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ABSTRACT 

 

The water budget can be described as the volume of water that enters a land area, remains 

stored within it, and eventually exits the land system during a specific time interval. The 

water budget of a river basin can be represented by equating key components of the 

hydrological cycle, which include precipitation, actual evapotranspiration (ET), runoff (Q), 

and changes in terrestrial water storage.  

The current research is centred on the assessment of the water budget elements 

within the Brahmaputra river basin by utilizing satellite-derived data. The motivation for 

this PhD research is grounded in the complex and transboundary nature of the Brahmaputra 

River basin, which extends through several countries. A key challenge is the scarcity of 

hydrometeorological data within the basin, making it difficult to conduct comprehensive 

hydrological studies. To address this data deficiency, the study turns to space-borne data, 

as it can offer a more complete and cohesive view of the basin's water budget. The satellite 

precipitation data were evaluated against updated Brahmaputra River basin gauge data. We 

also assessed different precipitation data to determine the risk of hydrometeorological 

variables using dependence measures. We further assessed precipitation data for 

reconstructing significant water budget variables and innovative trend analysis (ITA) of 

those variables. The study  

Five daily satellite precipitation products were evaluated against an updated Asian 

Precipitation Highly-Resolved Observational Data Integration Towards Evaluation of the 

Extreme Events version 2 (APHRODITE v2) using categorical and continuous metrics. 

Global precipitation measurement (GPM) resulted in the program known as the Integrated 

Multi-satellitE Retrievals for GPM (IMERG) was found to be the best-performing product 

daily, considering the spatial and temporal mean for the whole time series. The Climate 

Prediction Center (CPC) Morphing technique (CMORPH) was found to be the best-

performing product considering the evaluation of metrics on a seasonal basis. The soil 

moisture to rain (SM2RAIN) of the European Space Agency (ESA) climate change 
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initiative (CCI) precipitation product was found to be the least-performing product on all 

counts. 

Given precipitation quantity, the conditional bivariate copula concept predicted 

evapotranspiration, the Gravity Recovery and Climate Experiment terrestrial water storage 

change (GRACE TWSC), and river discharge. The optimal copula is Frank for all three 

precipitation-TWSC pairs, the European Centre for Medium-Range Weather and 

Forecasting (ECMWF) reanalysis ET (ERA5-ET) and ERA5-ET, and Clayton for the 

remaining pairs. Pearson's linear and Spearman's rank correlations for all the pairs of 

variables are significant for observed and simulated values. The non-exceedance 

probability of all the dependent variables (lower percentile) decreases with increased 

precipitation. However, the exceedance probability of the same variables (upper percentile) 

increases gradually with increased precipitation. 

The water budget equation of a large basin based on the conservation of mass was used to 

reconstruct TWSC, ET, and runoff for the Brahmaputra basin. The reconstructed water 

budget variables are further assessed using a correlation coefficient to know the linear 

strength. Also, error metrics like absolute mean error and bias were used to determine how 

far we can see the variation, such as reconstruction against a gauge or quasi-gauge data. 

The ERA5-derived TWSCs and Qs tend to provide the highest linear strength expressed in 

the correlation coefficient on a monthly and seasonal basis. To a greater extent, the Tropical 

Rainfall Measuring Mission (TRMM), IMERG and the Climate Hazards group Infrared 

Precipitation with Stations (CHIRPS) also depict a closer correlation coefficient to that of 

ERA5-derived TWSCs and Qs. The linear strength of derived ETs shows that the inherent 

uncertainties in the water budget variables did not reconstruct ETs well. On a monthly 

basis, the TRMM-based TWSC reconstruction was the most optimal, and IMERG-driven 

ET and runoff were the most optimal. SM2RAIN-driven TWSC, ET, and Q were reported 

to be the least optimal. For most of the seasons, it was either TRMM or IMERG with the 

least error. However, the error in terms of the percentage of gauge precipitation for winter 

and post-monsoon seasons is staggeringly high. Even on a seasonal basis, SM2RAIN was 
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the least performing. Overall, TRMM, IMERG, and CHIRPS show much lesser 

uncertainties than other precipitation datasets, as evidenced by the raincloud plots. 

 

The recently developed ITA and innovative polygon trend analysis (IPTA) were 

used to determine the trend of individual months, including the sub-trends based on 

different clusters (low, medium, and high) for complete time series and transition of trend 

between months, respectively. In addition, the traditional Mann-Kendall (MK) test was also 

conducted to compare the findings of trends.  The monthly precipitation of seven 

precipitation data, four evapotranspiration data, river basin discharge, and GRACE TWSC 

were used in the study. The present findings are consistent, as reported in several studies 

on ITA and a few on sub-trends. What was commonly observed in all the water budget 

variables is the higher percentage of months detecting either increasing or decreasing 

significant trends using ITA compared to the classical MK test, which in most cases could 

not detect any significant trend. The sub-trends provided us with the trends in each of the 

three clusters. Only APHRODITE, TRMM, and IMERG showed more than 2.5 mm/month 

decreasing trend in the high category. Numerically, ETs showed insignificant trend 

variation in all the clusters. Discharge of the basin shows a high decreasing trend in the 

high cluster (339.01 m3/s) and a decreasing trend in the low cluster by a rate of 176.79 

m3/s. Similarly, GRACE TWSC shows a decreasing trend of 7.75 mm/month in the high 

cluster and an 8.69 mm/month decreasing trend in the low cluster.  

  Keywords: innovative polygon trend analysis (IPTA), innovative trend analysis (ITA), 

risk assessment, satellite precipitation, water budget error  
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CHAPTER 1 

INTRODUCTION 

1.1 OVERVIEW 

The present research focuses on evaluating the major water budget components of a large 

river basin using globally available satellite data. The data or estimates are used against 

gauge-based data or reference data to ascertain their ability to represent the satellite 

observations and gauge-based or reconstructed data, estimate the risk associated with a 

water budget variable, and determine the trends of each water budget variable. There are 

conflicting views on the performance of satellite-based rainfall estimates, especially the 

one merged with several other data sources (Beck et al. 2019; Lehmann et al. 2022). Also, 

the estimation of risk or probability of occurrence of a water budget variable given 

different sources of precipitation has been addressed (Uttarwar et al. 2020). In addition, 

how different precipitation data perform for the reconstruction of other water budget 

variables like evapotranspiration (ET), runoff (Q, discharge), and terrestrial water storage 

change (TWSC) in a given study have been rarely addressed (Zhang et al. 2016a). Then, 

the assessment of trend analysis using the recently developed innovative trend analysis 

(Şen 2017; Şen et al. 2019a) for the water budget variables is not yet highlighted 

(Oliveira et al. 2014). 

Therefore, the main aim of the current research is to evaluate the water budget 

components using globally available data. This will achieve the objectives of evaluating 

different satellite precipitation estimates, assessing the risk of water budget variables 

given precipitation, evaluating different sources of precipitation data for water budget 

reconstruction, and assessing the trend of each water budget variable using innovative 

trend analysis. 

This chapter provides an introduction to the study by first discussing the overview 

and background of the research, then stating the research problem, followed by the 
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research aim, objectives, and research questions, and then followed by research 

significance or contribution to the body of research, and finally, the limitations of the 

research and organization of the thesis.          

1.2 STUDY BACKGROUND 

Water budget may be defined as the amount of water entering a land, stored within and 

leaving the land system for a given time interval (Mitchell et al., 2003 ; Lorenz et al., 

2014; Wang et al., 2014). A river basin water budget can be expressed as balancing major 

hydrological cycle components: precipitation, actual evapotranspiration, runoff and 

terrestrial water storage change (Gao et al., 2010). Hence, the water budget follows the 

conservation of mass principle. Interested readers may refer to a review article by Duffy 

(2017) for more information on the water budget from a historical perspective. The 

concept of the water budget in scientific hydrology has been around for some time (Xu 

and Singh, 1998), but it gained momentum only in recent times, especially in the first 

decade of the 21st century (Jothityangkoon et al., 2001;  Marengo, 2005; Sheffield et al., 

2009 among others.)  More so after the year 2010 there have been resurgent interests in 

water budget estimation and closure (Azarderakhsh et al., 2011; Pan et al., 2012; Zhang 

et al., 2016). Several approaches have been attempted to estimate water budget at 

different spatial and temporal scales ranging from small catchments (Hentschel et al., 

2013; Graf et al., 2014; Wei et al., 2016) to medium size catchments (Xue et al., 2013; 

Wu and Chen, 2013;Savéan et al., 2015) to large river basins (Wu and Chen, 2013; 

Armanios and Fisher, 2014; Abera et al., 2017) and continental/global river basins (Troy 

et al., 2011; Sahoo et al., 2011; Fersch et al., 2012; Pan et al., 2012; Corbari et al., 2014; 

Munier et al., 2014; Wang et al., 2014; Zhang et al., 2016).  

 Comprehensive information about the hydrological variables that make up the 

terrestrial water cycle is of great importance because it allows us to understand their 

dynamic changes over time and space (Sheffield et al., 2018). In addition to in situ 

monitoring networks, satellite remote sensing is increasingly used as a source of 

information and, in some situations, is the only practical source  (Sheffield et al. 2018). 

The continous development of space-borne sensors has enabled to have access to almost 



3 
 

all the major water budget components like precipitation (Ciabatta et al. 2017; Huffman 

et al. 2010, 2019; Joyce et al. 2004), evapotranspiration (Mu et al. 2011), terrestrial water 

storage change (Landerer and Swenson 2012) and discharge (Revel et al. 2023).  

 Out of all the major water budget variables, the estimation of space-borne 

precipitation is under continuous development and has more products than any other 

variables at a given time (Prakash 2019; Wei et al. 2021). Proportionately, it is also the 

major water budget component that is paid more attention than the rest of the variables, 

as evidenced from literature on the current sensors used and future planned sensors (Kidd 

et al. 2021). Precipitation is usually recorded by a tipping-bucket system (Sevruk 2006), 

which measures point precipitation and its measurement area is limited to the gauge 

itself. Despite its limitation, the gauge measurement is still the most preferred when 

satellite precipitation estimates are evaluated or corrected (Kidd et al. 2021; Michelson 

2004). Low earth orbit satellites (LEO) come with four different sensors, namely, visible 

(VIS), infrared (IR), active microwave (AMW) and passive microwave (PMW) (Battaglia 

et al. 2020). However, geostationary satellites are limited to using the first two sensors 

because of the high altitude over which these kinds of satellites fly and the necessity for 

fine resolution estimation (Kidd et al. 2021). Some of the satellite-based precipitation 

products that are widely used are the TRMM (Huffman et al. 2010), GPM IMERG 

(Huffman et al. 2019), CMORPH (Joyce et al. 2004), CHIRPS (Funk et al. 2014, 2015), 

SM2RAIN (Brocca et al. 2014) and PERSIANN (Nguyen et al. 2018). These satellite 

precipitation estimates are evaluated based on categorical metrics like the probability of 

detection (POD), false alarm ratio (FAR) and critical success index (CSI) (AghaKouchak 

and Mehran 2013) and continuous metrics like mean error (ME), mean absolute error 

(MAE), mean square error (MSE) and root mean square error (RMSE) (Duan et al. 

