1m2

16(6)1/3 p2/3 (V )1/3 +

�p
6
�1/3 q2

12V 4/3 . (3.10)

The above equation P(V,T ) (since r =
�3V

4p
�1/3 ) is often called the geometric form.

Now, one can construct the Maxwell equal area law. The observed coexistence line

determines the small-large black hole transition region. In the next sections, we examine

the microstructure of the dRGT black hole using Ruppeiner geometry and present our

observations in detail.

3.3 Microstructure of black holes
From statistical physics point of view, the thermodynamics of a system always demands

a microscopic description. The scenario is not much different in black hole thermody-

namics. Even though the thermodynamics of black holes is widely studied, the under-

standing the microscopic structure of the black hole was a challenging problem always.

An alternate way of approaching phase transitions in classical thermodynamics is by

constructing thermodynamic geometry through the construction of a thermodynamic

metric on the thermodynamic space (P, V, T ). This idea was introduced by Wein-

hold and Ruppeiner, who constructed thermodynamic metric to study phase transitions

and microscopic interactions in thermodynamic systems (Ruppeiner 1995a) (Weinhold

1975).

A Riemannian geometry can be built in the thermodynamic equilibrium space,

whose metric tells us about the fluctuations between the states. These studies show

that the thermodynamic geometry encodes the information about the microscopic inter-

action. In this regard Ruppeiner geometry approach is a very useful tool, which extracts
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certain aspects of microscopic information from macroscopic properties. In this ap-

proach, a metric is constructed on the thermodynamic equilibrium state space which

measures the distance between two nearby fluctuating states (Ruppeiner 1995a, 2008a).

The Ruppeiner scalar curvature hence calculated from the metric provides the crucial

details about phase transitions and the nature of interactions in the microstructure of the

system under consideration. The important information obtained from this construction

are: (1) nature of microstructure interaction, (2) strength of interaction and (3) critical

behaviour. The sign of Ruppeiner scalar curvature indicates the type of interactions.

For a non interacting system like ideal gas, it will vanish. In an interacting system, the

positive and negative values of scalar curvature represent repulsive and attractive inter-

actions respectively. The magnitude of the Ruppeiner curvature scalar is the measure of

strength of interaction. An added feature of the construction is that, for the system with

critical behaviour, the curvature scalar shows divergence near the critical point. The

singularity of the curvature scalar is related to the singular nature of response functions

near the critical point. The Ruppeiner geometric method found effective in describing

the micro structure details of a variety of known systems in conventional thermodynam-

ics Ruppeiner (1995b), Janyszek and Mrugaa (1990), Oshima et al. (1999), Mirza and

Mohammadzadeh (2008), May et al. (2013). This success eventually lead to the appli-

cation of the Ruppeiner geometry method to a black hole system Ruppeiner (2008b).

3.3.1 Thermodynamic geometry

Thermodynamic geometry can explained using fluctuation theory. Which tells that any

physical quantities describing a macroscopic body in equilibrium is always equal to

their mean value, even though they fluctuate, this fluctuation requires some probabil-

ity distribution for the physical quantity. Consider thermodynamic system has two in-

dependent variable x0 and x1. The probability of finding the system in x0 + dx0 and

x1 +dx1 is proportional to the number of micro states.

P(x0,x1)dx0dx1 =CW(x0,x1)dx0dx1 (3.11)

32



where C is normalization constant. From Boltzmann entropy formula, S = kBlnW,

W = exp
✓

S
kB

◆
(3.12)

Eq. 3.11 become

P(x0,x1) =C exp
✓

S
kB

◆
(3.13)

Now consider total thermodynamic system is divided in to system and surrounding.

System plus surrounding is called environment. Now total entropy can be written as

S(x0,x1) = Ss(x0,x1)+SE(x0,x1) (3.14)

where Ss << SE ⇡ S. Now using the Taylor expansion entropy can expand at xµ = xµ
0 .

Total entropy become

S = S0 +
∂Ss

∂xµ

����
xµ=xµ

0

Dxµ
s +

∂SE

∂xµ

����
xµ=xµ

0

Dxµ
E

+
1
2

∂ 2Ss

∂xµ∂xn

����
xµ=xµ

0

Dxµ
s Dxn

s +
1
2

∂ 2SE

∂xµ∂xn

����
xµ=xµ

0

Dxµ
EDxn

E

(3.15)

where µ,n can take values (0,1,2..). For closed system xµ
S + xµ

E = xµ
Total=Constant

∂Ss

∂xµ

����
xµ=xµ

0

Dxµ
s =

∂SE

∂xµ

����
xµ=xµ

0

Dxµ
E (3.16)

Therefore,Eq. 3.15 become,

DS =
1
2

∂ 2Ss

∂xµ∂xn

����
xµ=xµ

0

Dxµ
s Dxn

s +
1
2

∂ 2SE

∂xµ∂xn

����
xµ=xµ

0

Dxµ
EDxn

E (3.17)

since SE ⇡ Stotal , the second term is much smaller than first term, so we can ignore it.

Now, Eq. 3.13 become,

P(x0,x1) =C exp
✓

1
2kB

∂ 2Ss

∂xµ∂xn

◆
Dxµ

s Dxn
s (3.18)
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P(x0,x1) =C exp
✓
�1

2
Dl2
◆

(3.19)

Dl2 gives the distance between two neighbouring fluctuating states.

Dl2 =
�1
k

gµnDxµ
s Dxn

s (3.20)

gµn =
∂ 2Ss

∂xµ∂xn (3.21)

For simplicity we can take k = 1 and take SS = S. Here Dl2 can be treated as distance

between two neighbouring states in state space. As we know Riemannian geometry,

once we know the metric of spacetime we can develop the scalar curvature. By em-

ploying same procedure we can compute scalar curvature in terms of parameter space.

By using the same conventions like,

Gs
µn =

1
2

gsr �∂ngrµ +∂µgrn �∂rgµn
�

(3.22)

Rs
rµn = ∂nGs

rµ �∂µGs
rn +Gd

rµGs
dn �Gd

rnGs
d µ (3.23)

Rµn = Rs
µsn (3.24)

R = gµnRµn (3.25)

where gµn is inverse of metric gµn . For thermodynamic system first law can be written

as,

dU = T dS�PdV +Â
i

yidxi (3.26)

where xi corresponds to thermodynamic variables and yi indicate chemical potential.

For simplicity by absorbing PdV term in to the last term

dU = T dS+Â
i

yidxi (3.27)

since entropy is taken as thermodynamic potential in Ruppeiner geometry

dS =
dU
T
�Â

i

yi

T
dxi (3.28)
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dS = zµdxµ (3.29)

where µ takes values (0,1,2,3..), i running as (1,2,3..), zµ = (U,V..), yi = (�P, ..) and

zµ = ∂S
∂xµ = ( 1

T ,
�yi
T ). The line element can be written as

Dl2 =�DzµDxµ (3.30)

Dl2 =
1
T

DT DS+
Dyi

T
Dxi (3.31)

Here we can choose two choices of parameter space coordinate. (T,xi) coordinate or

(T,yi) coordinate.

For the first choice T and xi are independent variables. Helmholtz free energy can

choose as potential here. (T,V) parameter space is good choice for in this category.F =

U�T S and its differential form is,

dF =�SdT + yidxi (3.32)

From this expression we have the relation

∂S
∂xi =�

∂yi

∂T
. (3.33)

Now expand DS and Dyi in terms of independent variables T and xi

DS =
∂S
∂T

DT +
∂S
∂xi Dxi (3.34)

Dyi =
∂yi

∂T
DT +

∂yi

∂x j Dx j (3.35)

Now the Eq.3.31 can be written as

Dl2 =
�1
T

✓
∂ 2F
∂T 2

◆
DT 2 +

1
T

✓
∂ 2F

∂xi∂x j

◆
DxiDx j (3.36)

For T,V as state space coordinate Eq. 3.36 can be written as

Dl2 =
�1
T

CV DT 2� 1
T

✓
∂P
∂V

◆
DV 2. (3.37)
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Curvature scalar can be easily obtained from this line element for (T,V) fluctuation co-

ordinates.

For the second choice T and yi are fluctuation coordinates. Corresponding thermody-

namic potential is W =U �T S� yixi. (P,V) parameter space is good choice for in this

category. Differential form of W can be written as,

dW =�SdT � xidyi (3.38)

Here we have

S =�∂W
∂T

, xi =�∂W
∂yi

(3.39)

Now expand DS and Dxi in Eq. 3.31 in terms of independent variables T and yi.

DS =
∂S
∂T

DT +
∂S
∂yi

Dyi (3.40)

Dxi =
∂xi

∂T
DT +

∂xi

∂y j
Dy j (3.41)

Eq. 3.31 now can simplified to

Dl2 =
�1
T

✓
∂ 2W

∂Pµ∂Pn

◆
DPµDPn (3.42)

where Pµ = (T,yi). For representing metric in (S.P) parameter space,

DT =
∂T
∂S

�����
P

DS+
∂T
∂P

�����
S

DP (3.43)

DV =
∂V
∂S

�����
P

DS+
∂V
∂P

�����
S

DP (3.44)

Now, metric can be written as

Dl2 =
DS2

CP
+

V
T

kSDP2 (3.45)
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where kS = �1
V

⇣
∂V
∂P

⌘

S
is the adiabatic compressibility. Since entropy of black hole

depends only on volume (S,P) plane is equivalent to (P,V ) plane.

3.3.2 Scalar curvature

From thermodynamic geometric perspective, we can investigate the information about

spacetime from scalar curvature. It will diverge at critical point of phase transition, so

this property is used to find the phase transition. The sign of scalar curvature indicate

the type of interaction. Positive scalar curvature gives repulsive interaction, whereas

negative indicate attractive interaction. R = 0 indicate there is no interaction. As we

discussed in the first case of parameter space, that is Fluctaution coordinate as (T,x)

, where x can take any variable like V,Q,J... For two dimension case metric can be

written as

gµn =
1
T

0

@

⇣
�∂ 2F
∂T 2

⌘

x
0

0
⇣

∂ 2F
∂x2

⌘

T

1

A (3.46)

gµn =
1
T

0

@

⇣
∂S
∂T

⌘

x
0

0
⇣

∂y
∂x

⌘

T

1

A (3.47)

Heat capacity at constant x is Cx = T
⇣

∂S
∂T

⌘

x
line element can be written as

dl2 =
Cx

T 2 dT 2� (∂xy)T

T
dx2 (3.48)

from this metric scalar curvature can be calculated as

R =
1

2C2
x (∂xy)2{T (∂xy)

⇥
(∂xCx)

2 +(∂TCx)((∂xy)�T ∂T,xy)
⇤
+Cx

⇥
(∂xy)2+

T ((∂xCx)(∂x,xy)�T (∂T,xy)2)+2T (∂xy)(�(∂x,xCx)+T (∂T,T,xy))}
(3.49)

Here R can be diverge at Cx = 0 or (∂xy)T = 0. (∂x,xy)T = (∂xy)T = 0 are the condition

for critical point. So it means R has diverging behaviour at critical point. For constant

heat capacity Cx, the scalar curvature reduces to,

R =
(∂xy)2�T 2(∂T,xy)2 +2T 2(∂xy)(∂T,T,xy)

2Cx(∂xy)2 (3.50)
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in (T,V ) parameter space , thermodynamic curvature is normalized with respect heat

capacity at constant volume, whereas in (P,V ) plane thermodynamic curvature is con-

structed via adiabatic compressibility(k).

3.3.3 Ruppeiner geometry and microstructure of massive black Hole

In this section, we study the interacting microstructure of the massive black hole using

Ruppeiner geometry method. Without compromising generality we will put c0 = 1 and

m = 1 in Eq. (4.3). In the thermodynamic parameter space of pressure and entropy, the

line element can be simplified to the following form,(Dehyadegari et al. 2020)

dl2 =
dS2

CP
+

V
T

ksdP2, (3.51)

here the heat capacity CP = T ( ∂S
∂T )P and ks =

�1
V (∂V

∂P )S. Considering the interdepen-

dence of entropy and volume in the case of a spherically symmetric black hole, the

above line element can be written as

dl2 =
1

CP

⇣ p
6V

⌘2/3
dV 2 +

V
T

kSdP2 (3.52)

Now, we have pressure and volume as the thermodynamic variables. Since the adiabatic

compressibility kS is a vanishing quantity similar to the heat capacity at a constant

volume, we define a normalized thermodynamic curvature as RN = RkS. By performing

a direct calculation of the curvature scalar, we obtain the normalized curvature scalar

(RN) of the dRGT black hole.