2016). In very recently published literature, CHIRPS was found to be mostly applied for 

drought or climatological studies (Ma et al. 2023), whereas GPM IMERG or just IMERG 

has been widely used to evaluate it against gauge data in several studies related to 

extreme precipitation events (Islam et al. 2020; Li et al. 2022; Liu et al. 2022a).  
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 Understanding water resource evolution at the basin scale is necessary to achieve 

water security and enhance adaptability to hydrological extremes (Sheffield et al. 2018). 

Risk assessment of a hydrometeorological variable with respect to another variable was 

often carried out using the traditional bivariate modelling in which both the marginal 

distributions come from the same distribution. However, this is not the case with a copula 

connecting two continuous variables based on a dependence measure. The copula can 

handle the dependence measure irrespective of the marginal distributions of the two 

interacting variables (Genest and Favre 2007). The risk evaluation of the occurrence of an 

event is associated with the exceedance/ non-exceedance of the ET/Q/TWSC for a given 

threshold of explanatory variable precipitation (Liu et al. 2018; Salvadori and De Michele 

2004). For example, for a given amount of precipitation, the groundwater level was 

predicted in different aquifers bivariate using conditional copula (Uttarwar et al. 2020; 

Wable and Jha 2018). Similarly, the probabilistic streamflow prediction concerning 

hydrometeorological variables was carried out in the Three Gorges dam in China (Liu et 

al. 2018). In recent years, copula methods have continued to find applications when there 

is a need to understand dependence measures. For instance, they have been used in the 

application of drought-fluvial identification (Liu et al. 2022b), environmental flow 

assessment (Liu et al. 2016) and streamflow-sediment-dependent structure (Yang et al. 

2023), among others.  

 Water budget variables like ET, Q and TWSC (dS/dt) are reconstructed using the 

conservation of mass principle. The residual of precipitation (P) minus two of the above 

variables will yield the equivalence of the variable that was not considered. Under ideal 

conditions, the residual and the target variable should be equal resulting in zero when the 

difference between the two is taken. For example, it is desired to obtain ET (=P – Q – 

TWSC) or Q (=P – ET  – TWSC) or dS/dt (=P – ET – Q). So, ET, Q and dS/dt are the 

reconstructed evapotranspiration, runoff/discharge and change in storage. Precipitation is 

a common variable in all three scenarios, so that the same precipitation data could be 

used. Accordingly, the reconstructed variables are compared with either gauge for the 

runoff, satellite-based observed ET for ET and satellite-based observed TWSC for dS/dt. 
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The assessment could be carried out using metrics like mean absolute or bias errors. For 

over a decade, satellite data have been extensively used to close the water budget, 

meaning to minimize the difference error between observed variables like GRACE 

TWSC and dS/dt or MOD16 ET and reconstructed ET. To close the water budget, several 

researchers attempted to constrain the closure error by using data assimilation technique 

(Sahoo et al. 2011a), correction model (Munier et al. 2014; Pellet et al. 2020), a blend of 

different sources of data (Zhang et al. 2016b), integrated model (Maxwell and Condon 

2016), modelling framework (Abera et al. 2017), multiple combinations of data to close 

water budget for the land mass of the world excluding the pools (Lehmann et al. 2022), 

two-step water budget closure method (Luo et al. 2023). 

 The trend analysis of hydrological variables helps us to understand how the 

variable of interest could vary over different time scales and spatial variations. Trends 

analysis of water budget components has already been attempted either using the 

traditional MK test (Kendall 1938; Mann 1945) and Sen’s slope (Sen 1968) or the linear 

regression method (Oliveira et al. 2014; Zhang et al. 2016a). However, they pose great 

uncertainty because of the data length and homogeneity (Dorigo et al. 2021). To 

overcome the above drawbacks of the traditional methods, a new method called 

innovative trend analysis (ITA), which is a numerical and graphical method, has been 

widely used in literature (Şen 2017). Also, the extended version of innovative trend 

analysis (IPTA) for trend transitions has found many applications (Deb Barma and 

Mahesha 2023; Şen et al. 2019b). Another advantage of the ITA method is the sub-trends 

of such variables. Such sub-trends are useful for deciding flood and drought (Chowdari et 

al. 2023). 

1.3 RESEARCH STATEMENT 

The Brahmaputra River basin is a transboundary basin that flows from China to Bhutan, 

India and Bangladesh. The sparseness of hydrometeorological data makes it difficult to 

carry out hydrological studies. However, space-borne data could come in handy given the 

size of the basin and when the average information is more compelling than fragmented 

information in the context of the water budget. Although the current state of the art on the 
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evaluation of satellite precipitation data is evolving with the addition of new satellites 

because of the development of new sensors (Kidd et al. 2021), there is not always an 

attempt to evaluate satellite precipitation estimates against existing gauge-based data (Ji 

et al. 2020). Even gauge-based precipitation data are interpolated over a large area from 

rainfall collected in different gauge locations. So, when the previous version of 

APHRODITE was used for the Brahmaputra basin, it always had the issue of the data 

being bias corrected using monthly data and the local timestamp instead of correcting the 

daily data with daily data and the local timestamp changed to UTC time zone making it 

suitable for analysis. Hence, to fill this gap, the existing satellite precipitation will be 

evaluated using the updated version of the gauge-based precipitation.  

Risk assessment of different hydrometeorological studies has been an ongoing process, as 

seen from different works  (Uttarwar et al. 2020; Yang et al. 2023), but what needs to be 

added is similar studies about water budget variables. So, the copula method was used to 

make probabilistic predictions of ET, Q and TWSC given precipitation data from various 

sources. If other variables besides precipitation influence these variables, then the Vine 

copula may be a better choice. Also, three different sources of precipitation were used to 

achieve the goal. Several recent studies have reported improving water budget constraints 

for better closure. However, it is still an ongoing process. Therefore, the present study 

will extend the work of Zhang et al. (2016a) to the Brahmaputra basin by using several 

precipitation data as the main input. Trend analysis of water budget components (Oliveira 

et al. 2014) may be affected by high uncertainties due to the sample size of the data and 

inhomogeneity (Kidd et al. 2021). In contrast, the ITA method does not have the 

limitations of the classical method. Therefore, ITA and IPTA will be used to determine 

the trend of each month individually. Also, the advantage of ITA to detect sub-trends will 

be used. 

1.4 RESEARCH OBJECTIVES 

Given the lack of precipitation evaluation for the whole basin concerning the updated 

precipitation, risk of water budget variables, water budget error with respect to different 

precipitation data and the innovative trend analysis of the variables, the present study is 
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aimed at evaluating the water budget components using satellite data. The research 

objectives are:  

1. Evaluation of the satellite precipitation estimates of the Brahmaputra basin against 

updated gauge-based APHRODITE v2 precipitation.                                                                                   

2. Evaluation of the ERA5 and IMERG precipitation data for risk assessment of water 

cycle variables of the Brahmaputra basin using satellite data and Archimedean copulas.                               

3. Evaluation of satellite precipitation estimates to reconstruct major water budget 

components of the Brahmaputra basin.                                                                                                                            

4. Investigation of the innovative trend analysis of water budget components of the 

Brahmaputra basin. 

1.5 ORGANISATION OF THE THESIS 

The remainder of the thesis is organised in the following manner: 

Chapter 2 - Literature Review 

The literature review chapter provides a comprehensive overview of the existing 

literature on evaluating satellite precipitation, risk assessment of water budget variables, 

reconstruction of water budget variables, and innovative trend analysis. The chapter 

identifies the gaps in the literature and how this research addressed them. 

Chapter 3 - Study Area and Datasets 

Chapter three describes the basin in detail, including its physical characteristics, climate, 

and water resources. The chapter also identifies the key water budget variables of interest 

and discusses the availability of data for each variable. 

Chapter 4 - First Objective: Evaluation of Satellite Precipitation 

Chapter four focuses on the first objective of our study, which involves evaluating five 

different satellite datasets. The chapter also presents the results of the evaluation, 

including the strengths and weaknesses of each dataset. Finally, the chapter discusses the 

implications of the results and summarizes with conclusions. 



8 
 

 Chapter 5 - Second Objective: Risk Assessment of Water Budget Variables 

Chapter five addresses the second objective, centred on the risk assessment of key water 

budget variables, including ET, Q, and GRACE TWSC. This section outlines the 

methodologies used and presents the results, followed by a comprehensive discussion. It 

concludes with key conclusions of the findings.  

Chapter 6 - Third Objective: Reconstruction of Water Budget Variables 

This chapter describes the methods used to reconstruct ET, Q and GRACE TWSC. The 

chapter also presents the results of the reconstruction, including the reconstructed time 

series of each water budget variable. It offers a thorough analysis of the results, followed 

by key conclusions of the chapter. 

Chapter 7 - Fourth Objective: Innovative Trend Analysis 

This chapter, fourth and final objective, describes the innovative trend analysis methods 

used in this study. The chapter also presents the results of the trend analysis, including the 

trends in each water budget variable and the associated uncertainties. The chapter also 

compares the results of the innovative trend analysis methods with the results of the 

traditional Mann-Kendall test and Sen's slope estimator. It ends with the key conclusions 

of the results. 

Chapter 8 - Summary, Conclusions, and Future Directions 

The final chapter, chapter eight, provides a summary of the work, concluding remarks, 

and insights gained from the study. Additionally, it discusses the limitations of the 

research and suggests areas for future exploration and development. 

 

 

 

   



CHAPTER 2 

LITERATURE REVIEW 

2.1 BRIEF OVERVIEW 

This chapter discusses recent advances in satellite data for hydrological applications, 

especially in water budget variable reconstruction, probabilistic prediction, and innovative 

trend analysis. For a large river basin like Brahmaputra, precipitation, evapotranspiration 

(ET), discharge, and terrestrial water storage change (TWSC) significantly influence water 

budget variables. However, precipitation is the most influencing water budget variable in 

the Brahmaputra River basin because its contribution to the discharge is over 70% of the 

flow in the river.   