RN =
16Vr

2/3

y5/2
⇣

PrVr
4/3�2Vr

2/3 +1
⌘2⇣

36c1qVr +
p

6y3/2
⇣

3PrVr
4/3 +6Vr

2/3�1
⌘⌘

⇥
(

54
p

6c1
2q2Vr

2 +9c1qVry3/2
⇣

9PrVr
4/3 +6Vr

2/3 +1
⌘

+
p

6
⇣

3Vr
2/3�1

⌘
y3
⇣

9PrVr
4/3�6Vr

2/3 +5
⌘)

.

(3.53)
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Figure 3.2: The behaviour of RN as a function of P and V

Here, the variable y is defined as y = k + c2. The behaviour of RN with reduced

volume Vr for a fixed parameter is studied in the figures 3.3(a) to 3.3(d). For Pr < 1,

RN has two negative divergences. These divergences merge at Vr = 1 for Pr = 1. For

Pr > 1, these divergences of RN disappears. The divergence of RN is along the curve is

defined by,

Pdiv =
2V 2/3

r �1

V 4/3
r

Pdiv =
1�2V 2/3

r

3V 4/3
r

� 0.003061

V 1/3
r

(3.54)

Here, the dominant interaction is attractive in nature because the RN is always negative.

In the figure 3.4(b), the red dashed curve represents the coexistence curve and the blue

solid represents the divergent curve. The shaded region in the graph indicates the posi-

tive values of the normalized scalar curvature and the other remaining regions RN take

negative values. SBH and LBH phases simultaneously coexist under the coexistence

curve. From this figure, it is apparent that a certain range of volume in SBH has posi-

tive RN , which implies the domination of repulsive interaction. The region where RN is

negative signifies attractive microstructure interactions.

One can study the plot for RN along the coexistence curve for both SBH and LBH

phases from critical temperature to zero. Here we observe that RN for both SBH and

LBH diverges to �• at the critical temperature. The figure 3.4(a) shows that LBH

possesses only negative values of RN , and it gradually increases while approaching

the critical temperature. However, for the SBH phase RN changes sign and become a

positive value below a particular temperature. Also, RN goes to positive infinity as T

tends to zero, where strong repulsive interaction dominates.
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We also investigate the effect of graviton mass (m = 0,1,2) and horizon topology

on the micro-states of dRGT black holes for SBH and LBH phases. It is clear from the

figure 3.6 that the repulsive interaction of SBH becomes strongly repulsive as graviton

mass increases. However, the attractive nature of the LBH phase becomes weaker as

graviton mass increases. Figures 3.5(a) and 3.5(b) show the repulsive interaction SBH

is stronger for spherical topology, followed by flat and hyperbolic topology. Hyper-

bolic topology has the most attractive LBH interactions, followed by flat and spherical

topology.
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Figure 3.3: The behaviour of the RN against the reduced volume Vr at constant pressure.

3.4 Discussions
we have constructed the Ruppeiner geometry for an AdS black hole in dRGT massive

gravity to the phenomenological understanding of the nature and the strength of the mi-

crostructure interactions. The underlying motivation for this study lies in the fact that

the black hole phase transition is related to its microstructure details. The construction
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Figure 3.4: Left: The behaviour of RN along the coexistence curve. The red (dashed)
and blue (solid) lines correspond to LBH and SBH, respectively. Right: The vanishing
curve (black dot-dashed line) and diverging curve (blue solid line) of RN along with the
coexistence curve (red dashed line). The shaded regions indicate positive RN ; otherwise,
RN is negative (Parameters are in reduced terms, and the x axis is in the log scale).
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Figure 3.5: The effect of parameter k on the microstructure interactions. In the left SBH
and in the right LBH are shown.

is carried out by defining a normalized curvature scalar RN in the parameter space of

pressure P and the volume V , which are the fluctuation coordinates, via the adiabatic

compressibility k . The phenomenological understanding of the nature and the strength

of the microstructure follows from the observation of the behavior of RN along the

coexistence line for the small-large black hole phase transition, which is a first-order

transition with universal behavior. The validity of the construction of normalized cur-

vature scalar is confirmed by looking at the divergence of the curvature scalar at the

critical point of the phase transition. The study shows that the microstructure details
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Figure 3.6: The effect of parameter m on the microstructure interactions. In the left
SBH and in the right LBH are shown.

of the dRGT massive black holes are similar to the charged AdS black holes; how-

ever, it is influenced by the parameters of the spacetime that govern the massive gravity

background.

The small black hole phase has microstructures analogous to anyon gas with attrac-

tive and repulsive interactions. The result is interesting due to the presence of a repulsive

interaction at some parameter space, which differs from the microstructure properties

of a vdW fluid (where we have only dominant attractive interactions), though the phase

transition properties are akin to both black hole and VdW systems. In other words, the

universality in the critical behavior does not imply the similarity in the microstructure

interactions. We note that the repulsive interaction is suppressed by the graviton mass

m. The effect of the topology on the repulsive interaction was also investigated, which

shows a trend of stronger to weaker in the order k = �1,0,1. The LBH exhibits only

attractive interactions all over the parameter space, which is similar to a boson gas. In

both the small and large black hole phases, the attractive interactions of the black hole

microstructure have the same dependence on the spacetime parameters m and k. The

effect of charge on the microstructure is also explored, which we find negligible.
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Chapter 4

Dynamic phase transition of black

holes in massive gravity

4.1 Introduction

Phase transitions are useful tools in thermodynamics and statistical physics. Hawk-

ing and Page (Hawking and Page 1983b) studied the first-order phase transition from a

thermal AdS phase to a large black hole phase by considering the black holes as ther-

modynamic states. The analogy between black holes and van der Waal systems has

been explored in modified gravity theories as well as higher curvature gravity theories

(Cai et al. 2013, Wei and Liu 2013, Zou et al. 2014, Rajagopal et al. 2014, Mo and Liu

2014, Xu et al. 2015, Yazdikarimi et al. 2019, Dayyani et al. 2018). In thermodynamics

studies, the macroscopic properties of a system can be determined by the microscopic

degrees of freedom. In this regard, a phase of a thermodynamics system is a macro-

scopic emergent state. The probability in which a state emerges from many possible

micro states is related to the thermodynamic free energy of the system. The free energy

distributed among the state space constitutes a free energy landscape. Further, the free

energy landscape can be characterised by specifying an order parameter. In a van der

Waal liquid-gas system, the density can be used as order parameter.The transition be-

tween different states, caused by thermal fluctuations, can be addressed in terms of free

energy minima.
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Black holes, being a thermal entity, can be considered as macroscopic emergent

states of some underlying microscopic degrees of freedom. Therefore, we can con-

struct a free energy landscape by taking the radius of the black hole as order parameter

(Wei and Liu 2015a, Wei et al. 2019a). Also, one can study the kinetics of black hole

phase transitions using probabilistic Fokker-Planck equation on the free energy land-

scape. This formalism has been applied to study the phase transitions in Einstein as

well as massive gravity theories(Li and Wang 2020). The calculation can be extended

by solving the Fokker-Planck equation subjected to suitable boundary conditions to ob-

tain the stationary distributions of black hole sates at different temperatures as well as

the first passage time of the probabilistic evolution between black hole states. Consider-

ing this, the dynamics and kinetics of the Hawking-Page phase transition for Reissner-

Nordstrom anti-de Sitter (RNAdS) black holes are investigated in (Li et al. 2020).

The general theory of relativity is a massless spin two field theory. One can ask

about the possibilities of a self-consistent gravity theory with massive graviton. The

answer is yes! And among the several modified versions of massive gravity theories

can explain the accelerated expansion of our universe without introducing a cosmo-

logical constant or dark energy. Massive gravity theories have a long and remarkable

history. The initial studies were carried out by Fierz and Pauli in 1939(Fierz and Pauli

1939). The proposed theory was linear and ghost-free but did not reduce to general

relativity in the massless limit. Non-linear modifications of Fierz and Pauli’s theory

lead to ”Boulware-Deser” ghost instability(Boulware and Deser 1972). Later, de Rham,

Gabadadze, and Tolley (dRGT) came up with a special class of non-linear massive grav-

ity theory, which is “Boulware-Deser” ghost free(de Rham et al. 2011). As mentioned

before, the thermodynamics of the black holes in massive gravity were widely inves-

tigated (Cai et al. 2015, Xu et al. 2015, Hendi et al. 2017a, 2016, Mirza and Sherkat-

ghanad 2014, Fernando 2016, Ning and Liu 2016). The van der Waals like feature of

dRGT massive gravity black holes and other applications such as triple point, Reen-

trant phase transitions, heat engines, and throttling process were also studied (Zou et al.

2017, Liu et al. 2020, Hendi et al. 2018, Yerra and Bhamidipati 2020a, Lan 2019).

In addition, several works to probe the microstructure were also studied using various
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thermodynamic-geometry approaches (Chabab et al. 2019, Wu et al. 2021, Yerra and

Bhamidipati 2020b, Safir et al. 2022).

In this chapter, we extend the calculation of black hole phase transitions within free

energy landscape by considering a dRGT non-linear massive gravity theory. The free

energy landscape is constructed by specifying the Gibbs free energy to every states,

and the free energy profile is used to study the different black hole phases. A detailed

study on the first passage process is presented which describes the dynamics of phase

transitions. Finally, we will investigate the effect of mass and topology on the dynam-

ical properties of phase transitions of black holes in dRGT non-linear massive gravity

theory.

4.2 Thermodynamic characterisation and phase transi-

tion

We start with a brief discussion on the spacetime and thermodynamic structure of black

holes in massive gravity theory. As mentioned above, we consider the dRGT non-linear

massive gravity theory in four-dimensional AdS space. The action for the Einstein-

dRGT gravity coupled to a non-linear electromagnetic field is given by (Vegh 2013),

S =
Z

d4x
p
�g

"
1

16p

"
R+

6
l2 +m2

4

Â
i=1

ci Ui(g, f )

#
� 1

4p
FµnFµn

#
, (4.1)

where Fµn = ∂µAn �∂nAµ is the electromagnetic field tensor with vector potential Aµ ,

l is AdS radius, m is related to the graviton mass, and ci are coupling parameters. Fur-

ther, fµn is a symmetric tensor as reference metric coupled to the space-time metric

gµn . Graviton interaction terms are represented by symmetric polynomials Ui, and are

obtained from a 4⇥4 matrix K
µ
n =
p

gµa fna , which have the following forms,

U1 = [K]

U2 = [K]2� [K2]

U3 = [K]3�3[K2][K]+2[K3]

U4 = [K]4�6[K2][K]2 +8[K3][K]+3[K2]2�6[K4]
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The solution to the above action for various horizon topologies are given by(Cai et al.

2015, Hendi et al. 2017b),

ds2 =� f (r)dt2 +
1

f (r)
dr2 + r2hi jdxidx j, (4.2)

where hi j is the metric for two dimensional hypersurface. The topological parameter

(k) can take values 0,�1 or 1, representing planar, hyperbolic, and spherical topology,

respectively. With the choice of reference metric fµn = diag(0,0,c2
0hi j), the values of

Ui becomes U1 =
2c0
r , U2 =

2c2
0

r2 , U3 = U4 = 0. Now, the metric function reduces to,

f (r) = k� m0

r
� Lr2

3
+

q2

r2 +m2
⇣c0c1

2
r+ c2

0c2

⌘
, (4.3)

where integration constants m0 and q are related to black hole mass and charge, re-

spectively. m is the parameter for graviton mass, and in the limiting case of m = 0 the

spacetime reduces to Reissner- Nordstrom black hole solution.

Now, the event horizon (r+) is determined by the largest root of the equation f (r) =

0. The Hawking temperature of the black hole is related to its surface gravity by the

relation TH = k
2p , where the surface gravity k = 1

2 f 0(r+). As in the case of an asymp-

totically AdS black hole in four dimension, one can relate the thermodynamic pressure

with cosmological constant (Kastor et al. 2009a, Dolan 2011b,a) as,

P =� L
8p

At this point, the mass, temperature, and the entropy of the black hole in Einstein-dRGT

gravity coupled to a non-linear electromagnetic field can be expressed in terms of the

horizon radius and pressure as following:

M =

✓
r+
2
(k+ c2

0c2m2)+
c0c1m2r+

2
+

8
3

pPr2
++

q2

4r2
+

◆
,

TH =

✓
2Pr++

k+ c2
0c2m2

4pr+
� q2

16pr3
+

+
c0c1m2

4p

◆
,

S =pr2
+.
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Figure 4.1: Black hole temperature as a function of event horizon radius (a) when P<Pc
and (b) P > Pc.

The first law of black hole mechanics can be readily written using the above quantities.