2.2 GLOBAL SATELLITE PRECIPITATION 

2.2.1 Introduction 

The precipitation retrieved from gauge measurements may have certain drawbacks because 

of the instrumentation issues (Villarini et al. 2008). Though gauge measurement may still 

be better at representing precipitation, the sparseness of rain gauges will render an 

inaccurate representation of rainfall events. Since precipitation exhibits significant 

temporal and regional variability, precise data with high spatial and temporal precision are 

greatly desired (Duan and Bastiaanssen 2013). The availability of observed precipitation 

over the global land surface remains small (Kidd et al. 2017). 

On the other hand, high spatial and temporal resolution precipitation variability detection 

using satellite remote sensing data is a newer way of understanding precipitation 

distribution (Duan et al. 2016). The satellite precipitation comes from both infra-red, either 

microwave measurements or the merging of both sensors (Prakash 2019). However, such 

precipitation data are evaluated against gauge measurements (Kidd and Huffman 2011). 

   



10 
 

Access to gauge precipitation in the Brahmaputra basin is difficult with complex terrain. 

Therefore, with even improvement in gauge precipitation, it becomes customary to assess 

the satellite precipitation against updated gauge-based data like APHRODITE v2 (Deb 

Barma et al. 2022; Yatagai et al. 2012).  

2.2.2 Assessment of satellite precipitation 

The satellite precipitation estimates are assessed against gauge data using categorical and 

continuous metrics (Duan et al. 2016). Prakash (2019) conducted an assessment of four 

monthly precipitation datasets for the whole of India from 1998 to 2015. This research 

evaluated the effectiveness of four recent versions of multi-satellite precipitation products 

in India. The four products under consideration are (i) Climate Hazards group Infrared 

Precipitation with Stations (CHIRPS), which combines infrared precipitation data with 

station data, (ii) Multi-Source Weighted-Ensemble Precipitation (MSWEP), a precipitation 

ensemble that incorporates multiple sources, (iii) soil moisture to rain climate change 

initiative (SM2RAIN-CCI), which utilizes the SM2RAIN algorithm in the Climate Change 

Initiative; and (iv) Tropical Rainfall Measuring Mission Multi-satellite Precipitation 

Analysis (TRMM MPA or TMPA). The evaluation was conducted by comparing these 

products with gauge-based observations over a monthly period from 1998 to 2015. The 

study found that CHIRPS and TMPA performed similarly to gauge-based precipitation 

estimates in India. SM2RAIN-CCI consistently underestimated precipitation and needed 

bias correction. CHIRPS can be confidently used for long-term precipitation analyses. 

 Gupta et al. (2019) investigated the ability of three satellite-based precipitation datasets to 

capture extreme precipitation events in India. The datasets are the Climate Hazards Group 

InfraRed Precipitation with Station data (CHIRPS), Satellite Soil Moisture to Rain 

(SM2RAIN-ASCAT), and Tropical Rainfall Measuring Mission (TRMM). The study 

found that all three datasets could capture extreme precipitation events, but their accuracy 

needed more consistency. TRMM was the most accurate dataset, followed by CHIRPS and 

SM2RAIN-ASCAT. The study also found that the accuracy of the datasets varied 

depending on the location in India. The results of this study are important for understanding 
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the accuracy of satellite-based precipitation datasets and for developing better methods for 

predicting extreme precipitation events. 

 Another study (Liu et al. 2020) evaluates the performance of three satellite precipitation 

products (GPM IMERG, CHIRPS, and GSMaP) over Bali Island, Indonesia. The study 

uses a variety of metrics to assess the performance of the products, including bias, root 

mean square error (RMSE), and Nash-Sutcliffe efficiency (NSE). The study results show 

that IMERG outperforms the other two products on all metrics and has the lowest bias, 

RMSE, and highest NSE values. CHIRPS has the second-best performance, followed by 

GSMaP. The study also finds that IMERG is more accurate at detecting rainfall events at 

different altitudes. However, IMERG tends to overestimate rainfall events at high altitudes. 

Overall, the study finds that IMERG is the most accurate satellite precipitation product for 

Bali Island. The study recommends that IMERG be used for applications that require high 

accuracy, such as hydrological modeling and drought monitoring. 

 Cavalcante et al. (2020) evaluated the performance of the CHIRPS satellite precipitation 

product in estimating extreme rainfall indices over the Brazilian Amazon. The study uses 

a variety of metrics to assess the product’s performance, including bias, root mean square 

error (RMSE), and Nash-Sutcliffe efficiency (NSE). The results show that CHIRPS had an 

excellent performance in estimating extreme rainfall indices over the Brazilian Amazon. 

However, CHIRPS tends to underestimate the values of extreme rainfall indices for the 

rainiest months. The study also finds that CHIRPS performs better in estimating extreme 

rainfall indices in the eastern Amazon than in the western Amazon. Overall, it is evident 

that CHIRPS is a reliable satellite precipitation product for estimating extreme rainfall 

indices over the Brazilian Amazon. However, users should be aware of the underestimation 

of extreme rainfall indices for the rainiest months and the better performance of CHIRPS 

in the eastern Amazon. 

The study by Zhang et al. (2020) evaluated two types of satellite precipitation products 

over mainland China from 2012 to 2017. The top-down product used in the study is the 

Integrated Multi-satellite Retrievals for Global Precipitation Measurement (IMERG). 
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IMERG is a product of the National Oceanic and Atmospheric Administration (NOAA). 

The bottom-up product used in the study is the SM2RAIN-ASCAT product. SM2RAIN-

ASCAT is a product of the European Space Agency (ESA). 

They found that IMERG was better at capturing large-scale precipitation patterns, while 

SM2RAIN-ASCAT was better at capturing small-scale precipitation patterns. The study 

also found that the accuracy of both products can vary depending on the season and the 

location. The study then integrated the two products to create a more comprehensive and 

accurate precipitation product. The integrated product was more accurate than either of the 

individual products. The results of this study are important for improving the accuracy of 

satellite precipitation products and for developing better methods for monitoring and 

predicting precipitation over mainland China. 

2.2.3 Assessment of satellite precipitation in the Brahmaputra Basin 

Ji et al. (2020) investigated the ability of four different bias correction methods to improve 

the accuracy of APHRODITE data in a large Himalayan basin (530,000 km2). The methods 

are Local scaling (LS): This method adjusts the APHRODITE data by multiplying it by a 

spatially varying factor. Locally Optimized Canonical Correlation Analysis (LOCI): This 

method adjusts the APHRODITE data by finding a linear combination of the observed and 

simulated data that minimizes the error. Cumulative distribution function (CDF): This 

method adjusts the APHRODITE data by transforming it to match the cumulative 

distribution function of the observed data. LS-CDF: This method combines the LS and 

CDF methods. The study found that all four methods could improve the accuracy of the 

APHRODITE data, but that the LS-CDF method was the most effective. The LS-CDF 

method was able to improve the Nash-Sutcliffe efficiency (NSE) of the hydrological 

simulations by an average of 0.15. The results of this study are important for improving the 

accuracy of hydrological simulations in large Himalayan basins. The LS-CDF method is 

promising for correcting the bias in APHRODITE data and improving the accuracy of 

hydrological simulations. 
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Luo et al. (2020) investigated the ability of bias correction to improve the analysis of 

extreme precipitation in the Yarlung Tsangpo–Brahmaputra River basin. This study aimed 

to make APHRODITE precipitation estimates more accurate in the YBRB. It used different 

correction methods and evaluated their impact on extreme precipitation indices. Bias 

correction significantly improved extreme precipitation analysis. The effectiveness of 

correction methods in adjusting wet-day frequency and coefficient of variation varied, 

resulting in differences in extreme precipitation indices. Notably, Local intensity scaling 

(LOCI) and quantile–quantile mapping (QM) outperformed linear scaling (LS) and power 

transformation (PT). The study provides guidance for using gridded precipitation data in 

extreme precipitation analysis and selecting appropriate bias-correction methods in data-

sparse regions. 

Zhu et al. (2020) studied the spatial distribution and temporal trends of daily precipitation 

concentration in the Yarlung Tsangpo River basin. The basin is located in the eastern 

Himalayas and is a major water source for China and India. The study used a dataset of 

daily precipitation observations from 1970 to 2017. The study found that the spatial 

distribution of daily precipitation concentration is uneven, with the highest concentrations 

in the western and central parts of the basin. The study also found that the temporal trends 

of daily precipitation concentration are variable, with some areas showing increasing trends 

and other areas showing decreasing trends. The results of this study are important for 

understanding the water resources of the Yarlung Tsangpo River Basin. The study findings 

can be used to improve the management of water resources in the basin and to mitigate 

climate change impacts. 

2.3 DEPENDENCE MODELLING OF HYDROMETEOROLOGICAL 

VARIABLES 

2.3.1 Introduction 

The relationship between precipitation and hydrologic variables is critical in understanding 

the occurrence of such variables in a hydrologic system. In order to attain water security 

and improved flexibility to hydrologic extrema, a pragmatic discernment of water resource 
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evolution at the basin level is necessary (Sheffield et al. 2018).   This is evident when 

dealing with the water budget of large river basins. Pearson’s correlation coefficient has 

been widely used in hydrology to relate one variable with another. Still, this statistical 

metric follows the assumption that the data follow a normal distribution and are linear.  

Moreover, the correlation coefficient is very sensitive to outliers (Legates and 

McCabe 1999). However, hydrometeorological variables are often non-linear, and rank-

based correlation coefficients like Spearman’s rho and Kendal’s tau are preferred (Li et al. 

2015a; Uttarwar et al. 2020).  Accordingly, the prediction of a hydrological variable is 

carried out using various methods, namely, ordinary least square (OLS) (Hasan and Tarhule 

2020), multiple linear regression (MLR) (Jato-Espino et al. 2017; Ndehedehe et al. 2016; 

Sinha et al. 2019), partial least squares regression (PLSR) (Abudu et al. 2010; Hu et al. 

2021; Yuan et al. 2019; Zhou et al. 2020), principal component analysis/regression 

(PCA/PCR) (Abudu et al. 2010; Almanaseer and Sankarasubramanian 2012) and  

geographically weighted regression (GWR) (Li et al. 2020; Li and Quiring 2021), empirical 

method- Budyko framework (Li and Quiring 2021), machine learning algorithms (Han et 

al. 2021; Seyoum and Kwon 2020; Sinha et al. 2019; Sun et al. 2014), conceptual 

hydrological model (Poncelet et al. 2017) and semi-distributed/ distributed models (Sahana 

and Timbadiya 2020; Sridhar et al. 2019).  

For example, Hasan and Tarhule (2020) investigated the long-term terrestrial water 

storage anomaly from GRACE data as affected by precipitation, runoff, surface water 

storage, soil moisture storage and population density using geographically multiple 

regression (GMR), ordinary least square (OLS) and geographically weighted regression 

(GWR). It is reported that GWR is important for accounting for the spatial locations to 

characterize the variability of GRACE TSWA long-term trends in space.  In the assessment 

of watershed characteristics on long-term water balances, machine learning algorithms like 

neural network (ANN) and relevance vector machine (RVM) were found to perform better 

than MLR in determining the watershed parameter (Sinha et al. 2019). PLSR and global 

hydrological models were used to predict terrestrial water storage (TWS) over central Asia 
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using multiple satellite data (Hu et al. 2021). PLSR was found to be useful for the 

simulation of the hydroclimatic variables and prediction of TWS. 

 Poncelet et al. (2017) used a large sample hydrological approach and a conceptual 

lumped hydrological model to estimate runoff variations over different landscapes in 

Austria, France and Germany. The consistency of four precipitation products and GRACE 

TWS over the Arabian Peninsula was assessed using a multivariate statistical approach and 

Pearson’s correlation coefficient (Wehbe et al. 2018). In another study, satellite-based 

precipitations TRMM and CHIRPS were assessed against gauge-based precipitation to 

evaluate their performance in reproducing streamflow and hydrological signatures of a 

humid tropical catchment in India (Sharannya et al. 2020). However, limited studies have 

focused on the probabilistic dependence of precipitation and other water cycle variables 

using copula. 

2.3.2 Application of copula in the probabilistic prediction of hydrometeorological 

variables 

The dependence structure between the water cycle variables needs to be achieved 

using copulas to obtain the probabilistic prediction. Copulas are multivariate techniques 

that derive the dependence structure between two or more continuous/discrete variables 

(Genest and Favre 2007; Nelsen 2006). Copulas have been extensively applied in various 

fields. For example, in the area of hydrologic sciences, copulas find applications in the 

dependence of hydroclimatic variables (Uttarwar et al. 2020), drought characterization 

(Sajeev et al. 2021), flood frequency analysis (Muthuvel and Mahesha 2021), compound 

climate extreme events (Hao et al. 2018; Tavakol et al. 2020; Zscheischler and Seneviratne 

2017), variance-based sensitivity analysis (Sheikholeslami et al. 2021), among others.  

Liu et al. (2018) carried out the joint dependence of river water temperature, air 

temperature, and discharge in the Yangtze River. The study found that the joint dependence 

of these variables is complex and varies over time. The study also found that the Three 

Gorges Dam has significantly impacted the joint dependence of these variables. The study 

used a dataset of daily observations of river water temperature, air temperature, and 
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discharge from 1975 to 2014. The joint dependence of these variables is strongest in the 

summer and weakest in the winter. The joint dependence of these variables is more 

pronounced in the upstream reaches of the river than in the downstream reaches. The Three 

Gorges Dam has significantly impacted the joint dependence of river water temperature, 

air temperature, and discharge. The dam has reduced the variability of river water 

temperature and discharge. The dam has also changed the timing of peak river water 

temperature and discharge. The results of this study are important for understanding the 

impacts of the Three Gorges Dam on the Yangtze River. The study findings can be used to 

improve the Yangtze River management and mitigate the impacts of climate change. 

Liu and Menzel (2018) conducted the probabilistic dependence between streamflow and 

hydroclimatic variables in Baden-Württemberg, Southwest Germany. The study found that 

streamflow is positively correlated with precipitation and soil moisture, and negatively 

correlated with temperature. The study also found that large-scale atmospheric circulation 

patterns can significantly impact streamflow. The study used a dataset of daily observations 

of streamflow, precipitation, temperature, and soil moisture from 1961 to 2016. The 

probabilistic dependence between streamflow and hydroclimatic variables is strongest in 

the summer and weakest in the winter. The probabilistic dependence between streamflow 

and hydroclimatic variables is more pronounced in the upstream reaches of the river than 

in the downstream reaches. It was found that large-scale atmospheric circulation patterns 

can have a significant impact on streamflow. The study also found that the westerlies play 

an important role in favoring warm and moist airstreams from the Atlantic Ocean towards 

the study area. The results of this study are important for understanding the streamflow 

regime in Baden-Württemberg, Southwest Germany. The study findings can be used to 

improve water resources management in the region and mitigate climate change impacts. 

In another study (Qian et al. 2020), the use of coupled copulas to model the relationship 

between two precipitation variables was investigated. The study found that coupled copulas 

can be used to model the dependence pattern between two precipitation variables, and that 

they can be used to improve the accuracy of hydrological simulations. The study used a 

dataset of daily precipitation observations from two stations in the Jinghe River basin. The 
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study found that the coupled copula could accurately model the dependence pattern 

between the two precipitation variables. The study also found that the coupled copula 

improved the accuracy of hydrological simulations.  

Qian et al. (2021) examined the variability in the relationship between runoff and sediment 

discharge in the Xiliugou River basin in China. The study found that the dependence 

structure between runoff and sediment discharge exhibits temporal variations, with a 

significant shift in 2000. The strength of the dependence structure was also found to be 

stronger in the upstream reaches of the river. The study attributes the observed variation in 

the dependence structure to climate and land use changes, such as increased precipitation 

and deforestation in the upstream region. The findings of this study can be used to improve 

water resource management practices and mitigate the adverse effects of climate change. 

Seo et al. (2022) used a copula to identify the risk of river water temperature stress under 

meteorological drought conditions. The study found that the model could accurately predict 

the risk of river water temperature stress for various meteorological drought conditions. 

The model identified the areas of the Yangtze River basin most vulnerable to river water 

temperature stress under meteorological drought conditions. The areas of the basin that are 

most vulnerable to river water temperature stress are the areas that are located in the 

upstream reaches of the basin. 

The study by  Yang et al. (2023) used a hybrid copula model to analyze the joint probability 

of streamflow and sediment load. The model was able to predict the joint probability under 

various conditions accurately. The study found that the model was able to identify areas 

within the Yangtze River basin that are particularly vulnerable to high streamflow and 

sediment load. The findings of this study are important for the advancement of water 

resource management strategies in the Yangtze River basin. 

A conditional copula model was used to identify the response of runoff probability to 

climatic factors in the Poyang Lake basin in China  (Han et al. 2023). The study found that 

the model could accurately predict the response of runoff probability to climatic factors for 

various climatic conditions. The study also found that the model identified the areas of the 
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basin most vulnerable to changes in runoff probability due to climatic factors. The areas of 

the basin that are most vulnerable to changes in runoff probability due to climatic factors 

are the areas that are located in the upstream reaches of the basin. The results of this study 

are important for improving the management of water resources in the Poyang Lake basin. 

2.4 RECONSTRUCTION OF WATER BUDGET VARIABLES 

2.4.1 Introduction 

Water budget may be defined as the amount of water entering a land, stored within and 

leaving the land system for a given time interval (Mitchell et al., 2003 ; Lorenz et al., 2014; 

Wang et al., 2014). A river basin water budget can be expressed as the balance between 

major hydrological cycle components, namely, precipitation, actual evapotranspiration, 

runoff and terrestrial water storage change (Gao et al., 2010). Hence, the water budget 

follows the conservation of mass principle. 

2.4.2 Application of satellite data in the reconstruction of water budget variables  

One of the earliest works on the GEWEX Continental-Scale International Project (GCIP) 

for Arkansas and Red River basins by Abdulla et al. (1996) applied a macro-scale two-

layer variable infiltration capacity (VIC) model forced by gridded station precipitation and 

potential evapotranspiration. The study found an underestimation of seasonal peak 

streamflow in late spring, an overestimation during late summer, and a minimum in early 

fall. Partly averaged evapotranspiration over the whole basins derived from the model was 

compared to the one obtained from atmospheric moisture budget of the basins. There was 

a close agreement from late winter to midsummer for both the estimates in mean seasonal 

cycles. They found that VIC model estimated less evapotranspiration in fall and greater in 

midwinter as compared to that of atmospheric budget. The first paper by Ropelewski and 

Yarosh (1998) in the series of papers that investigate the mean annual atmospheric and 

terrestrial water budgets  over the central United States for a period of 20 years (1973-

1992) led to the development of a baseline or reference climatology for applying both in 

observational and experimental studies as a part of GCIP. Insufficient spatial and temporal 

sampling by radiosonde network might have led to discrepancy between the budgets. In 
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another GEWEX study, Strong et al.(2002) attempted to close the atmospheric moisture 

budget of Mackenzie river basin using WATFLOOD model and gridded data and vindicate 

it against the surface water budget at annual and monthly temporal scales. Near-closure of 

the basin budget could be attained at monthly scales for 1994/95 to 1996/97 water years. 

The Large Scale Biosphere Atmosphere (LBA) Experiment in the Amazon basin as a part 

of GEWEX by Marengo (2005) focused on the spatial and temporal variability of water 

budget and its closure. The average imbalance or non-closure of the water budget for the 

basin was estimated at 51 % as compared to earlier studies by Zeng (1999) and Roads et 

al. (2002) for the same basin. The key contribution of this work has been the 

exemplification of chief differences in the behaviour of water budget between the southern 

and northern parts of the basin. 

Comparisons of terrestrial water storage (TWS) obtained from combined atmospheric and 

surface water balance approach to that of simulated ECMWF 40 year Re-Analysis (ERA-

40) indicate that there is substantial underestimation of seasonal cycle amplitude for 37 

midlatitude basins (Hirschi et al. 2006). However, ERA-40 was found to have agreement 

with in situ data as compared to two other precipitation products while being forced to 

variable infiltration capacity model (VIC) at global level (Voisin et al., 2008). This might 

be due to mismatch in the length and spatial scale of datasets since GRACE data was only 

available from 2002 in the first case. Lorenz and Kunstmann (2012) reported similar 

finding in which ERA-40 reanalysis performed better than its other counterparts in 

atmospheric and terrestrial water budget closure, whereas in La Plata basin, South America 

ERA-40 did not balance either atmospheric or terrestrial water budget (Su and Lettenmaier, 

2009). Evapotranspiration obtained as the difference between precipitation and runoff 

(neglecting storage term for long term) in ERA-40 seasonally is close to the value obtained 

from observations than that obtained annually in Amazon basin (Fernandes et al. 2008).  