Further, thermodynamic volume is obtained as,

V =
4
3

pr3
+ =

p
6

v3, (4.4)

where v = 2r+ is the specific volume. The equation of state of the system P = P(TH ,v)

is,

P =
q2

2pv4 �
k+ c2

0c2m2

2pv2 +
TH

v
� c0c1m2

4pv
. (4.5)

This expression indicates that the black hole exhibits a vdW fluid like behaviour. The

critical points for the first order phase-transition between a large black hole phase (LBH)

and small black hole phase (SBH) in the extended phase space can be derived from the

conditions, ✓
∂P
∂v

◆

TH=0
, and

✓
∂ 2P
∂v2

◆

TH

= 0, (4.6)

we obtain,

Pc =
(k+m2c2c2

0)
2

24pq2 , (4.7)

Above the critical pressure Pc, the black hole temperature TH is a monotonic func-

tion of black hole radius. Whereas below the critical pressure black hole temperature

have the local minimum and local maximum values (this characteristics is independent

of the topology of the system). In Fig. [4.1] we have depicted a typical behaviour of TH
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as a function of r+ for both P < Pc and P > Pc.

The local minima and local maxima of black hole temperature for P < Pc are deter-

mined by,
∂TH

∂ r+
= 0,

giving the solutions,

rmin/max =
1

4
p

p

hk+ c2
0m2c2⌥

�
k+ c2

0m2c2�24pPq2� 1
2

P

i 1
2
.

And the corresponding values of black hole temperatures are given by,

Tmin/max =
1

4
p

p

"
c0c1m2p

3
2 � 16pq2

 
k+c2

0m2c2⌥(k+c2
0m2c2�24pPq2)

1
2

P

! 3
2

+
4
�
k+ c2

0m2c2
�

 
k+c2

0m2c2⌥(k+c2
0m2c2�24pPq2)
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P
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2
+2P

0

@k+ c2
0m2c2⌥

�
k+ c2

0m2c2�24pPq2� 1
2

P

1

A

1
2 #

Further analysis shows, when the black hole temperature lies Tmin < TH < Tmax, there

exists three branches of black hole solution (i.e. small, intermediate, and large black

hole), in which the intermediate solution is unstable. Also, there is a first order phase

transition from the small black hole to the large black hole similar to the van der Waals

liquid-gas system.

The characteristics of the first-order phase transition of black hole is further studied in

the following section using Gibbs free energy landscape.

4.3 Gibbs free energy landscape
As discussed before, the free energy is an effective tool to study the dynamic phase

transition of black holes. We consider the canonical ensemble composed of a series

of black holes at a given temperature T . The free energy landscape is constructed by

specifying a Gibbs free energy to every spacetime states. Now, the Gibbs free energy
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(on-shell) can be obtained either from the Euclidean action (Dolan 2011a) or from the

thermodynamic relationship G = M�THS. Note that the expression for off-shell Gibbs

free energy is obtained by replacing the Hawking temperature (TH) with the ensemble

temperature (T ), and is given by,

G = M�T S =
r+
2

✓
k+

q2

r2
+
+

8
3

Ppr2
++m2

⇣
c2

0c2 +
c0c1r+

2

⌘◆
�pTr2

+ (4.8)

In this construction, the black hole radius is taken as the order parameter describing the

microscopic degrees of freedom of the system. Now, the Gibbs free energy landscape

as a function of the black hole radius for P < Pc at different values of the temperature

can be studied Fig. [4.2]. When T < Tmin, there is only one global minimum for the

Gibbs free energy, and corresponds to pure radiation phase. At T = Tmin, there is an

inflection point. Above this temperature two black hole phases emerge (small and large

black hole phases). The smaller black hole corresponds to a local maximum of Gibbs

free energy and the larger black hole has a local minimum. For Tmin < T < Tmax, the

T < Tmin
T = Tmin
T = 0.26
T = 0.27
T = Tmax

0 1 2 3 4 5
-0.5

0.0

0.5

1.0

1.5

2.0

r+

G

Figure 4.2: Behaviour of Gibbs free energy as a function of r+ for P < Pc at different
temperatures

Gibbs free energy has three local extremals, in which two are stable and one is unstable.
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The extremum values are determined by,

∂G
∂ r+

= 0

) k
2

+
m2

2
�
c2

0c2 + c0c1r+
�
� q2

2r2
+
�2pr+ (T �2Pr+) = 0 (4.9)

Solving this equation for radius, we obtain the radii for small, intermediate, and large

black holes. The intermediate black hole which has the maximum value of Gibbs free

energy is unstable. The small and large black holes are locally stable as they corre-

sponds to minimal Gibbs free energy. Further, the Gibbs free energy can be obtained

as,

Gs/m/l =
rs/m/l

2
h +

3q2

4rs/m/l
� 2

3
Ppr3

s/m/l, (4.10)

where h = k+ c2m2. As the temperature increases, the local minimum of Gibbs free

energy lowers until it becomes zero at T = Ttrans. Ttrans is known as the transition tem-

perature. At this point, the Gibbs free energy of large and small black holes are equal.

Therefore, the transition temperature can be obtained from the following equations:

1
2
(h + c1rs)�

q2

2r2
s
�2prs (T �2Prs) = 0,

1
2
(h + c1rl)�

q2

2r2
l
�2prl (T �2Prl) = 0,

and
rs

2
h +

3q2

4rs
� 2

3
Ppr3

s =
rl

2
h +

3q2

4rl
� 2

3
Ppr3

l ;

The expressions for the small and large black hole radii is readily obtained as,

rs =
1

8(pP)
3
2

h
(h +w)

�
h (h +w)�12Ppq2�

i 1
2
,

rl =
1

4pP(h +w)

h
h (h +w)�12Ppq2 +4

p
p
�
P(h +w)

�
h (h +w)�12Ppq2�� 1

2 .

(4.11)
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Here, w =
p

h2�24Ppq2. These expressions can be substituted back to obtain the

transition temperature.

Ttrans =
6
p

Ppt2 (h +w)�2q2 (Pp)
3
2 (49h +13w)+ c1m2 (h +w)

3
2
p

h (h +w)�12pPq2

2p (h +w)
3
2
p

h (h +w)�12pPq2

A thermodynamic phase diagram is given by plotting Tmax, Tmin, and Ttrans as a function

of P. For a chosen parameters of the system (k = 1,m = 1,q = c1 = c2 = 0.05), the

curves divide the P�T plane into four thermodynamic phase regions. In Fig. [4.3], the

blue, black, and red lines represent Tmax, Ttrans, and Tmin respectively.

Note that the structure of phase diagram is similar to the case of AdS black hole .

� � � � � � �
���

���

���

���

���

�

�

Figure 4.3: The phase diagram of dRGT black holes. Here, Tmax, Tmin, and Ttrans are
plotted as a function of P fro 0 to Pc. The small black hole is stable in the blue region
whereas the large black hole is stable in the grey region. In this plot, the black line
represents the coexisting curve.

The region above the blue line as well as below the red line has only one black hole

solution which is always thermodynamically stable. The rest of the phase-diagram

represents three black hole solutions. Along the black curve the free energies of small

and large black holes are equal, and both these solutions coexists along this curve with

equal probability. Therefore, the black line is called the coexisting curve. The free

energy of the small black hole phase is less than the free energy of the large black hole

in the phase region between the black and red curves, and the free energy of small

black hole phase is greater than the free energy of the larger black hole in the region
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between the black and blue curves. As the system having less Gibbs free energy is

thermodynamically stable, we conclude that the small black hole is stable in the region

between the red and black curves whereas the large black hole is thermodynamically

stable in the region enclosed by the black and blue lines. However, from the ensemble

point of view, one stable black hole state may turn into another stable state due to

thermal fluctuations. The dynamics of such evolution of the system is described by the

probabilistic Fokker-Planck equation. We will investigate the dynamics of the phase

transition in the following section.

4.4 Probabilistic evolution on the free energy landscape

In this section, we study the kinetics of black hole phase transition by considering black

holes as thermodynamic states in the extended phase space. We have observed that the

large and small black hole phases can switch into each other due to the presence of

thermal fluctuations. Note that the black hole radius r+ is taken as the order parameter

which characterises the black hole phases. Therefore, the probability distribution of the

thermodynamic state can be consider as a function of r+ and time t.

4.4.1 Fokker-Planck equation and probabilistic evolution

We denote the distribution function r(r+, t). Now, the evolution of the distribution is

governed by the probabilistic Fokker-Planck equation given by

∂r(r+, t)
∂ t

= D
∂
∂ r

(
e�bG(r+) ∂

∂ r

h
ebG(r+)r(r+, t)

i)
(4.12)

Here, D is the diffusion coefficient and is given by D = kT/x , with k, x denoting the

Boltzmann constant and dissipation coefficient respectively. Also, the quantity b =

1/(kT ) is the inverse temperature of the system. For convenience, we take k = x = 1

without the loss of generality.

To solve the Fokker-Planck equation, we need to impose two boundary conditions. The

first one is the reflecting boundary condition which preserves the normalisation of the
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probability distribution. At r+ = r0, we set,

e�bG(r+) ∂
∂ r

[ebG(r+)r(r+, t)]

�����
r+=r0

= 0,

which can be rewritten as,

bG0(r+)r(r+, t)+r 0(r+, t)

�����
r+=r0

= 0, (4.13)

where the prime denotes the derivative with respect to the order parameter r+. The

second boundary condition sets the value of the distribution function to zero,

r(r0, t) = 0 (4.14)

In the following analysis, we chose the reflecting boundary condition at r0 = 0 and

r0 = •. The initial distribution is taken to be a Gaussian wave packet located at ri,

which is a good approximation of d - distribution.

r(r+,0) =
1p
pa

e�
(r�ri)

2

a2 , (4.15)

where the parameter a is a constant which determines the initial width of the wave

packet. Note that the initial distribution is well normalised, and as a consequence of

the reflection boundary condition r(r+, t) will remain normalised during the evolution.

The parameter ri denotes the radius of the initial black hole state. We may choose either

ri = rs representing SBH as the initial state or ri = rl for LBH. Suppose we chose ri = rl

at t = 0. As the distribution evolve, we observe a non-zero probability distribution for

both SBH and LBH states. This indicates the phase transition between LBH and SBH

phases due to the thermal fluctuations. The time evolution of r(r+, t) is plotted in Fig.

(4.4).

In Fig. 4.4(a) and 4.4(b), we set ri = rs, and studied the evolution of the distri-

bution for two values of the transition temperatures (Ttrans = 0.4,0.5). Initially, the

probabilistic distribution is peaked at r+ = rs. The probabilistic distribution becomes
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(a) (b)

(c) (d)

Figure 4.4: The time evolution of the probability distribution function r(r, t). In (a)
and (b) the initial condition is chosen at SBH state and in (c) and (d) it is at LBH state.
The reflecting boundary conditions are imposed at r = 0 and r = •. The coexistent
temperatures are TE = 0.4 in left panel) and TE = 0.5 in right panel) with c1 = 2,q =
1,m = 1,c0 = 1,c2 = 5 and k = 1.

quasi-stationary in a short time with peaks at small and large black hole states. After

some time, the height of r(r+, t) at r+ = rs decreases while another peak starts to de-

velop at r+ = rl . This implies the leakage of small black hole state to large black hole

state. Further, as t! •, r(r+, t) becomes a stationary state. A similar behaviour is ob-

served if we take the initial state to be a large black hole. The corresponding evolution

for two different temperatures are depicted in Fig. 4.4(c), and 4.4(d).

The above analysis can be made more apparent by comparing the behaviour of

r(rs, t) and r(rl, t) as time progresses, where r(rs, t) , r(rl, t) represent the probability
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distribution of SBH and LBH states respectively. In Fig. 4.5, the evolution of prob-

ability distribution for both black hole states are depicted for two different transition

temperatures. In both cases, we have taken the initial black hole state to be SHM. In

other words, at t = 0, r(rs) takes a finite value but r(rl) vanishes. Fig. 4.5(a) describes

the evolution of both probability distributions for a transition temperature Ttrans = 0.4.

Now, as time increases, the height of r(rs, t) decreases while that of r(rl, t) increases,

indicating the leakage of black hole states from SBH to LBH. For large values of time,

both r(rs, t) and r(rl, t) approaches a final stationary state wherer(rs) = r(rl). In Fig.

??(b), the same evolution is drawn but for a higher transition temperature, Ttrans = 0.5.

From the figure, we observe that for larger transition temperatures, both distribution

reaches the stationary state more rapidly. A similar analysis can be carried out by tak-

ing other black hole state as the initial configuration giving the same results.
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Figure 4.5: The time evolution of the probability distribution r(r, t). The solid red and
dashed blue curves correspond to the functions r(rhs, t) and r(rhl, t), respectively. The
initial Gaussian wave packet is located at SBH state. The coexistent temperatures are
(a) TE = 0.4. (b) TE = 0.5, with c1 = 2,q = 1,m = 1,c0 = 1,c2 = 5 and k = 1.