Music and Caya (2007, 2009) examined sensitivity of the water budget in the Canadian 

Regional Climate Model (CRCM) to a more accurate representation of the land surface 

processes including radiation, cloud cover, and atmospheric boundary layer mixing for 

Mississippi river for the first study and in addition St. Lawrence, and the Mackenzie River 
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basins for the second study. Removal of the water budget closure error could be achieved 

by introducing a little modification to the specific humidity values at each grid point that 

takes into account the impreciseness related to the semi Lagrangian numerical scheme. 

Pan and Wood (2006) developed constrained ensemble Kalman filter (CEnKF) to 

overcome the shortcoming of ensemble Kalman filter (EnCF) in order to maintain water 

budget closure. This new data assimilation technique in conjunction with VIC model was 

applied in southern Great Plains region of the United States (75, 000 km2). The filtering 

technique has two steps: in the first step in-situ measurements of water budget assimilation 

into VIC model was carried out and second step involved optimal distribution of imbalance 

term among water budget terms according to correlation and variances between the terms 

by constrained assimilation. They reported that CEnKF was able to reduce imbalance/non-

closure of water budget. Pan et al. (2008) extended the work by incorporating more 

techniques for Arkansas-Red river basins. In a similar study Sahoo et al. (2011) applied 

CEnKF technique, but in a non-ensemble manner (Simon and Chia, 2002) to close the 

water budget over ten large river basins across the globe including energy limited basin 

(wet system) like Amazon basin and water limited basins like the Niger and Murray-

Darling building on previous studies (Gao et al., 2010; Sheffield et al., 2009). They merged 

individual biased estimates to budget closure-constrained best estimate. Their findings 

indicate that the influence of bias correction is related to the skill and accuracy of the non-

satellite target variable merged estimate over a given river basin. However, Another follow-

up study by Pan et al. (2012) attempted to merge global datasets including in situ 

observations, remote sensing retrievals, land surface model simulations and global re-

analyses in order to create long-term global data record for the terrestrial water budget 

based on each individual dataset error. Runoff or storage change was not merged as they 

had only one dataset each. 

Gao et al.( 2010) and Sheffield et al.(2009) attempted to close water budget without 

applying any constraining technique. Hence, the errors were estimated to be more in both 

cases and perhaps Sheffield et al. (2009) paper was the first to present the estimates of large 

terrestrial water budget purely based on remote sensing retrievals. However, in situ 
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discharge was used to compare with the residual discharge obtained from water balance 

equation. In the ensuing years that followed, many researchers have also attempted to close 

water budget in different parts of the world using similar techniques.  For example, in Rufiji 

river basin, Tanzania, Armanios and Fisher (2014) explored the feasibility of entirely 

satellite remote sensing data for water budget closure. They used Global land Data 

Assimilation System (GLDAS) product to validate Gravity Recovery and Climate 

Experiment (GRACE) data. In Australia Wang et al. (2014) examined water balance over 

the continent with limited annual streamflow using three commonly used satellite based 

water cycle components: precipitation (P) from the Tropical Rainfall Measuring Mission 

(TRMM), evapotranspiration (ET) from the Moderate Resolution Imaging 

Spectroradiometer (MODIS), and terrestrial water storage change (DS) from the Gravity 

Recovery and Climate Experiment (GRACE). Their results show more recurrent and 

improved closure and uniformity in the water balance from above three components over 

central part of Western Australia having low rainfall, greater elevation and low relief. The 

data sets were found to be more articulate at seasonal and annual scales than monthly ones. 

In Yangtze river basin (Chang Jiang), China Corbari et al. (2014) estimated actual 

evapotranspiration from water budget closure. In the same basin, total discharge was 

obtained from water balance equation (Ferreira et al., 2013); evaluation of global satellite 

precipitation products for multiscale hydrologic applications including annual water 

budgeting (Li et al., 2012 ;Li et al., 2015); assessment of the suitability of popular satellite 

products (Zhang et al., 2016); in tropical Amazon river basin the water budget components 

and their spatial and temporal variability were diagnosed using monthly mean satellite 

retrieval data from September 2002 to December 2006 (Azarderakhsh et al. 2011), but 

closure was not possible. The merged datasets outperform the individual datasets of water 

budget components in a study in northern China (Yao et al. 2014).     

Another noteworthy study (Aires, 2014; Munier et al., 2014) discussed the applicability of 

water budget closure for Mississippi river basin by employing closure correction model 

(CCM), which permits to independently correct each observation data set. It was also used 

to reconstruct missing values in any water budget component. CCM permits to achieve 
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standardization for each component and decrease water budget imbalance/ residual to a 

great extent. This method is simple and does not use any data assimilation technique and 

model to close the water budget. This has advantages over data assimilation technique and 

land surface model being computationally demanding. 

What sets apart the study conducted by Zhang et al.(2016) from others is that they provide 

the first comparison between water budget closure using purely satellite products and a 

complete blend of remote sensing, land surface model outputs (LSM) and reanalysis 

products on a pseudo-global level. They found that gradual removal of non-satellite data 

products would degrade closure errors in the budget estimates. The worst error was seen 

when satellite retrievals P, ET and terrestrial water storage change (TWSC) and runoff (R) 

from LSM were used. This study, however, still used data assimilation algorithm, which 

assumes normal distribution.   

An interesting aspect of terrestrial water budget is the trend analysis of each water budget 

component carried out by Oliveira et al.(2014) for the Brazilian Cerrado using entirely 

remote sensing data (2003-2010) along with long-term discharge data. Uncertainties and 

water budget closure were determined for the three largest river basins in the Cerrado. 

Temporal trends in the water balance components and measured river discharge were 

analyzed using Mann-Kendall test. Their findings indicate that (i) mean annual 

evapotranspiration over the entire Cerrado of 51 ± 15 mm/year with significant rise (ii) in 

the north eastern region of the Brazilian Cerrado the terrestrial water storage rising of 11± 

6 mm/year (iii) reduction of 72 ± 11 mm/year runoff in isolated spots and in the western 

part. Similarly, Zhang et al.(2016) presented a study on Yangtze river basin and concluded 

that satellite products are more suitable for studying annual temporal trends than monthly.  

Some of the most recent water budget studies conducted on large scales that find worth 

mentioning are the works of Lv et al.( 2017), Troy et al.(2011), Wang et al. (2014), Wang 

et al.(2014) and Wang et al.(2015). Previous studies on Yangtze river basin (Corbari et al., 

2014; Ferreira et al., 2013; Zhang et al., 2016) have not considered human interventions in 

the basin unlike the study of Lv et al.(2017). To the best of our knowledge, this is one of 
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its kind where water diversion in the basin was considered in water balance analysis using 

global data products. Evapotranspiration (ET) was reconstructed using the GLDAS-1 land 

surface models, the high-quality observation-based precipitation, naturalized streamflow 

and the irrigation water. After the ET reconstruction, the average absolute non-closure 

value decreased from 3.31 cm/year to 1.69 cm/year and from 15.40 cm/year to 1.96 cm/year 

over the Yellow and Yangtze River Basins, respectively. Due to the data limitation of 

naturalized streamflow, irrigation water and water diversion, the annual temporal scale is 

the smallest time scale used for the analysis in this study.   

Troy et al. (2011) use datasets from various sources to determine the terrestrial water 

budget and its uncertainties over the period 1950–2006 in northern Eurasia to develop a 

water budget closure-based method to combine these independent bases of information and 

observed streamflow to make better estimates of the terrestrial water cycle. For long-term 

annual temporal scale, the storage term may be neglected, and streamflow data was found 

to have the least error among the four water budget terms. The method was found robust 

in that the weightings for each variable were assigned such that the values were bracketed 

within the minimum and maximum values of the corresponding variable, say precipitation, 

for example.  

In continental size Canada, though at the watershed level, Wang et al. (2014) presented a 

first attempt at surface water budget closure for the whole country. They investigated the 

long-term water budget closures for 370 watersheds by using 30 years (1981–2010) data 

products recently produced for precipitation (P) gridded using climate station 

measurements, land surface evapotranspiration (ET), and water surface evaporation (E0) 

obtained by the Ecological Assimilation of Land and Climate Observations (EALCO) 

model and observed streamflow (Q). For a time-independent state watershed at long-term 

scales and when the study phase starts and ends at the same time of the year, the change in 

storage (ΔTWS) is small in the yearly hydrological cycles of the watershed. It may be 

neglected as compared to the total amounts of P, ET, and Q in that phase. Another study by 

Wang et al.(2014) made the first attempt to investigate the spatial and seasonal variations 

of the terrestrial water budget by using state-of-the-art datasets for sixteen large Canadian 
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river basins with a total area of 3.2 million km2. The accrued water budget non-closure 

over the seven years of 2002–2008 ranged between close to zero to ±10 mm/month. The 

positive and negative non-closure among the sixteen basins was nullified mainly, and the 

all-basin non-closure was close to 0. Similarly, Wang et al. (2015) assessed long-term (1979 

-2008) water budget closures for 19 large cold region basins in Canada. 

Lehmann et al. (2022) investigated the global water budget using precipitation, 

evapotranspiration, and runoff data at the catchment scale. They found that TWS changes 

derived from the water balance equation were more accurate than the long-term and 

monthly mean of the GRACE time series in the corresponding basins. They also found that 

the nature of the catchment dynamics and balance between components affects the 

optimum combination of datasets. Ultimately, they concluded that their results provide a 

road map for studying the water budget at the catchment scale. To elaborate on the first 

finding, the researchers used 189 river basins covering more than 90% of the continental 

land area. They compared TWS changes derived from the water balance equation to 

GRACE data using two metrics: the Nash–Sutcliffe efficiency (NSE) and the 

cyclostationary NSE. They found a positive NSE and cyclostationary NSE in 99% and 62% 

of the basins examined. To elaborate on the second finding, the researchers identified that 

some good results were obtained due to the cancellation of errors in poor estimates of water 

budget components. They used variation coefficients to determine a data product's relative 

quality. They found that water budget components from ERA5-Land and the Catchment 

Land Surface Model (CLSM) performed better than other products for most climatic zones. 

To elaborate on the third finding, the researchers found that the latest version of CLSM, 

v2.2, performed poorly for evapotranspiration in snow-dominated catchments. The 

researchers' findings provide valuable insights into the global water budget and the 

optimum combination of datasets for studying it at a catchment scale. 
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2.5 INNOVATIVE TREND ANALYSIS (ITA) OF HYDROMETEOROLOGICAL 

VARIABLES 

2.5.1 Introduction 

The need for freshwater continues to rise as various sectors encounter many requirements 

daily. Precipitation is the primary component of the hydrologic cycle. The Mann-Kendall 

test is a nonparametric test that can identify monotonic trends in time series data (Kendall 

1938; Mann 1945). It is based on comparing the ranks of the data values over time. It is 

also one of the most widely used methods for trend analysis (Chowdari et al. 2023; Singh 

et al. 2021b; a). However, the recently developed innovative trend analysis (ITA) has been 

widely used to analyse hydrometeorological variables (Şen 2012, 2017). The present study 

will address the shortcomings of the MK test using the ITA method. 

2.5.2 Application of ITA trend analysis of hydrometeorological variables 

Praveen et al. (2020) used non-parametric and machine-learning approaches to analyse the 

trend and forecast rainfall changes in India. They use non-parametric methods to identify 

monotonic trends in the rainfall data, and they use machine learning methods to forecast 

future rainfall. They find that there is a significant decreasing trend in rainfall in India. 

They also find that the decreasing trend is more pronounced in the southern and western 

parts of India. They forecast that the decreasing trend in rainfall will continue in the future. 

Their findings have important implications for water management in India. The decreasing 

trend in rainfall will decrease the amount of water available for irrigation, drinking, and 

other uses. This will require India to develop new water management strategies to ensure 

enough water to meet the needs of its growing population. 

Similarly, the study by Singh et al. (2021a) uses an innovative trend analysis method to 

investigate the spatiotemporal rainfall variations in India during 1901-2019. The study 

finds significant trends in rainfall in India, with increasing trends in the monsoon season 

and decreasing trends in the winter season. The study also finds that the trends in 

precipitation are different across India, with some regions experiencing more significant 

trends than others. The study's findings have important implications for water management 

in India. The increasing trends in monsoon rainfall will increase the amount of water 



26 
 

available for irrigation, drinking, and other uses. However, the decreasing trends in winter 

rainfall will lead to reduced water availability for these uses. The study's findings suggest 

that climate change is having a significant impact on rainfall patterns in India. This is 

important because India is an extensive and populous country heavily dependent on rainfall 

for its water supply. The study's findings suggest that India will need to adapt to the impacts 

of climate change on its rainfall patterns. 

Caloiero (2020) used ITA to evaluate rainfall trends in the South Island of New Zealand. 

They found that rainfall is increasing, especially in the western and central parts of the 

island. The trend is more pronounced in the summer months. The findings have 

implications for water management, as the increasing trend in rainfall will lead to an 

increase in the amount of water available. However, the trend is not uniform across the 

island, and some regions may experience more significant trends than others. This will 

require water managers to develop new strategies to ensure enough water to meet the needs 

of the growing population. The change in trend is likely due to climate change, which is 

causing the Earth's atmosphere to warm and leading to changes in rainfall patterns. The 

findings suggest that climate change significantly impacts rainfall patterns in the South 

Island and that the region will need to adapt to the impacts of climate change on its rainfall 

patterns. 

The ITA method was used to analyse annual and seasonal rainfall data from 14 stations in 

the Yangtze River Delta (Wang et al. 2020). The results showed significant increasing 

trends in annual rainfall at all stations and in summer and winter rainfall. There were 

decreasing trends in spring and autumn rainfall. Contrasting trends were found for extreme 

rainfall, with strong increasing trends in high rainfall in summer and winter and falling 

trends in low rain in spring and autumn. These additional details provide more information 

about the trends in rainfall in the Yangtze River Delta. They suggest significant annual and 

seasonal rainfall trends, likely impacting the region's water resources significantly. In 

particular, the increasing trends in annual and seasonal rainfall in summer and winter will 

likely lead to an increase in the risk of flooding in these seasons. The decreasing trends in 

spring and autumn rainfall will likely increase the drought risk in these seasons. These 
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changes in rainfall patterns will likely significantly impact the region's agriculture, 

ecosystems, and water resources. 

Chowdari et al. (2023) conducted a similar study to extend it to the semi-arid region of 

Karnataka, India.  The ITA method was used to analyze seasonal and annual rainfall data 

from 11 districts in semi-arid Karnataka. The results showed significant increasing trends 

in annual rainfall in most districts and in summer and monsoon rainfall. There were 

decreasing trends in winter rainfall. The ITA test was able to detect trends that traditional 

methods were unable to detect. The results of this study suggest significant trends in 

seasonal and annual rainfall in semi-arid Karnataka and that these trends are likely to 

impact the region's water resources significantly. 

For trend transition between months/ weeks/ days/ seasons, Şen et al. (2019) extended the 

ITA method. After that, many studies on applying the ITA method have been conducted. 

For example, Şan et al. (2021) compared three different ways: IPTA, ITA with the 

Significance Test, and Mann-Kendall (MK), in analyzing the monthly total rainfall trends 

of 15 stations in the Vu Gia-Thu Bon River Basin (VGTBRB) in Vietnam. The data spans 

from 1979 to 2016. The findings reveal that rainfall generally increases in March and 

decreases in June across most stations. IPTA and ITA with the Significance Test are more 

sensitive in detecting trends than the MK method. Approximately 90% of all months 

showed trends when using IPTA and ITA with the Significance Test, while the MK test 

detected trends in only 23%. Additionally, although the average rainfall patterns over the 

1-year hydrometeorological cycle appear consistent at most stations, the standard 

deviations show irregular variations. October emerges as the most critical month for trend 

transitions between consecutive months in all stations, with an average negative trend slope 

of -1.35 and a range of -3.98 to -0.21, indicating a decreasing trend. 

Several studies are similar to the above research on the IPTA method reported elsewhere 

(Ahmed et al. 2022; Akçay et al. 2021; Ceribasi and Ceyhunlu 2021; Şan et al. 2021b; 

Sezen 2022). 
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2.6 RESEARCH GAP 

Though several studies have been conducted on evaluating satellite data in different parts 

of the world, applying several satellite data against the new version APHRODITE v2 still 

needs to be undertaken, even though the gauge-based data itself has been tested against 

point measurements. In this research, the first objective will address the gap of evaluating 

various satellite-based precipitation against the newly updated APHRODITE v2 for the 

Brahmaputra basin.  

The above literature shows that the dependence measure between precipitation and 

the other three water budget variables (evapotranspiration, runoff and terrestrial water 

storage change) were not conducted holistically, that is the measurement of risk 

(probability) of the three variables given the precipitation (satellite, reanalysis and gauge) 

amount is not reported in literature. Hence, the culmination of our work (Deb Barma et al. 

2022) to address the second objective.  

The water budget closure has been performed for several basins for over a decade, 

either using a process-based or empirical model or using only data. However, the 

reconstruction of water budget variables like evapotranspiration, runoff and terrestrial 

water storage change using various satellite precipitation data have not been addressed 

much using the empirical water budget equation in literature. To this end, several 

precipitation data were used to reconstruct the remaining variables by extending the work 

of Oliveira et al. (2014) and Zhang et al. (2016a) to the Brahmaputra basin to achieve the 

third objective of this study.  

There is hardly any study on the trend analysis of water budget variables reported 

in the literature using the innovative trend analysis (ITA) method (Şen 2017) and IPTA 

method (Deb Barma and Mahesha 2023; Şen et al. 2019b). To fill this research gap, in the 

fourth objective the trend analysis of several precipitation products (gauge, satellite and 

reanalysis), evapotranspiration data (satellite and reanalysis), runoff (observed) and 

terrestrial water storage change (GRACE TWSC) of Brahmaputra basin was conducted for 

each individual month using the classical MK-test and modified MK-test, innovative trend 
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analysis (ITA) and innovative polygon trend analysis (IPTA). Also, sub-trend analysis was 

the first attempt for water budget variables.   



CHAPTER 3  

STUDY AREA AND DATASETS 

3.1 STUDY AREA 

The Brahmaputra basin lies between 25°–32° North latitude and 82°–98°East longitude. The 

basin, with an average discharge of about 20,000 m3s-1
,
 is the fourth largest river in terms 

of the quantity of runoff in the world (Jian et al. 2009). The total drainage basin area is 

about 517,224 km2 at Bahadurabad gauging station. Bhutan and Bangladesh share about 

8% each, about 34% in India, and about 50% in China (Immerzeel 2008) (Fig.3.1). The 

Brahmaputra's source originates from the Chemayungdung Glacier and throughout the 

upper part of Tibet, it is known by Tsangpo (purifier in Tibet) and in Chinese "Yarlung 

Zangbo" (Ahmad and Lodrick 2017). In contrast, the lower part of the river in India and 

Bangladesh is known as the Brahmaputra ("son of Brahma"). From the origin, it flows for 

about 1150 km eastwards (Fig.3.2(b)). Then it enters the northern-most point of Arunachal 

Pradesh (India), turns southwards, and courses for nearly 500 km (Fig.3.2(c)); it directs 

towards west-flowing through the states of Arunachal Pradesh, Assam, and Meghalaya for 

next about 700 km before it finally moves into Bangladesh (Futter et al. 2015) (Fig.3(d)). 

The Tibetan Plateau bifurcates the basin into two unique zones of climate: (1) the northern 

part of the basin is dominated by mountain climate and is characterized as cold and dry, 

and (2) the southern part is dominated by the tropical monsoon climate and is categorized 

as humid and warm thereby receiving a high amount of precipitation under the impact of 

the Indian summer monsoon (Pervez and Henebry 2015). The Brahmaputra is 

characterized by braided channels, whereas Ganga meandering channels (Futter et al. 

2015). It is topographically and ecologically abundant in crops and natural biodiversity 

falling into three distinct topographic areas: (a) the Tibetan Plateau covering 44% of the 

area with 3500 m and above high, (b) the Himalayan section covering 29% with 100 – 

3500 m and (c) the floodplains covering 27% with below 100 m elevation (Immerzeel 
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2008).  The river is a lifeline to nearly 70 million people who depend on water resources 

for food production (Hasson et al. 2013). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.3.1 Study area map of Brahmaputra basin 

 

Fig.3.2 Elevation map of different zones of Brahmaputra 
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3.2 DATASETS  

3.2.1 Precipitation data 

a. APHRODITE gauge data 

The Asian Precipitation Highly-Resolved Observational Data Integration Towards 

Evaluation of the Extreme Events (APHRODITE) V1101 is available on the daily scale for 

the year 1951-2007 (Yatagai et al. 2012) at 0.25/0.50 degrees spatially, but APHRODITE-

2 (V1901) is available from 1998 to 2015 for the exact spatiotemporal resolution for whole 

of Asia. The main improvement of V1901 is the 24-hour accumulation period adjustment 

to the 00 - 24 UTC of the stamped date. The other improvement in APHRODITE-2 (V1801 

and V1901) is the daily climatology used as a ratio of daily rainfall to the climatology to 

interpolate the gauge data. In contrast, monthly climatology was used for older versions. 