In the coming session, we will study the kinetics by first passage process from one black

hole state to another black hole state on the underlying free energy landscape. First pas-

sage time is a very important quantity in transition state theory, and is used to find out

the time that it takes for a state starting from one stable phase to reach another stable

phase.
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4.4.2 First passage time

A key factor to describe LBH-SBH phase transition is the first passage time. The first

passage time is defined as the time required for the state of black hole from a stable

phase (described by the minimum of Gibbs free energy) to reach the intermediate tran-

sition state (described by the maximum of Gibbs free energy) for the first time. Note

that the black hole phase transition between two states under consideration is due to the

thermal fluctuations in the system. Therefore, the first passage time will be a random

variable. The probability that the present state of SBH that has not made a first passage

by time t is defined as,

S(t) =
Z rm

0
r(r+, t)dr+, (4.16)

where rm is the radius of the intermediate black hole state obtained from Eq. (4.9).

As the time progress, the probability that the system remains at SBH decreases and

approaches to zero as t ! •, i.e., S(t)t!• = 0. This is due to the fact that the normal-

ization of the probability distribution is preserved in this case. Similarly, one can start

with an LBH state and define the probability distribution that the initial LBH state has

not made a first passage by time t as,

S(t) =
Z •

rm
r(r+, t)dr+, (4.17)

The time evolution of S(t) for both SBH and LBH for two values of transition temper-

atures are plotted in Fig. 4.6. The probability distribution is clearly seen to vanish for

long time evolutions. Further, the probability distribution decrease faster for transitions

at higher temperature. Now, the first passage time is the probability that a small black

hole state passes through the intermediate state for the first time in the interval (t, t+dt).

The distribution of first passage time is given by,

Fp(t) =�
dS(t)

dt
(4.18)

Substituting for S(t) and using the Fokker-Planck’s equation along with the reflecting

boundary condition at r+ = 0 and absorbing boundary condition at r+ = rm, we get the
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Figure 4.6: The time evolution of the distribution of the probability S(t) that the system
remains at the initial state. (a) Initially at SBH and (b) initially at LBH state. Red
solid and blue dashed curves are for the coexistent temperatures TE = 0.4 and TE = 0.5,
respectively, with c1 = 2,q = 1,m = 1,c0 = 1,c2 = 5 and k = 1.

following expression for the first passage time.

Fp(t) =�D
∂
∂ t

r(r+, t)

�����
r=rm

(4.19)

The distribution of first passage time for both SBH to LBH and LBH to SBH phase

transitions are plotted for different trnansition temperatures (Fig. 4.7). In Fig. 4.7(a),

the initial distributions are Gaussian wave packets located at the small black hole state.

The single peak in the first passage time within a short period of time indicates that a

considerable fraction of the first passage events have occurred before the distribution

attains its exponential decay form. As time increases the peak becomes more sharper.

The curves corresponding to different transition temperatures show similar behaviour

of the first time. Further, when the initial state is SBH, the location of the peak moves

to left (lower value of time) when the transition occur at larger transition temperatures.

This characteristics can be justified by looking at the behaviour of the barrier height

between the small and intermediate black hole states as a function of temperature. As

mentioned in section 4.3, G(rm)�G(rs) decreases as temperature increases. Therefore,

the small black hole state can cross the barrier to reach the intermediate state easily

at higher transition temperatures. However, if the initial distribution is peaked at large

black hole state, the location of the peak moves to right (higher values of time) when
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the transition occur at larger transition temperatures Fig. 4.7(b). Similar to the previ-

ous case, this behaviour is explained as follows: As the barrier height G(rm)�G(rl)

increases with the temperature, the large black hole state takes more time to cross the

bariier under thermal fluctuations. These results are qualitatively similar to the case of

dynamics of phase transitions charged AdS black holes presented in Li et al. (2020).
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Figure 4.7: The probability distribution of the first passage time Fp(t). Red solid and
blue dashed curves are for the coexistent temperatures TE = 0.4 and TE = 0.5, respec-
tively. (a) From SBH state to LBH state. (b) From LBH state to SBH state. Here,
c1 = 2,q = 1,m = 1,c0 = 1,c2 = 5 and k = 1.

In the following, we investigate the role of mass and the topological parameter on

the results discussed above on the dynamic phase transition of black holes in massive

gravity theory.

4.5 The effect of mass and topology
Note that the numerical results presented so far in the investigation of the dynamics of

black hole phase transition in dRGT non-linear massive gravity theory consider only

certain values of the parameters in the system. It is still remains to study the behaviour

of time evolution of the probability distribution and the first passage time by varying

those parameters. However, as the theory possess too many variables, we will be con-

sidering the effect of mass and the topology only.

In Fig. 4.8, the evolution of probability distribution function is plotted for different

topologies and masses. Here, we have considered planar (k = 0), hyperbolic (k =�1),
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and spherical (k = 1) topologies. For the sake of demonstration the initial black hole

is taken as small black hole (SBH) state and the transition temperature to be TE = 0.4

(Fig. 4.8(a)). One can see from the figure that the height of r(rs, t) decreases rapidly

for k = �1, indicating a quick leakage of black hole state from SBH to LBH. For the

case of planar topology, the transition is less rapid and for the spherical case, the evolu-

tion is slow. This means that out of three, the spherical black holes attain the stationary

state only after a long evolution. Further, the value of the probability distribution at the

stationary state (r(rs) = r(rl)) is highest for the spherical case compared to the planar

and hyperbolic cases. The effect of mass parameter shows a similar behaviour. As m

increases, the system attains its final stationary state slowly. We conclude, as the mass

increases the small black hole state leaks towards the large black hole state slowly (Fig

4.8(b)).
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Figure 4.8: The effect of the parameters on the time evolution of the probability dis-
tribution r(r, t). The solid and dashed curves correspond to the functions r(rhs, t) and
r(rhl, t), respectively. The initial Gaussian wave packet is located at SBH state. (a) The
effect of topology. Black, blue and red correspond to k = 1,0,�1, respectively. The
coexistent temperature is TE = 0.4. (b) The effect of mass parameter m. Red, blue and
black correspond to m = 0,0.07,0.1, respectively. The coexistent temperature is TE =
0.03. The other parameters in these two plots are, c1 = 2,q = 1,m = 1,c0 = 1,c2 = 5
and k = 1.

The effect of topology and mass on the probability distribution of first passage time

is in accordance with the above findings Fig. 4.9. We have considered an initial small

black hole state within the topologies k = 0,�1 and 1. For a given transition tempera-
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ture, the small black hole state reaches the intermediate state in a small duration of time

for hyperbolic topology. In the case of spherical topology the corresponding time is

maximum Fig. 4.9(a). Further, we observe that the time taken to reach the intermediate

state, starting from SBH increases as mass increases (Fig. 4.9(b)).
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Figure 4.9: The effect of the spacetime parameters on the probability distribution of the
first passage time Fp(t). We consider the case for SBH (initial) state to LBH state. (a)
The effect of topology. Black, blue and red solid lines are for k = 1,0,�1, respectively.
The coexistent temperature is TE = 0.4. (b) The effect of mass parameter m. Red,
blue and black correspond to m = 0,0.07,0.1, respectively. The coexistent temperature
is TE = 0.03. The other parameters in these two plots are, c1 = 2,q = 1,m = 1,c0 =
1,c2 = 5 and k = 1.

4.6 Discussions
We have studied the dynamics of black hole phase transitions in dRGT non-linear mas-

sive gravity theory using the free energy landscape. Thermodynamic characterization

and different black hole phases are discussed by considering the black hole radius as an

order parameter. Emergent phases of small and large black holes as well as the coex-

isting curve between these states are shown. The switching of one black hole phase to

another due to thermal fluctuations is addressed in terms of first passage time. Further,

we have solved the Fokker-Planck equation numerically and the results are explained.

The results we have presented are qualitatively similar to the findings of (Li et al. 2020).

Finally, we have discussed the effect of mass parameters and the topology on the evo-

lution of black hole phase transition between small and large black hole states.
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Chapter 5

Physical process version of first law

5.1 Introduction
Black holes are perhaps the simplest non-trivial solutions of Einstein’s field equations.

However, the implications of its geometry are both interesting and intriguing. The

presence of a horizon prevents classical information, inside the horizon, from reaching

an asymptotic observer. Due to this fact, the black hole horizon can be treated as an

inner boundary of spacetime. It is this feature that gives rise to a relation between

the infinitesimal changes in mass, charge, angular momentum of a black hole and the

change of its horizon area, akin to the first law of thermodynamics (Bardeen et al.

1973b). These infinitesimal changes are on the space of stationary black hole solutions,

and this relation is referred to as the stationary state version of the first law. Further,

it was argued that black holes, in general relativity, can be endowed with an entropy

which is proportional to the area of the horizon (Bekenstein 1972, 1973). The result

of (Hawking 1972, 1975) that black holes radiate, quantum mechanically, like a black

body, at a temperature equal to that of its surface gravity, further lends support to the

fact that black holes indeed behave like thermodynamic objects. These further raise

important questions regarding the quantum origin of this entropy and motivates the

quest for a quantum theory of gravity. However, the first law, which is purely of classical

origin, remains an important aspect to explore.

Black holes, as found in nature, are far from being appropriately described by global

stationary black hole solutions. They evolve due to infalling matter, and the area of the
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horizon changes with time. Unlike the infinitesimal change in the stationary state ver-

sion of the first law, which is a change in the space of solutions, this is an evolution

in time due to the process of matter falling into the black hole. Consequently, a dif-

ferent version of the first law holds and appropriately describes this situation. In this

version one relates the time evolution of the entropy to the matter influx across the hori-

zon (Hawking and Hartle 1972, Carter 1979, Wald 1995a) and is therefore called as the

”physical process” version of the first law (PPFL). As will be explicit, PPFL can be

locally characterized, and therefore, it also holds for a wider class of horizons, which

does not require the specification of the asymptotic structure. As a result, PPFL holds in

the context of Rindler (Jacobson and Parentani 2003), or for that matter, any bifurcate

Killing horizon (Amsel et al. 2008).

If a stationary horizon is perturbed by some matter stress-energy tensor Tµn and, once

the black hole settles down to another stationary state, then PPFL provides a mathemat-

ical expression for the change in horizon area AH as,

k
8p

DAH =
Z

H

Tab ca cb dA dt, (5.1)

where dA is the area element of the horizon cross-section, t is the Killing parameter

associated with the horizon-generating Killing vector cµ and k denotes the surface

gravity of the unperturbed horizon. Much like the equilibrium version of the usual first

law of thermodynamics, the above relation will fail to hold, if considered between two

nonequilibrium states, due to dissipative effects. This would mean that the process of

evolution of an initial equilibrium state has taken place in a non-quasi-static manner.

Then one can ask, what are the processes that are quasi-static such that PPFL continues

to hold. It is important to note that while deriving the above relation, by a straightfor-

ward integration of the Raychaudhuri equation, there are two assumptions made. First,

the process of horizon evolution must be quasi-static so that the terms which are of

higher order in expansion and shear of the horizon can be neglected. Second, upon

perturbation and in the course of evolution, no additional generators are added to the

horizon. When an object falls into the black hole causing the evolution of the horizon,

the interesting question is, what are the restrictions on the parameters of the object such

62



that the above assumptions remain valid. This query was first examined by (Thorne

et al. 1986, Suen et al. 1988) and further extended for general perturbations by (Amsel

et al. 2008) and (Bhattacharjee and Sarkar 2015).

A necessary condition such that the above assumptions remain valid during the evo-

lution, is the avoidance of caustic formation along the horizon, a situation where the

expansion becomes negative infinity. Not only does the formation of caustic violates

the first assumption, but it also indicates the addition of new generators to the horizon.

In D = 4, if a black hole of mass M is perturbed by a spherically symmetric object of

mass m and radius r then in order to avoid caustic formation, along the horizon, the

radius of the object (r) must satisfy r > 2
p

2Mm (Thorne et al. 1986). Such a constraint

on the size of the perturbing matter has also been obtained for Rindler horizon in arbi-

trary dimensions (Amsel et al. 2008) as well as for perturbing matter which is charged

or rotating(Bhattacharjee and Sarkar 2015).

In this work, we demonstrate that even if such a constraint holds, the change in hori-

zon entropy diverges, when considered between asymptotic cross-sections as pointed

out in (Jacobson and Parentani 2003). However, we present an interesting observation

that such divergences are absent for dimensions greater than 4. The question now is

whether one can modify the PPFL to account for such situations or in more general

situations where caustics ‘do’ form to the future of the bifurcation surface. The hint

comes from a modification of PPFL suggested in (Mishra et al. 2018), where it was

shown that one could choose arbitrary cross-sections as the initial and final slices, at

the cost of introduction of an extra term in the first law expression. Hence we show

that even if a caustic forms to the future of the bifurcation surface, one can take our

initial slice beyond that point and write a modified PPFL. Finally, we discuss the same

problem in the presence of a positive cosmological constant.

5.2 Evolution of the horizon and the formation of caus-

tic

In this section, we briefly review the derivation of PPFL as well as the conditions on

the perturbation strength, along the lines of (Amsel et al. 2008) and (Bhattacharjee
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and Sarkar 2015), such that caustic is avoided to the future of the bifurcation surface.

Consider a space-time with a bifurcate Killing horizon. Suppose some energy flux

falls across an initially stationary bifurcate Killing horizon. Due to the teleological

nature of the event horizon, it starts expanding even when there is no flux across it

and finally settles down to another stationary state once the passage of all matter has

ceased. The corresponding change in the expansion q , of the horizon, is governed by

the Raychaudhuri equation for null-congruences, associated with the horizon generating

Killing vector cµ ,

dq
dt

= kq � 1
2

q 2�sµns µn �Rab ca cb . (5.2)

We have parametrized the geodesics by the Killing time t and t = �• corresponds to

the bifurcation surface. Further, k is defined as cµ—µ cn = kcn and sµn represents the

shear of this congruence. The basic assumption one takes while deriving the physical

process version of the first law is that the process of horizon evolution is quasi-stationary

(quasi-static in the thermodynamic sense), such that one can neglect terms which are

higher-order in q and sµn , in Raychaudhuri equation. Under this assumption, Eq. (5.2)

becomes,

� dq
dt

+kq = S(t), (5.3)

where S(t) = 8pTab ca cb is the perturbing energy flux. One exploits the Green’s

function technique to solve this differential equation. Further, using the expression

q = 1
DA

⇣
d(DA)

dt

⌘
, one gets the final result as,

d(DA)
dA

=
8p
k

Z •

�•
dt Tab ca cb , (5.4)

where A denotes the area of horizon cross-section. The right-hand side of the above

equation can be identified as the Killing energy (Ec ) associated with cµ , which is the

amount of energy crossing the horizon. Thus we have the first law,

kDA
8p

= DEc , (5.5)
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where DA represents the difference between the area of the perturbed horizon in the

asymptotic future and the initial area of the horizon before perturbation. The lower

limit of the integration was taken to be the bifurcation surface (t = �•). As we have

discussed before, the crucial assumption one has to make while deriving the first law is

the quasi-stationarity of the horizon evolution. This statement about quasi-stationarity

can be quantified by calculating a threshold value of q , beyond which caustics set in.

To arrive at an expression for the threshold value, consider the homogeneous version

(S= s2 = 0) of the Raychaudhuri equation,

✓
� d

dt
+k
◆

q
2k
�k

✓
q
2k

◆2
= 0. (5.6)

Solving for (q/(2k)) we obtain,

q
2k

=
1⇣

1+
⇣

2k
q0
�1
⌘

ek(t0�t)
⌘ , (5.7)

where q0 is the expansion of the horizon at some time t0 before the driving force acts.

We can clearly see that, if q0/(2k)> 1, then q increases to the past and becomes infinite

at some finite time t < t0 (Thorne et al. 1986). This means, if the expansion becomes

greater than 2k at any instance during the evolution, then the Raychaudhuri equation

implies that the horizon would develop a caustic at a finite earlier time. Evidently, our

earlier approximation in deriving the first law breaks down in this case. Our goal is

to see what this condition means in terms of the parameters of the perturbing object.

Before proceeding, we outline a few equations related to the horizon evolution.

The complete description of the horizon evolution is governed by two equations.

The Raychaudhuri equation (Eq. (5.2)), which says how the expansion changes along

the horizon Killing parameter and, the tidal force equation which gives the evolution of

the shear sµn , i.e.,

dsµn
dt

= (k�q)sµn �sµs ss
n +

1
2

s2hµn +
�
2sµs +qhµs

�
ss

n � eµn , (5.8)

where eµn = ha
µ hb

nCalbs cl cs is the electric part of the Weyl tensor Calbs , and, hµn
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is the projection operator onto the space-like cross-sections of the horizon and is defined

as,

hµn = gµn +cµ ln +cn lµ . (5.9)

Here lµ is an auxiliary null vector, defined as lµ cµ = �1. If the horizon perturbation

is weak, then both Eq. (5.2) and Eq. (5.8) will get simplified significantly. We take the

tidal field, which sources the evolution of shear, to be of first-order in a small dimen-

sionless parameter mk . Here, m denotes the mass of the perturbing object, and k is the

surface gravity of the unperturbed horizon. Truncating both equations to lowest order

in the perturbation parameter, we get,

�
dsµn

dt
+ksµn = eµn , (5.10)

and,

� dq
dt

+kq = S(t)+s2. (5.11)

The tidal field sources the evolution of the shear sµn according to Eq. (5.10) and

this sµn along with the non-gravitational energy flux determines the horizon expansion

through Eq. (5.11). The above equations can be solved to get,

sµn(t) =
Z •

�•
eµn(t 0)ek(t�t 0)Q(t 0 � t)dt 0, (5.12)

q(t) =
Z •

�•

�
S(t 0)+s2(t 0)

�
ek(t�t 0)Q(t 0 � t)dt 0. (5.13)

Having laid out the necessary tools, we now proceed to calculate the conditions on the

parameters of the perturbing object so that the PPFL remains valid. The investigation

was first carried out in (Thorne et al. 1986, Suen et al. 1988), where authors considered

the perturbation of a Kerr black hole by a freely falling object. The calculations were

done by a justifiable approximation of a Kerr horizon by a Rindler horizon (RH), the

horizon perceived by an accelerating observer in flat spacetime. They arrived at the

following condition on the radius (r) of the perturbing object so that the PPFL remains
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valid.

r > 2
r

m
2k

, (5.14)

where k is the surface gravity of the black hole and m is the mass of the perturbing ob-

ject. If the radius of the perturbing object, falling into the horizon, is less than that of the

threshold value give by Eq. (5.14), then caustic will form along the horizon invalidating

the approximations made while deriving PPFL. This result, however, cannot be adopted

for the case of Rindler horizon by taking k ! 0 limit. This was pointed out later in

(Amsel et al. 2008) and a result that holds for general bifurcate Killing horizons, in

spacetime dimension D� 3, was obtained. Further, in (Bhattacharjee and Sarkar 2015),

the authors considered situations where a freely falling charged or rotating object per-

turbs a Rindler horizon in D = 4.

5.3 Perturbation of Rindler horizon by a freely falling

object
In this section, we briefly recap the problem regarding the validity of PPFL by consider-

ing a horizon perturbation by a freely falling object. We obtain a constraint on the size

of the perturbing object so that caustic formation is avoided along the horizon. Further,

we explicitly show how to establish the first law even if caustic forms along the horizon

at some point in time. To calculate horizon expansion of a black hole, we approximate

the black hole horizon by a horizon perceived by an accelerating observer in flat space-

time (Rindler horizon). This is very reasonable since we restrict the region of study

very close to the event horizon, which can be approximated to be Rindler. Then, we

can obtain the corresponding results for the perturbation of the black hole horizon, as

explained in Appendix (B). From now on, we will be considering the evolution of the

Rindler horizon only.

5.3.1 Caustic avoidance of Rindler horizon in four spacetime di-

mension

Consider a spherically symmetric object falling across a Rindler horizon. We assume

that the mass of the perturbing matter is very small so that one can neglect the back-
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reaction effects. Also, we neglect terms which are higher-order in m throughout the

calculations, where m is the mass of the perturbing object. In Minkowski coordinates

(T,Z,x,y), the trajectory of the freely falling object is given as, x = y = 0, and Z = z0.

The perturbing object is characterized by the solution of the linearized Einstein’s field

equations. In isotropic coordinates, the perturbing metric is given as,

ds2 = �
 

1� 2mp
r2 +(Z� z0)2

!
dT 2 (5.15)

+

 
1+

2mp
r2 +(Z� z0)2

!
�
dZ2 +dr2 +r2dq 2� ,

where r2 = x2 + y2. We calculate the non-zero components of the electric part of the

Weyl tensor. On the horizon (T = Z) we have,

err =� 1
r2 eqq =

 
�3mr2k2Z2

(r2 +(Z� z0)2)
5
2

!
+O(m2). (5.16)

Further, we express the above relation in terms of advanced Killing time which is related

to the Minkowski time co-ordinate as,

t =
1
k

ln
⇣k

2
(T +Z)

⌘
. (5.17)

Along the horizon we have,

T = Z = z0ek t̄ , (5.18)

where t̄ = t�t0 is the shifted Killing time and t0 denotes the time at which matter crosses

the horizon. For k t̄ ⌧ 1 one can expand the above exponential. Thus the electric part

of the Weyl tensor becomes,

err = �
3r2k2z2

0m
�
r2 + z2

0k2t̄2
� 5

2
. (5.19)

One can see that the maximum contribution to the electric part of the Weyl tensor comes

from t̄ = 0. We assume r/z0⌧ 1. Now, the time dependence of the above function can

be effectively described by a delta function peaked at t̄ = 0 (Thorne et al. 1986). This
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can be understood by plotting the behavior of the Weyl tensor as a function of k t̄. One

can easily see from the figure (5.1) that the Weyl tensor behaves like a delta function in

the region r/z0⌧ 1. Therefore, we express the electric part of the Weyl tensor as,

err(t̄) =�
4mkz0

r2 d (t̄). (5.20)
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Figure 5.1: Behaviour of the Weyl tensor against k t̄ for two different values of r
z0

. One can see
that the profile tends to look like a delta function as r

z0
! 0.

The approximation of Eq. (5.19) by Eq. (5.20) is justified as follows. It is clear that

the maximum expansion obtained using Eq. (5.20) will always be greater than the one

obtained from Eq. (5.19). Hence, if the maximum value of expansion obtained using

Eq. (5.20) satisfies the condition of caustic avoidance, it will hold true for the expansion

resulting from Eq. (5.19). Now, we calculate the horizon shear using Eq. (5.12). We

get,

srr =� 1
r2 sqq =�4mkz0

r2 ek t̄Q(�t̄). (5.21)

This expression says that the horizon shear vanishes once the perturbing object crosses

the horizon (t̄ = 0). We now calculate the expansion of the horizon using Eq. (5.13).
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The integration can be done easily, resulting in the following expression.

q(t̄) =
2
k

✓
4mkz0

r2

◆2⇣
1� ek t̄

⌘
ek t̄Q(�t̄). (5.22)

Similar to the shear, the expansion of the horizon also vanishes after the object has

crossed the horizon. It is to be noted that, the expression above determines the expan-

sion of those geodesics which pass outside the perturbing object. Our goal here is to

find the allowed sizes of the perturbing object so that no caustic forms along the hori-

zon, ensuring the validity of the physical process first law. Note that the expression, i.e.,

Eq. (5.22), describes the expansion of a Rindler horizon when a spherically symmetric

charged matter falls freely onto it. One can also find the corresponding expression for a

black hole horizon by replacing z0 with 1/k , where k is the surface gravity of the black

hole (Appendix (B)). If we approximate r by the radius r of the perturbing object 1, the

condition for caustic avoidance along the horizon (qmax < 2k) reads,

r > 2
r

m
2k

. (5.23)

This result has been reported in Thorne et al. (1986), Amsel et al. (2008), Suen et al.

(1988).

5.3.2 Caustic avoidance for higher dimensional Rindler horizon

In dimensions higher than 4, one can calculate the bound on the radius of the perturbing

object by following the same steps and approximations as in section (5.3.1). The metric

for the perturbing object in (n+2) dimensional space-time is given by,

ds2 = �

0

B@1� Cm
⇣p

r2 +(Z� z0)2
⌘(n�1)

1

CAdT 2 (5.24)

+

0

B@1+
Cm

(n�1)
⇣p

r2 +(Z� z0)2
⌘(n�1)

1

CA
�
dZ2 +dr2 +r2dW2

n�1
�
,

1This approximation is reasonable since we have shown that the electric part of the Weyl tensor
behaves as a delta function peaked at t̄ = 0, which is the time at which perturbing matter crosses the
horizon. At this point the radial co-ordinate r of the matter is essentially its radius r.
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where r2 = Ân
i=1 x2

i and xi’s are the Minkowski co-ordinates. The constant C = 16p
nWn

,

with Wn being the volume of Sn. The non-zero components of the electric part of the

Weyl tensor are calculated along the horizon (Z�T = 0) as,

err =�(n�1)
gqiqi

eqiqi =�
(n�1)(n+1)Cmk2Z2r2

2
⇣p

r2 +(Z� z0)2
⌘(n+3) . (5.25)

Proceeding with the same analysis as before, the formation of caustic is avoided if the

radius of the object satisfies the following relation.

r >
✓

4p
p

n�1mz0

Wn�1

◆ 1
n

. (5.26)

This result was obtained in (Amsel et al. 2008). We would like to extend the analysis

further. Suppose the radius of the perturbing object does not satisfy Eq. (5.23), then

caustic may develop along the horizon at some finite earlier time. In such situations,

the PPFL becomes invalid. However, we explicitly show that one can always recover

the first law for a certain interval of horizon evolution according to (Mishra et al. 2018),

in which the authors have obtained a first law expression for arbitrary horizon slices.