The long-term performance has been applied in various studies and performed well. 

However, the newer version is yet to be evaluated on a large scale though it was found to 

perform well with respect to gauge data (Ji et al. 2020) in the Brahmaputra basin. In V1801 

and V1901, the end of the day (EOD) was matched using the satellite-based precipitation 

CMORPH, and the extreme values were identified using CMOPRH and TRMM-3B42. The 

monthly areal average precipitation for the Brahmaputra basin was derived from daily data 

from 2003 to 2014 for the current study from http://aphrodite.st.hirosaki-

u.ac.jp/download/.   

b. ERA5 reanalysis data 

The ERA5 (Hersbach et al. 2020) is the 5th reanalysis product and replacement to ERA-

Interim and all previous versions of the European Centre for Medium-Range Weather and 

Forecasting (ECMWF) reanalysis. In a comparative study of ERA-Interim and Global 

Precipitation Climatology Project (GPCP) as the base data for the 1979–2018 period, 

Nogueira (2020) found that ERA5 showed lower bias as well as unbiased root-mean-

squared error and higher correlations over most of the tropics and limited regions of mid-

latitudes. However, ERA-Interim outperformed ERA5 over the Himalayas. Overall, ERA5 

has improved parameterization and resolution, leading to trade-off performances over most 

http://aphrodite.st.hirosaki-u.ac.jp/download/
http://aphrodite.st.hirosaki-u.ac.jp/download/
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regions. The monthly areal mean ERA5 precipitation (0.25-degree lat/long) data were 

downloaded from the Google Earth Engine platform from 2003 to 2014. 

c. CMORPH  

The CMORPH- Climate Data Record (CDR) satellite precipitation product was developed 

by the National Centers for Environmental Information (NCEI), NOAA using the Climate 

Prediction Center (CPC) Morphing technique (CMORPH).  The precipitation data was 

retrieved from passive microwave (PMW) from low earth orbit (LEO) satellites, and where 

PMW precipitation measurement is missing, the estimates from infrared (IR) brightness 

temperature (TBB) data from geostationary (GEO) satellites are utilized (Joyce et al. 2004). 

The precipitation data comes in three spatio-temporal resolutions: 8 km x 8 km – half-

hourly, 0.25° x 0.25° – 3-hourly, and daily from 1998 to 2020. Unlike other satellite 

precipitation estimates, CMORPH data is bias-corrected against CPC daily gauge 

precipitation measurements. The daily 0.25° spatial resolution precipitation was obtained 

from https://www.ncei.noaa.gov/data/cmorph-high-resolution-global-precipitation-

estimates/access/daily/.   

d. CHIRPS 

The Climate Hazards group Infrared Precipitation with Stations (CHIRPS) dataset was 

jointly developed by the United States Geological Survey (USGS) and the Climate Hazard 

Group (CHG) of the University of California, Santa Barbara, for environmental change 

and drought monitoring. The TRMM v7 was used to calibrate global Cold Cloud Duration 

(CCD) rainfall amounts of the CHIRPS and incorporate gauge data (Funk et al. 2015). Over 

the land within 50ºS – 50ºN latitudinal extent with a spatial resolution of 0.05º x 0.05º 

degree and temporal resolution of daily, 5-daily, and monthly, CHIRPS v2.0 is currently 

available from 1981 to the present. Daily CHIRPS v2.0 also comes at 0.25º x 0.25º 

resolution, which was evaluated against APHRODITE for the current study. The data is 

available at https://data.chc.ucsb.edu/products/CHIRPS-2.0/global_daily/netcdf/p25/.       

 

https://www.ncei.noaa.gov/data/cmorph-high-resolution-global-precipitation-estimates/access/daily/
https://www.ncei.noaa.gov/data/cmorph-high-resolution-global-precipitation-estimates/access/daily/
https://data.chc.ucsb.edu/products/CHIRPS-2.0/global_daily/netcdf/p25/
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e. SM2RAIN 

The soil moisture to rain (SM2RAIN) of the European Space Agency (ESA) climate 

change initiative (CCI) precipitation product (SM2RAIN-CCI) was derived by the 

application of the SM2RAIN algorithm (Brocca et al. 2014) to ESA CCI soil moisture 

Active and Passive products. The soil moisture-derived precipitation is available at 0.25º 

spatial resolution on a daily cumulative from 00 UTC to 23:59 UTC time from 1998 to 

2015 over the whole globe after masking out regions with highly complex   topography, 

frozen soil, the chance of snow occurrence, and tropical forests (Ciabatta et al. 2018). A 

monthly precipitation climatology was used to bias correct the product, whereas a daily 

dataset of Global Precipitation Climatology Centre Full-Data (GPCC-FDD) was applied to 

calibrate the SM2RAIN-CCI dataset. Hereafter, SM2RAIN-CCI is referred to as 

SM2RAIN for brevity. The precipitation data were obtained from 

https://zenodo.org/record/1305021#.YXOO5lVBzIU.     

f. TRMM 

The Tropical Rainfall Measuring Mission 3B42 version 7 algorithm (TRMM 3B42 v7)  

Multi-Satellite Precipitation Analysis (TMPA) was developed by the National Aerospace 

and Space Administration (NASA) and the Japanese Aerospace Exploration Agency 

(JAXA) to detect precipitation in the tropical and subtropical regions (50ºS – 50ºN latitude) 

with quasi-global coverage (Huffman et al. 2007, 2010). It is derived from the blend of 

gauge and microwave-IR precipitation estimates from several independent satellites. The 

spatial resolution of the product is 0.25º x 0.25º with temporal resolutions of 3 hours, daily 

and monthly, from 1998 to 2019. The daily and monthly TRMM 3B42 v7 are upscaled 

from 3-hourly precipitation data. The diurnal rainfall data was obtained from 

https://disc.gsfc.nasa.gov/datasets?keywords=TRMM_3B42_Daily_007  to evaluate it 

against APHRODITE data. 

 

 

https://zenodo.org/record/1305021#.YXOO5lVBzIU
https://disc.gsfc.nasa.gov/datasets?keywords=TRMM_3B42_Daily_007
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g. GPM IMERG 

The final run (FR) global precipitation measurement (GPM) resulted in the program known 

as the Integrated Multi-satellitE Retrievals for GPM (IMERG). The rainfall was derived 

from several satellite passive microwave (PMW) sensors encompassing the GPM 

collection using the Goddard Profiling Algorithm of 2017(GPROF2017) (Huffman et al. 

2019). The inter-calibration of the gridded data (0.1°x0.1°; June 2000 onwards) to the 

Combined Ku Radar-Radiometer Algorithm (CORRA) of the GPM product on a 30-minute 

basis with adjustment to Global Precipitation Climatology Project (GPCP) insitu-satellite 

product was carried out to rectify identified errors over the high-latitude ocean and tropical 

land. Though the precipitation product comes in half-hourly, daily, and monthly scales, the 

latter two were derived from the former. In this study, the monthly IMERG V06 data was 

obtained by summing the daily precipitation from 

https://disc.gsfc.nasa.gov/datasets/GPM_3IMERGDF_06/summary?keywords=GPM. Li et al. 

(2021) conducted a comparative study of two products (ER=early run and FR) of IMERG 

for two decades over the whole globe. ER estimated 12% more annual rainfall than FR 

over the land and 33% greater extreme precipitation over the earth. Since the FR is gauge-

adjusted, it is used for long-term hydrometeorological studies, whereas ER is useful for 

short-term real-time studies like floods. 

3.2.2 Evapotranspiration data 

a. MOD16 ET 

Evapotranspiration forms a significant part of the water cycle that influences irrigation 

planning and crop water requirement. This study uses the MOD16 ET product, the GMAO 

(Global Meteorological Assimilation Office) climate derivative, and MODIS global 

terrestrial evapotranspiration dataset obtained via the Penman-Monteith equation per Mu 

et al. (2011). The cumulative evapotranspiration includes day and night components with 

soil heat flux calculation and improvement estimates of stomatal conductance from damp 

topsoil and plant covering surfaces. MOD16 is also one of the most widely used ET 

products. A monthly product at a spatiotemporal resolution of 0.05 degrees from the 1st 

https://disc.gsfc.nasa.gov/datasets/GPM_3IMERGDF_06/summary?keywords=GPM
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month of 2003 to the last month of 2014 was used for the study after downloading from 

http://files.ntsg.umt.edu/data/NTSG_Products/MOD16/. The dataset was spatially 

averaged over the Brahmaputra basin for further analysis.  

b. GLDAS CLSM ET 

The NASA Global Land Data Assimilation System Version 2 (GLDAS-2) comprises three 

parts: GLDAS-2.0, GLDAS-2.1, and GLDAS-2.2. GLDAS-2.0 delivers a temporally 

consistent dataset from 1948 to 2014 and is forced totally with the Princeton meteorological 

forcing input data. Combining model and observation data from 2000 to the present, 

GLDAS-2.1 is forced. The GLDAS-2.2 product suites use data assimilation (DA), but not 

by the "open-loop" (i.e., data assimilation-free) GLDAS-2.0 and GLDAS-2.1 products. 

Different GLDAS-2.2 packages use different forcing data, DA observation sources, 

variables, and schemes. This data product contains monthly 1.0-degree GLDAS-2.1 

Catchment data from the main production stream. The Land Information System (LIS) 

Version 7's Catchment-F2.5 Land Surface Model was used to simulate 3-hourly GLDAS-

2.1 data to create it. 34 land surface fields from January 2000 to the present are included in 

the data product. In NetCDF format, the GLDAS-2.1 data are archived and made available 

(Li et al. 2020; Rodell et al. 2004).  

c. GLDAS Noah ET 

The GLDAS-2.1 data products are currently accessible in two production streams, one 

processed without this forcing data (the early production stream) and the other forced with 

combined forcing data that includes GPCP version 1.3. The GLDAS-2.1 data products are 

first developed without the GPCP Version 1.3 data because it has a 3–4 month latency, and 

they are referred to as Early Products (EPs), with a 1.5-month lag. The GLDAS-2.1 data 

products are processed in the main production stream and deleted from the Early Products 

repository once the GPCP Version 1.3 data are accessible. This data package, reprocessed 

in January 2020, replaces the previous one and is for GLDAS-2.1 Noah monthly 1.0 degree 

data from the main production stream (Beaudoing and Rodell 2020; Rodell et al. 2004). 

http://files.ntsg.umt.edu/data/NTSG_Products/MOD16/
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d. TerraClimate ET 

TerraClimate is a dataset that covers the global terrestrial surfaces from 1958 to 2019 and 

provides monthly climate and climatic water balance data. These data serve as crucial 

inputs for ecological and hydrological research that call for time-varying data and high 

spatial resolution. All data have a spatial resolution of about 4 km (1/24th degree) and a 

temporal resolution of one month. The information spans the years 1958 to 2020. The 

approach creates a high-spatial-resolution dataset with a broader temporal record by 

interpolating time-varying anomalies from CRU Ts4.0/JRA55 to the WorldClim high-

spatial resolution climatology (Abatzoglou et al. 2018). 