During the analysis of such a first law, we, however, come across certain features related

to the total entropy change of the horizon, which will be discussed thoroughly.

5.4 General structure of physical process first law and

the law for arbitrary horizon cross-sections

Recall that in our earlier analysis, we had imposed a condition while deriving PPFL,

that no caustic is formed to the future of the bifurcation surface. This assumption is

necessary because one has to integrate the Raychaudhuri equation from the bifurcation

surface to some stationary surface in the asymptotic future. However, one can always

obtain a first law between two arbitrary horizon slices at the cost of an additional term in

the first law. We begin with a brief outline of the modified PPFL as obtained in (Mishra

et al. 2018). Consider the horizon perturbation due to some matter influx across the

horizon. The entropy associated with the horizon is given by,
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S =
1
4

Z

H

p
h dnx, (5.27)

where the integration is over the horizon cross-section, and h denotes the determinant

of the induced metric on its cross-section. The change in entropy along the horizon is

given by,

DS =
1
4

Z
dnx

Z l2

l1
dl
p

h q aff, (5.28)

where the expansion (q aff) along the affine parameter l is q aff = d
dl ln

p
h. One can

integrate Eq. (5.28) by parts to obtain,

DS = D

"
1
4

Z
dnx l q aff

p
h

#
� 1

4

Z
dnx

Z l2

l1
dl l

p
h
✓

dq aff

dl

◆
. (5.29)

This relation can be recast in non-affine parametrization of the geodesics as,

DS = D

"
1
4

Z
dnx

1
k

q
p

h

#
� 1

4

Z
dnx

Z t2

t1
dt

1
k
p

h
✓
�kq +

dq
dt

◆
, (5.30)

where k is the same quantity as defined in section (5.2). The affine and the non-

affine parameters are related by dl/dt = ekt , and the relation between the expansions

in different parametrizations is given by q aff = q/kl . The evolution of q along t is

governed by the Raychaudhuri equation given by Eq. (5.2). We assume that the horizon

perturbation is weak so that the higher-order terms can be neglected. Let the tidal field,

which sources the evolution of shear is of the order of, e = mk . Truncating Eq. (5.2) to

lowest order in e , we get

� dq
dt

+kq = S(t)+s2 + O(e2). (5.31)

Consequently, the entropy change (Eq. (5.30)) becomes,

DS = D

"
1
4

Z
dnx

1
k

q
p

h

#
+

1
4

Z
dnx

Z t2

t1
dt

1
k
�
s2 + S(t)

�p
h. (5.32)

We are interested in the dynamics of those geodesics which do not intersect the in-
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falling body. Hence, the s2 is the leading order term in this case. The above expression

is called the modified version of the physical process first law. The important point here

is that the above relation determines the entropy change of the horizon between two ar-

bitrary horizon Killing times. However, this relation holds only for some duration of the

horizon evolution at which one can neglect the effect of q 2 terms in the Raychaudhuri

equation. The above expression, when evaluated for t2!• and t1!�•, the first term

vanishes, and one gets back the original form of the PPFL. The following assumptions

are made in the process:

1. The horizon eventually settles down to a new stationary state. Therefore, the first

term evaluated at t2! • is zero, by assumption.

2. The first term is of higher-order at the bifurcation surface, provided the radius of

the perturbing body satisfies the bound Eq. (5.23). This bound also ensures that

no caustic forms to the future of the bifurcation surface.

We will show that the first assumption does not hold for Rindler horizons in four space-

time dimensions. In fact, there is a non zero contribution coming from the upper limit.

We will show that though q goes to zero at the asymptotic slice, its integral over the

cross-section does not. Further, the second term in Eq. (5.32) diverge when the spatial

integration is taken over the entire cross-section. Hence one is bound to define a PPFL

for arbitrary cross-sections.

We will also relax the second assumption in the following sense. The horizon evo-

lution should be quasi-stationary (i.e., no caustic forms) between the concerned horizon

slices only. Exploiting our results, one can choose the interval of horizon evolution

where such a modified PPFL will hold for a given perturbing object. This way of look-

ing at the problem is different since earlier we were concerned about the size of the

perturbing object to keep the horizon evolution quasi-stationary. But now, we look for

a suitable interval of horizon Killing time where the first law remains valid. As a con-

sequence, t1 cannot be taken at�• but must be some finite value. Hence, we ask, given

a model of perturbation can one find the temporal span of the horizon evolution where
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the entropy change satisfies the relation given by Eq. (5.32)?

We answer the question posed above as follows: Suppose an object falls freely

across the horizon at t = 0, which generates a non-zero expansion of the geodesics for

t < 0. This means that the horizon expands from t = �• and ceases to expand when

the object hits the horizon (t = 0). A careful analysis of the Raychaudhuri equation re-

veals that if q ⇡ 2k , then one cannot neglect the effect of q 2 term while calculating the

entropy change. Now, our problem reduces to finding the horizon Killing time (t = t)

at which q ⇡ 2k . One can explicitly show that Eq. (5.32) holds for t satisfying the

condition: t < t < •. Consider the perturbation of a Rindler horizon by a spherically

symmetric object. Suppose the object crosses the horizon at t = 0. Using the expres-

sions for shear and expansion, we estimate the time at which the expansion becomes 2k

as,

t =
1
k

ln

"
1
2

⇣
1�
p

1�N�1
⌘#

, (5.33)

where,

N = 8n(n�1)
✓

pm
Wn�1krn

◆2
. (5.34)

Once we find the lower bound for the Killing time, we use Eq. (5.32) to calculate

the entropy change for t < t < •. However, one must ensure that the integrations are

finite. This will answer whether the first assumption is correct and how one has to use

the general expression (Eq. (5.32)) to get a finite answer for the entropy change. In the

next section, we will show that if the integration over the cross-sections is taken over

[a,•) (where a should be taken as the radius of the object), then the future slice should

be taken at some finite Killing time.

5.4.1 Divergences in four spacetime dimension

In this section, we evaluate the terms in Eq. (5.32) separately. Note that the approxi-

mations made in the previous section essentially hides all the far region behavior of the

perturbing Weyl tensor. However, we find that the shear and the expansion can be calcu-

lated from the exact profile, i.e., Eq. (5.16) of the Weyl tensor, without the assumptions
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made in the above section. Therefore, we can find the large distance behavior of both

the shear and expansion, which are ignored while trying to find a lower bound on the

size of the object. We discuss all these features one by one and explain its impact on the

validity of the physical process first law. Now, with the full profile, the horizon shear is

given by,

srr(t) =�
1

r2 sqq =
2kmz0ekt

r2

2

664

✓
z0 (ekt�1)

⇣
3r2 +2z0

2 (ekt�1)2
⌘◆

2
⇣

r2 + z02 (ekt�1)2
⌘3/2 �1

3

775 .

(5.35)

The corresponding expression for expansion of the horizon is,

q(t) = km2z0ekt

8r4

"
�15pr +

64
⇣

r2 +2z2
0 (e

kt�1)2
⌘

q
r2 + z2

0 (ekt�1)2
+30r tan�1

✓
z0 (ekt�1)

r

◆

�
2z0 (ekt�1)

⇣
47r4 +64z4

0 (e
kt�1)4 +113r2z2

0 (e
kt�1)2

⌘

⇣
r2 + z2

0 (ekt�1)2
⌘2

#
. (5.36)

Note that these quantities don’t vanish immediately after the perturbing object crosses

the horizon 2. However, both the shear and the expansion vanishes at t = •. This en-

sures that the final black hole configuration is stationary. However, at r = 0, these

quantities diverge. If the particle were replaced by an extended object, then these diver-

gences would not have appeared because one should consider the metric in the interior

of the body as well. Since we are interested in the horizon generators which do not

intersect the body, our range of integration would be from some non-zero value of r .

Hence this divergence is not a problem. Alternatively, one can say that the lower bound

on the particle size takes care of this divergence.

To write Eq. (5.32), we need to evaluate the integrations over the cross-sections.

Our goal is to verify whether the expression for the entropy change is finite or not. We

2The horizon expansion and shear become zero just after the perturbing object crosses the horizon if
we approximate the electric part of the Weyl tensor by a delta function as used in Amsel et al. (2008). As
mentioned above, we do not make such approximation in this section.
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go ahead and calculate the time and r integral of these quantities which appear in Eq.

(5.32). One can show that the contribution to the entropy change due to the first term in

Eq. (5.32) is finite. Hence, we will be interested in the quantity,

Z �
S(t2)�S(t1)

�
r dr dq , (5.37)

where S(t) is defined as,

S(t) =
Z

dt s2
p

h. (5.38)

To demonstrate the divergences we will first find this integral over a finite range r e [a,b].

This is given by the following expression.

pkm2

2

2

6416log

⇣q
a2 + z2

0z2
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0z2
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b2 + z2

0z2
2 + z0z2

⌘ (5.39)
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where z1,2 = �1+ ekt1,2 . If one takes the future slice at t2! • and then takes b! •

limit, then the integral diverges, which means that if one wants to write down a physical

process first law for an asymptotic slice besides integrating over the complete slices,

then it fails. This was pointed out in (Jacobson and Parentani 2003). There is, of

course, a way to avoid this problem. It is possible to get a finite result (DS) with an

asymptotic slice if one restricts the change of area to some open region of the horizon

slice. We will demonstrate this and explain the consequences. If one takes t2! • and

subsequently does the r integration for some finite a,b, then the above expression (Eq.
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(5.39)) becomes,

pkm2
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One can see that this quantity is finite for some finite value of b, but has a logarithmic

term which diverges as b! •. One would think that this can be avoided by putting

an upper bound on the size of the particle. This, however, remains to be seen and will

be addressed in some future work. Another way to obtain a finite value for DS is the

following. If one keeps the final slice to be at some finite Killing time but integrates over

the entire horizon cross-section (b! •), the corresponding expression (Eq. (5.39)) is

again finite.
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We will use this feature to write a modified PPFL. Note that this problem arises

only for the case of a Rindler horizon. In the case of a black hole horizon, there is a

natural cut-off set by the curvature scale of the background black hole geometry, beyond

which the Rindler approximation breaks down. In one of the following sections, we will

show that this divergent feature does not arise in higher dimensions, even for Rindler

horizons. That explains the necessity to write the first law between arbitrary slices

at least in 4 spacetime dimensions. The other motivation for writing such a modified
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PPFL is, of course, evading the lower bound on the radius of the object. We, therefore,

conclude this section with an expression for DS between arbitrary slices but with r

integration in the range [a,•).

DS =
pm2

8a2

"
7a2 log
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This expression, however, does not take into account the matter stress-energy tensor

of the body itself. This contribution can only be calculated if one considers a realistic

body for which the metric and the matter content of the interior is known. Note that if

the size of the particle satisfies the bound found in section (5.3.1) 3, then the initial slice

(t1) can be taken to be at the bifurcation surface, else, t1 must satisfy t1 > t , where t is

given in Eq. (5.33). The upper limit t2 cannot, however, be taken to •, if the integration

over the cross-sections is taken up to r ! •, for Rindler horizons in four spacetime

dimension. This expression, therefore, incorporates relaxation of both the assumptions

discussed in section 5.4).

5.4.2 Dimensions greater than four

One can define the first law for the horizon cross-sections in higher dimensions, if one

considers the evolution satisfying the assumptions detailed in section (5.4). But, as

explained before, while calculating the change in entropy using Eq. (5.32), one should

ensure that the integration does not diverge. Interestingly, in dimensions greater than

four, the change in entropy is finite even if one considers the evolution of the generators

up to infinite Killing time and over the entire horizon cross-sections (excluding r = 0).

To see this, we analyze the expression for the change in entropy for arbitrary slices in

higher dimensions. Similar to the case of 4 dimensions, the first term in the expression

of entropy change (Eq. (5.32)) is finite even for large values of both r and t. But, one

3However, note that there is, of course, another bound that the radius must satisfy. The radius cannot
be less than the Schwarzschild radius of the perturbing body.
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should check the second term carefully to look for any divergences. We will explicitly

calculate this particular term and show that unlike the case of four dimensions, the

change in entropy is finite for dimensions higher than 4. First, we consider the evolution

of the Rindler horizon in 5 dimensions. The radial component of the electric part of the

Weyl tensor which generates shear is given by,

err =� 32 mr2k2z0
2e2kt

3p
✓

r2 + z02
�
ekt�1

�2
◆3 . (5.43)

The expression for the horizon shear is obtained as,
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Now, one can calculate the expansion of geodesics using Eq. (5.13).
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Note that the shear and the expansion are zero when evaluated at t = •, similar to the

case of four dimensions. Also, the contribution to the entropy change from the first

term of Eq. (5.32) is finite. Therefore, as in the case of four dimensions, we are worried

about the second term in Eq. (5.32). We explicitly perform the integration to obtain

the entropy change. The full expression for
R �

S(t2)�S(t1)
�
r2 dr dW2 integrated over

t 2 [t1, t2] and r 2 [a,b] can also be found. One would then be able to see that the
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t2! • and the subsequent b! • gives a finite result,
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Therefore, in the case of Rindler horizons in five spacetime dimension, the first as-

sumption made in section (5.4) continues to hold. Hence there is no necessity to take

the future slice to be at a finite Killing time. However, in principle, one can write an

expression for entropy when the future slice is taken at some finite Killing time. The

relaxation of the second condition can still be done (section (5.4)). The corresponding

expression for entropy change is found to be,
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m2
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This expression again does not take into account the matter stress-energy tensor of the

body itself. The future slice has been taken at the asymptotic Killing time. If a does

not satisfy the bound given by Eq. (5.26), on the radius then t1 must satisfy the bound

t1 > t , where t is given by Eq. (5.33). If a satisfies the bound then t1 can be taken at

�•. For completeness, we will briefly outline the results obtained for six-dimensional

Rindler space-time. In 6 dimensions, we have the following expressions for the electric
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part of Weyl tensor.

err =� 45 mr2k2z0
2e2kt

4p
✓

r2 + z02
�
ekt�1

�2
◆ 7

2
. (5.48)

The expression for shear is given by,

srr(t) =
3kmz2

0ekt (ekt�1)
⇣

15r4 +8z4
0 (e

kt�1)4 +20r2z2
0 (e

kt�1)2
⌘

4pr4
⇣

r2 + z2
0 (ekt�1)2

⌘5/2 � 6kmz0ekt

pr4 .

(5.49)

This expression is zero at t = •. One procceds to calculate the expansion and is found

to be zero at t = •, which ensures the future equilibrium configuration of the hori-

zon. The contribution to the entropy change from the first term of Eq. (5.32) is finite.

Therefore, we calculate the term
R �

S(t2)�S(t1)
�

r3 dr dW3 integrated over t e [t1, t2]

and r e [a,b]. The t2! • and the subsequent b! • again gives a finite result. The

corresponding expression for change in entropy of Rindler horizon in 6 dimensions is

calculated to be,

DS =
9m2

2048

"
1890z0z1

a3 cot�1
⇣z0z1

a

⌘
+

2
�
73a2 +67z2

0z2
1
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�
a2 + z2

0z2
1
�2 +

158
a2 (5.50)

+
4096z0z1
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z0z1�

q
a2 + z2

0z2
1

⌘

a4

#
.

We have analyzed the behavior of the entropy change for a Rindler horizon in different

dimensions. An interesting observation thus made is, in 4 dimensions the expression

for entropy change is infinite if one considers the evolution of all the geodesics for

r e (0,•], and t ! • limit. But such divergences do not arise for dimensions five and

six. Therefore, by looking at the behavior of the expression for the entropy change,

we conjecture that the change in horizon entropy is finite even the horizon evolution is

taken up to t!• for dimensions greater than 4. We will analyze the same problem for

space-times with non-zero cosmological constant below.
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5.5 Horizon perturbation in arbitrary dimensional de-

Sitter spacetime

As the final step of our analysis on the validity of PPFL, we consider the perturbation

of a black hole horizon in (n+2) dimensional spacetime with a non-zero cosmological

constant (L). Such space-times demand similar studies in their own rights owing to

their importance in cosmology and holography. The interesting question now is how

the introduction of a cosmological constant changes our previous results. We will be

dealing with de-Sitter space-time only since the examination with the anti-de-Sitter

is quite similar. In a small enough region, the event horizon of a Schwarzschild-de

Sitter black hole can be approximated by a horizon, as perceived by an accelerating

observer in Minkowski spacetime (Appendix B). We shall exploit this advantage to

simplify our calculations. We will be considering only the perturbation of the black hole

horizon (rh) throughout this work since the cosmological horizon is of less importance

for the study we are having. Basically, the calculations deal with the perturbation of the

Rindler horizon in flat-space-time and the effect of L comes from the horizon perturbing

matter. At the end of the calculations, we will revert the results back to the case of

Schwarzschild-de Sitter black hole, as explained in Appendix (B). We follow the same

procedure as before to find the expansion of the horizon due to an infalling spherically

symmetric object. We assume the mass m of the perturbing object is small so that one

can treat the problem perturbatively. This allows us to consider the perturbing metric as

a solution of linearized Einstein’s equations in the presence of a positive cosmological

constant. In isotropic coordinate system (T,Z,r,Wn�1), the metric for the perturbing

object is given by (Astefanesei et al. 2004),

ds2 =�

0

B@1� Cme�(n�1)H0T

⇣p
(r2 +(Z� z0)2)

⌘(n�1)

1

CAdT 2 (5.51)

+e2H0T

0

B@1+
Cme�(n�1)H0T

(n�1)
⇣p

r2 +(Z� z0)2
⌘(n�1)

1

CA
�
dZ2 +dr2 +r2dW2

n�1
�
,

where r2 = Ân
i=1 x2

i and H2
0 = 2L/(n(n+ 1)). The constant C = 16p

nWn
, with Wn being

the volume of Sn. The non-zero components of the electric part of the Weyl tensor are
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calculated along the horizon (Z�T = 0).

err =�(n�1)
gqiqi

eqiqi (5.52)

=� (n�1)Cmk2Z2e�(n�1)H0Z

2
⇣p

r2 +(Z� z0)2
⌘(n+3)

 
r2 �n+ e2H0Z�+(Z� z0)

2 �e2H0Z�1
�
!
.

Proceeding with the same analysis as before, we approximate the electric part of the

Weyl tensor with a delta function centered at t̄ = 0, where t̄ is the shifted Killing time.

err(t̄) =�
(n�1)

gqiqi

eqiqi =�
(n�1)
nWn�1

8pmkz0

rn e�(n�1)H0z0
�
n�1+ e2H0z0

�
d (t̄). (5.53)

This expression reduces to the one obtained in Amsel et al. (2008) for H0 = 0. We

calculate the shear of the horizon using Eq. (5.12) and the expansion using Eq. (5.13).

q(t̄) = n
(n�1)k

✓
(n�1)
nWn�1

8pmkz0

rn e�(n�1)H0z0
�
n�1+ e2H0z0

�◆2
(5.54)

⇥ek t̄
⇣

1� ek t̄
⌘

Q(�t̄).

The condition on q such that a caustic forms, now reads,

✓
q
nk

◆

max
� 1. (5.55)

This gives a limit on the size of the perturbing object to keep the horizon evolution

quasi-stationary. Therefore, caustic formation along the horizon is avoided if,

r >
✓

4p
p

n�1mz0

nWn�1
e�(n�1)H0z0

�
n�1+ e2H0z0

�◆
1
n

, (5.56)

where we have approximated the radial coordinate r with the radius of the object. One

can check that for L = 0; this condition reduces the expression obtained in Eq. (5.26).

For the case of black holes, the condition on the radius of perturbing matter to avoid

caustic formation can be obtained as described in Appendix (B). One can see from the

above expression that the allowed (no caustic) values for the radius of the perturbing
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object get larger as the dimensionality increases.

Our analysis on the validity of PPFL for various perturbation set-ups completes here.

We have investigated different cases of horizon perturbations and obtained conditions

on the size of the object so that caustic will not form along the horizon, hence ensur-

ing the validity of the first law. In the next section, we consider the case of modified

PPFL relation discussed in (Mishra et al. 2018), where authors have obtained a first law

relation for arbitrary horizon cross-sections. In the next section, we analyze the charac-

teristics of the entropy change for a space-time with non-zero cosmological constant.

5.5.1 PPFL for arbitrary horizon cross sections in de-Sitter space-

time

In this section, we look for a duration of horizon evolution in de-Sitter space-time,

where one can establish the first law even if caustics form. As discussed before, caustic

may develop along the horizon if the radius of the perturbing object doesn’t obey Eq.

(5.56). In the case of the horizon perturbation in Schwarzschild space-time, we have

already explained the appropriate way to develop the notion of the first law in section

(5.4). Now, we develop the same in the case of black hole perturbation in de-Sitter

space-time, exploiting the results obtained above.

Before proceeding, let us recap the motive behind considering the horizon evolution

between arbitrary slices. We have explained in section (5.2) that if the expansion of the

black hole horizon becomes comparable to 2k , where k is the surface gravity of the

black hole before perturbation, due to the infall of some matter at time t = 0, caustic

will inevitably form along the horizon at some finite earlier time (t < 0). Evidently, the

quasi-stationary approximation of the horizon evolution breaks down hence invalidating

the first law. Interestingly, it has been shown in (Mishra et al. 2018), that one can still

study the horizon evolution by excluding the non-quasi-stationary part of the evolution.

This is achieved by slightly modifying the form of the first law as in section (5.4).

Also, we have explained how this works in the case of the horizon perturbation of the

Schwarzschild black hole. Here we give yet another simple calculation to exemplify the

modified version of PPFL.
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Consider the perturbation of a (n + 2) dimensional Rindler horizon in de-Sitter

spacetime by a spherically symmetric object. Suppose the radius of the object violates

the condition to avoid caustic formation (q < nk), at some point of horizon evolution

(t = t). This spoils the quasi-stationarity nature of the process for t < t . But, one can

still study the first law for t < t < •. The value of t , for this case, can be calculated as,

t =
1
k

ln

"
1
2

⇣
1�
p

1�N�1
⌘#

, (5.57)

where,

N =
8(n�1)

n

✓
pmz0

Wn�1rn e�
(n�1)H0

k
⇣

n�1+ e
2H0

k
⌘◆2

. (5.58)

One can safely use Eq. (5.32) to obtain the change in entropy within the range t < t <•.

Also, it will be interesting to check whether the change in entropy is finite. Since the

calculation of area change for arbitrary dimensional de Sitter space-time is quite labori-

ous, we consider four (4D) as well as six-dimensional (6D) cases only. The expansion

and shear calculated for 4D and 6D are well behaved except when r becomes zero, just

like the case of Rindler horizon in flat space-time. This divergence is, however, not our

concern since we are looking for the evolution of those geodesics which do not inter-

sect the perturbing object. Further, the first term in the expression of entropy change

Eq. (5.32) is finite for both 4D and 6D cases even if one considers the r ! • limit.

Hence, just like the case of flat space-time, divergences come from the second term of

Eq. (5.32). In 4D, we denote this term as
R �

S(t2)�S(t1)
�
rdrdq , where S(t) is the

time integral of s2. This quantity is finite if either one of the variables (r or t2) varies

till infinity, but other is held finite. But diverges if both tend to infinity. This can be seen

by the following argument. If one evaluates the above integration over the cross-section

area, where r varies between [a,b], then an asymptotic expansion around t2 = • gives
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the following expression:
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as the leading order term. However, this expression contains logb term and therefore

diverges when the b!• limit is taken. But if we consider higher-dimensional de-Sitter

spacetimes (D� 5), this divergence goes away, giving finite results for entropy change,

similar to the case of Rindler horizon in flat space-time. The expression calculated for

the change in entropy of Rindler horizon in six dimensions, obtained by taking both

t! • and r ! • limits is given,
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(5.59)

One can see that the above expression is finite. Therefore, for a Rindler horizon in a

space-time with non-zero cosmological constant, the change in horizon entropy, when

considered between asymptotic cross-sections, is finite for dimensions greater than four.
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This result is the same as of a Rindler horizon in flat space-time.

Finally, we would like to emphasize the usefulness of the recipe for obtaining a

period of horizon evolution in which the process is quasi-stationary. As presented in

(Mishra et al. 2018), one doesn’t always have to worry about the bifurcation surface

to establish the first law for the black hole horizon. Instead, it can be achieved by

considering any arbitrary horizon slices, provided the quasi-stationarity approximation

is valid in between such cross-sections, and the first law looks like Eq. (5.32). We

have explicitly calculated the value of the time slice in terms of the parameters of the

perturbing object.

5.6 Discussions
The first law of black hole mechanics has molded much of our views about black holes.

However, checking the limits of application of the first law of black hole mechanics is

an important aspect that can be explored. As emphasized before, the questions posed

in this paper are analogous to the question of which processes are quasi-static in usual

thermodynamics. However, there is an important difference. In usual thermodynam-

ics, if one starts with an initial equilibrium state, then a non-quasi-static process will

evolve the state through non-equilibrium states. Due to the teleological nature of the

event horizon, one has to ask the opposite question in the case of black hole thermo-

dynamics. That is if one assumes that the final state is a stationary black hole, what

are the processes that ensure that the initial state was stationary? The breakdown of

the assumptions in PPFL and the onset of caustics to the past, of the event of an object

crossing the horizon, precisely means that the initial state was non-stationary and that

the initial bifurcation surface never existed.

While this has been pointed out several times in the literature, it has also been argued

that Rindler horizons present itself in a unique way, due to non-compact cross-sections.

In (Jacobson and Parentani 2003), it has been pointed out that though the shear remains

small throughout the process, the total shear obtained by integrating over the cross-

sections contributes infinitely to the change in entropy. In this article, the main focus

is to demonstrate this precisely. In four dimensions, we show, that this indeed is true.

However, in higher dimensions, this is not so, at least for the case when the perturbation
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is due to a spherical body. We attribute this behavior to the fall-off condition of the Weyl

tensor in asymptotically flat space times in four dimensions. It is possibly similar in

spirit to the logarithmic behavior of the electric potential in two dimensions. Assuming

that the occurrence of such pathologies is generic; we provide a recipe to obtain finite

results by restricting ourselves to finding changes only within a finite interval of horizon

evolution (modified PPFL).

A similar study has been done in the case where the background is de-sitter. The

results obtained have been compared with the case of zero cosmological constant. In

effect, we observe that the set of allowed values for the size of the perturbing object,

so that the PPFL remains valid, gets reduced due to the presence of the cosmological

constant. Also, our results show that this effect of the cosmological constant is the same

in all dimensions. The motivation for the analysis in arbitrary dimensions is mainly due

to the growing interest in “the large dimension” limits of Einstein’s equation and its

solutions. The results obtained show that the allowed range of values of the radius of

the object monotonically increases as the dimensions increase.

Another important aspect is the following. Even if caustics form to the future of the

bifurcation surface, it is plausible that the PPFL still holds for an interval of time after

caustics set in. However, in this case, the limits of integration are different from those

assumed in the original derivation of PPFL. The effect of such a choice of integration

limits is a modified version of PPFL suggested in (Mishra et al. 2018). This motivates

one to find a horizon time beyond which this modified PPFL continues to hold. This

is precisely what we have calculated in sections 5.4 and 5.5.1. This lends support and

provides an example for the suggestions put forward in (Mishra et al. 2018).
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Chapter 6

Summary and future work

The general theory of relativity (GR) is, beyond any doubt, an elegant description of

classical gravity. However, our nature works according to the principles of quantum

mechanics. Naturally, one expects a quantum mechanical explanation of gravity. It is a

puzzle to the community that the quantization procedures fail when it comes to the case

of GR since it is perturbatively non-renormalizable. There are many approaches active

toward a unified theory of both quantum mechanics and gravity such as string theory

and loop quantum gravity, but a “ quantum gravity” theory remains elusive to this date.

There is yet another way to the problem at hand, i.e., exploration of black holes. To be

more precise, the thermodynamic and statistical understanding of black holes may lead

us to some positive results in the pursuit. In this prospect, we have investigated a few

aspects of black hole thermodynamics through this thesis.

In the extended phase space, asymptotically AdS black holes undergo a vdW-like

first-order phase transition between small black hole(SBH) and large black hole phase(LBH).

The realization that black holes behave like the van der Waal system has opened up an

intriguing way to explore black hole micro-structure. The first part of this thesis deals

with the microstructure of the dRGT massive black hole in an anti-de Sitter background

by exploiting the Ruppeinier(Ruppeiner 1995a) geometry. The construction was carried

out by defining a normalized curvature scalar RN in the parameter space of pressure P

and the volume V , which are the fluctuation coordinates, via the adiabatic compressibil-

ity k . Our results show that the microstructure details of the dRGT massive black holes
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are similar to the charged AdS black holes. The small black hole phase has microstruc-

tures analogous to anyon gas with attractive and repulsive interactions. On the other

hand, the LBH exhibits only attractive interactions all over the parameter space, which

is similar to a boson gas. Further, we observe that the repulsive interaction is suppressed

by the graviton mass. The effect of the topology on the repulsive interaction was also

investigated, which shows a trend of stronger to weaker in the order k = �1,0,1. In

both the small and large black hole phases, the attractive interactions of the black hole

microstructure have the same dependence on the space-time parameters m and k. The

effect of charge on the microstructure was also explored, which we find negligible. We

would like to extend these calculations to various modified theories of gravity.

Another critical aspect of thermodynamic studies is the dynamics of phase transi-

tions. We have studied various aspects of the phase transition of the dRGT massive

black hole in an anti-de Sitter background using the underlying free energy landscape.

A detailed investigation of the dynamics and kinetics of phase transitions using the

stochastic Fokker-Planck equation was presented, and the results are qualitatively sim-

ilar to the case of black holes in AdS space-time. The dynamics of switching between

the small and large black hole phases due to the thermal fluctuation is probed by cal-

culating the first passage time. Further, we have analyzed the effect of topology and

the mass parameter on the evolution of black hole phases. We believe that the variation

of switching time from small black holes to large black hole states with respect to the

mass as well as the topology is connected to the stability of black holes and will be

addressed in future works. Also, we would like to revisit the properties of black hole

phase transitions by incorporating Hawking radiation.

Finally, we have investigated one of the versions of the first law of black hole ther-

modynamics, i.e., the physical process first law (PPFL). The physical process version

of the first law can be obtained for horizons with certain assumptions. However, one

has to restrict to situations where the horizon evolution is quasi-stationary. We have

revisited the analysis of this assumption considering the horizon perturbations of a

Rindler horizon with a spherically symmetric object. Our results show that even if

the quasi-stationary assumption holds, the change in entropy, in four space-time dimen-
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sions, diverges when considered between asymptotic cross-sections. However, these

divergences do not appear in higher dimensions. We have also analyzed these features

in the presence of a positive cosmological constant and obtained similar results. Further,

we have provided a method to set up the physical process first law even if the caustic

forms in the past.

Recently, there are many advancements that explore the relationship between black

hole thermodynamics, holography, and conformal symmetry. These studies reveal in-

triguing phase behavior and critical phenomena within the context of black hole ther-

modynamics in extended phase space.(Ahmed et al. 2023, Frassino et al. 2023, Cong

et al. 2022). We would like to extend our research works incorporating these aspects as

well.
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Appendix A

Komar integrals in AdS space

The metric for the AdS4 spacetime is given by,

ds2 =�r2

l2 dt2 +
l2

r2 dr2 + r2dW2
2. (A.1)

where L = 3/l2, l is the AdS radius. By calculating the Komar integral for this AdS

spacetime,

Qx =
1

4pG

Z

∂S
dSµn—nx µ =

1
4pG

Z

∂S
nµsn—µx n (A.2)

=
1

4pG

Z

∂S
dqdf r2 sinqntsr—tx r =

1
4pG

Z

∂S
dqdfr2 sinq r

l2 . (A.3)

This integral is diverging at r ! •. So this relation is need to modify for arriving

Smarr relation. There are various ways to resolve these divergences. Method of Brown-

York quasi-local stress-energy tensor, by adding a counter term to cancel divergence,

Hamiltonian formalism of Hawking and Horowitz. We using definition of a Komar

potential wµn to resolve this issue (Kastor et al. 2009a). From the Killing equation, we

write,

—µx µ = 0. (A.4)

95



This enable us to define an antisymmetric potential wµn , such that derivative of poten-

tial is same as the Killing vector x n ,

x n = —µwµn . (A.5)

The new potential wµn = wµn + l µn still satisfies the Killing equation since killing

potential is not unique one. We can also add an exact term l µn =—ahaµn , where haµn

is antisymmetric tensor. That will not change the value of the final Komar integral.

With the potential term as a counter term, it prevvents the divergence issue. The Komar

integral reads as,

Qx =
1

4pG

Z

∂S
dSµn (—nx µ +Lwµn) . (A.6)

Consider the case of Schwarzchild-AdS spacetime with metric given by,

ds2 =� f (r)dt2 +
dr2

f (r)
+ r2dW2

2 , f (r) = 1� m
r
� L

3
r2, (A.7)

where m is the mass parameter, which is related to total mass of black hole M through

the Komar integral.

M =
(d�2)

16p
wd�2m , wd�2 =

2p(d�1)/2

G(d�1)/2
, (A.8)

where w(d�2) is the volume of unit S(d�2) sphere. As the only Killing vector associ-

ated is x µ =
⇣

∂
∂ t

⌘µ
= (1,0,0,0), we have to determine only rt component of Killing

potential wµn . Using the definition of Killing potential (eqn.A.5)

1
r2 ∂r

�
r2wrt�= 1 (A.9)

Integrating the above equation, we get

wrt =
r
3
+

C
r2 . (A.10)

C = 0 corresponds to AdS spacetime. For Schwarzschild-AdS metric this can be written
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as,

—rxt =
1
2

—r
�
gttx t�=�1

2
∂r ( f (r)) . (A.11)

Evaluating Komar integral for pure AdS spacetime, we have

Qx =
1

4pG

Z

∂S
dSrt

�
—rx t +Lwrt� (A.12)

=
1

4pG

Z

∂S
dSrt

⇣ r
l2 �

r
l2

⌘
= 0. (A.13)

The same procedure can be applied to derive Smarr relation for Schwarzschild-AdS

case. As Komar charge Q = 0, we can write the enhanced Komar integral in the

D�dimensional spacetime as,

D�2
8pG

Z

S

✓
—µx n +

2L
D�2

wµn
◆
= 0. (A.14)

Where the (D�1) hypersurface S connects the horizon and infinity, infact S is bounded

by two surfaces , H on the event horizon and S• at the spatial infinity. Evaluating above

integral at the two surfaces, we get
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8pG
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(A.15)

Schwarzschild-AdS spacetime integral will give a finite value, nevertheless it can be re-

moved by infinite background subtraction as prescribed in (?). Adding and subtracting

wµn
AdS potential will do the trick,

0 =
D�2
8pG

Z
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. (A.17)
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Rearranging the terms, we get
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�
wµn �wµn

AdS
�◆

.

(A.19)

We have already evaluated various terms in the above expression, where l.h.s is the

definition of Komar mass M,

D�2
8pG

Z

S•
dSµn

✓
—µx n +

2L
D�2

wµn
AdS

◆
= (D�3)M. (A.20)

The integral of first term in the r.h.s is the product of surface gravity k and area of event

horizon,
D�2
8pG

Z

H

dSµn—µx n = (D�2)
kA
8p

. (A.21)

The remaining terms left in eqn.A.19 are denoted by Q, which can be seen later as the

conjugate volume,

Q =
Z

H

dSµnwµn �
Z

S•
dSµn

�
wµn �wµn

AdS
�
. (A.22)

Combining terms together, we get the Smarr formula

(D�3)M = (D�2)
kA

8pG
�2

Q
8pG

L. (A.23)
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Appendix B

Rindler approximations of black hole

space-times

We outline the idea of the Rindler approximation of black hole horizon, which shows

that the near horizon geometry of a stationary non extremal black hole is that a Rindler

spacetime. Though we have considered Schwarzschild and Schwarzschild-de Sitter

space-times for our case studies, this idea is applicable to more general cases. We

consider a general spherically symmetric metric of the form,

ds2 =� f (r)dt2 +
dr2

f (r)
+ r2dW2. (B.1)

We expand the function f (r) around the black hole horizon as,

f (r) = f (r+)+ f 0(r+)(r� r+)+O
�
(r� r+)2� , (B.2)

where r+ represents the position of black hole horizon. If we restrict the region of

interest sufficiently close to the horizon, one can approximate the above relation as,

f (r)⇡ 2k(r� r+), (B.3)

where k = 1
2 f 0(r+) is the surface gravity of the corresponding horizon. Introducing a

new radial coordinate (a) which vanishes at the horizon and increases outwards as,
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a =
p

2k(r� r+)+O
⇣
(r� r+)

3
2

⌘
. (B.4)

The line element becomes,

ds2 =�a2dt2 +
da2

k2 + r2
+dW2. (B.5)

Now one can express the above metric in cartesian coordinates in a small region of

space-time sufficiently close to the horizon (a << 1) around a specific direction q = q0

as follows

x = r+ sin(q0)f , (B.6)

y = r+(q �q0),

z =
a
k
.

The metric in this coordinates will looks like,

ds2 =�k2z2dt2 +dx2 +dy2 +dz2. (B.7)

This is the Rindler spacetime and it will be obvious if we do another coordinate trans-

formation as,

T = zsinh(kt) and Z = zcosh(kt). (B.8)

And the metric becomes,

ds2 =�dT 2 +dx2 +dy2 +dZ2. (B.9)

The Rindler approximation of the black hole horizon was justified by the following

assumptions. The region under consideration is within a << 1, which means on the

trajectory, z0 << 1
k and is within a patch of horizon cross-section which is small com-

pared to the total area of the horizon cross-sections. To recover the results for black
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holes, we relax these approximations so that kz0 = a0 ⇡ 1. Where a0 is the initial

radial distance of the perturbing object from the horizon (Suen et al. 1988).
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