3.2.3 River discharge 

The daily water level (5 times a day) and weekly discharge (using the velocity-area method) 

of the Brahmaputra basin at Bahadurabad station are recorded by the Hydrology Division 

belonging to the Bangladesh Water Development Board (BWDB) (Masood et al. 2015). 

The daily water level and weekly discharge were used to construct rating curves (personal 

communication) to calculate the daily discharge. The daily discharge for 2003-2014 was 

converted to monthly values by averaging the daily discharge in cumecs (m3/s).  

3.2.4 GRACE TWSC 

The monthly variations of the earth's gravity field obtained by determining the length 

between two orbiting satellites since April 1st
, 2002, have been provided by the Gravity 

Recovery and Climate Experiment (GRACE) satellites (Tapley et al. 2004). For regions of 

200,000 km2 or more, GRACE data provide unprecedented accessibility to terrestrial water 

storage changes (with a precision of 1.5 cm equivalent water height) with respect to climate 

change, global change, human water use, groundwater extraction, which is unmeasured 

and unmanaged in several parts of the world. The GRACE data may be freely accessed 

from three different sources: the Jet Propulsion Laboratory (JPL), the Center for Space 

Research (CSR) at the University of Texas, and Geoforschungs Zentrum Potsdam (GFZ). 

These three products were obtained following the spherical decomposition of GRACE 
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records. Using the average of the three products is usually recommended to reduce 

uncertainty. Another category of GRACE records is the MASCON (mass concentration) 

dataset, which comes independently from JPL and CSR (Watkins et al. 2015). The solution 

from JPL is explicit, whereas the one from CSR is first spherically decomposed. In the 

current study, the solution from JPL is used because it is independent (Pellet et al., 2020). 

In this study, a simple derivative method representing the total water storage change 

(TWSC) between two data points in terms of mass anomalies is used, which may be found 

elsewhere may be presented (Oliveira et al. 2015; Wang et al. 2014). The basin average of 

GRACE data was used for the current analysis. 

 

 

 



CHAPTER 4 

EVALUATION OF SATELLITE PRECIPITATION OF THE BRAHMAPUTRA 

RIVER BASIN 

4.1 OVERVIEW  

Despite the ubiquitous of application of satellite precipitation data in hydrological studies, 

they are not free from errors and uncertainties. Hence, the common practice is to assess 

such precipitation data against gauge or measured data, even though they are often sparse 

in a topographically complex terrain like Brahmaputra river basin. It is imperative that the 

satellite data be assessed using categorical metrics (Duan et al. 2016) and continuous 

metrics AghaKouchak and Mehran (2013). In this study the daily satellite based 

precipitation estimates were assessed against an updated version of APHRODITE, which 

is the version 2 of earlier precipitation known by the same or APHRODITE v1. 

4.2 METHODS 

4.2.1 Categorical error metrics  

The equations for all the categorical statistics (error metrics) are described in Table 4.1. 

The Probability of Detection (POD) is the ratio of hit (H) to the sum of H and miss (M). 

As the phrase suggests, the False Alarm Ratio (FAR) is the ratio of false (F) to the sum of 

F and H. The Critical Success Index (CSI) is the ratio of H to the sum of H, M, and F. More 

details are available reported by AghaKouchak and Mehran (2013).       

4.2.2 Continuous error metrics 

Table 4.1 describes the equations for continuous error metrics in detail. Though there are 

two variants of the coefficient of determination (Chicco et al. 2021; Legates and McCabe 

1999), the square of correlation coefficient (r), which is known as the coefficient of 

determination (R2), is considered for the current study. The R2 describes the degree of 

collinearity between the gauge and satellite rainfall. Also, it represents the fraction of the 

total variance in the gauge rainfall data, which can be explained by satellite precipitation 
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(Legates and McCabe,1999). The relative bias (RBIAS) estimates the mean propensity of 

satellite precipitation to be lesser or larger than the gauge precipitation. The mean error 

(ME) is the average of the summation of the difference between satellite and gauge 

precipitation. The mean absolute error (MAE) is the average summation of the absolute 

difference between satellite and gauge precipitation. Root mean square error (RMSE) is 

the square root of the mean of the square of the difference between satellite and gauge 

precipitation. The R2 and RBIAS do not possess units, whereas ME, MAE, and RMSE 

have units of the variables of interest. Spatial mean for both the categories is total values 

of the pixels by total pixel area. 

Table 4.1 Performance metrics for evaluation of satellite-based precipitation products 

Performance metric Equation Range Best 
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Notations: 𝐻 stands for the precipitation detected by satellite products when it has accrued; 

𝑀 stands for the missed precipitation by satellite products when it has accrued; 𝐹 stands 

for the precipitation detected by satellite products when it has  not occurred; 𝑛 stands for a 

total number of samples (total days from 1.01.2001 to 31.12.2015); 𝑂𝑖 and 𝑆𝑖 are the gauged 

and satellite precipitation measurements, respectively; 𝑂̅ and 𝑆̅ are the means of gauged 

and satellite precipitation measurements, respectively.                                                                                     

4.3 RESULTS AND DISCUSSION 

4.3.1 Metrics of daily precipitation of the basin 

This section discusses the overall time series of daily rainfall (2001-2015) for the entire 

Brahmaputra River basin, including its upper, middle, and lower parts. Fig.4.1 displays the 

spatial extent of the 15-year mean precipitation over the basin, obtained from five satellite-

based precipitation data (CHIRPS, CMORPH, IMERG, SM2RAIN and TRMM) and a 

gauged based APHRODITE data. At the same time, Table 4.2 presents the areal average of 

different metrics for all the products. 

On visual inspection, the spatial mean precipitation of CMORPH is like that of 

APHRODITE, resulting in the basin average of spatial mean precipitation being 2.51 and 

2.9 mm/day for both products, respectively. This similarity is because CMORPH products 

were derived using daily gauge precipitation for bias correction, whereas other 

precipitation products were bias corrected using monthly gauge precipitation data. TRMM 
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has the highest basin average of spatial mean precipitation at 3.98 mm/day, followed by 

IMERG (3.79 mm/day) and CHIRPS (3.38 mm/day). Meanwhile, SM2RAIN shows the 

lowest basin average of spatial mean precipitation at 1.5 mm/day. 

 

Fig. 4.1 Map of mean daily (2001-2015) of gauge and satellite precipitation products 

One drawback of SM2RAIN is that it cannot capture precipitation from snow-

exposed regions. It is unable to capture precipitation from snow-exposed regions, has 

frozen soil, are rainforest-dominated, and are located at high elevations. The mean 

precipitation at higher elevations is lower due to snowpacks and the sparse density of rain 

gauges. In contrast, the floodplain region receives much Indian monsoon rain. The basin’s 

southern part, which mainly falls within India's northeast, also shows less rainfall for the 

gauge-based APHRODITE product than for the gauge-corrected satellite products such as 

CHIRPS, IMERG, and TRMM. This is partly due to a lower density of rain gauges, 

orography, and topographical setup in this region, leading to less rainfall recorded by the 

gauge product. 
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 The scenario appears to be different in the upper part of the basin. The TRMM 

product shows the mean value, close to the gauge-based precipitation, of 3.56 mm/day 

against the mean of APHRODITE (3.65 mm/day), as shown in Table 4.3. The CHIRPS 

precipitation shows the highest value at 3.89 mm/day, while the least value was obtained 

by SM2RAIN (2.53 mm/day). The least mean value by SM2RAIN is consistent with its 

overall mean, probably because this product needs to be gauge corrected. In the middle 

portion of the basin (Table 4.4,) CHIRPS tends to be closer to APHRODITE in terms of 

the mean precipitation. Like in the upper basin, the TRMM and SM2RAIN exhibited the 

highest and least mean precipitation at 6.68 and 3.11 mm/day, respectively, as shown in 

Table 4.4. In the basin's lower section, the precipitation products' behaviour tends to differ 

from when considering the upper and middle regions of the basin. This is partly because 

the lower portion of the basin lies in the flood plains of northeast India and Bangladesh. In 

this portion of the basin, SM2RAIN tends to be closer to APHRODITE in terms of the 

mean precipitation (Table 4.5), which is partly due to this region not being covered by 

snowpacks. The sensor used to obtain precipitation by SM2RAIN product is based on soil 

moisture, unlike other sensors used to get precipitation products. The highest mean is 

shown by the IMERG product (9.38 mm/day), derived from the TRMM product (9.22 

mm/day). This might be the reason why their mean values are closer to each other for all 

sections of the basin. The least mean value was demonstrated by CMORPH (7.01 mm/day), 

but this value is close from the mean of APHRODITE. All the gauge-corrected satellite 

precipitation products namely, CHIRPS, IMERG and TRMM, except CMORP,H show 

greater mean values than APHRODITE because the first three products were bias-corrected 

using monthly gauge dat. At the same time, the CMORPH was bias-corrected using daily 

gauge data.  

Table 4. 2 Daily metrics obtained for the evaluation of satellite precipitation of the basin 

Metrics CHIRPS CMORPH IMERG SM2RAIN TRMM 

POD 0.96 1 1 1 1 

FAR 0.03 0.03 0.03 0.03 0.03 

CSI 0.94 0.97 0.97 0.97 0.97 
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R2 0.65 0.74 0.83 0.62 0.76 

Mean (mm) 3.38 2.51 3.79 1.5 3.98 

RBIAS 0.16 -0.14 0.31 -0.48 0.37 

ME (mm) 0.47 -0.39 0.89 -1.4 1.08 

MAE (mm) 1.62 1.15 1.33 1.64 1.56 

RMSE (mm) 2.87 1.85 2.41 2.87 2.85 

        Note: Daily mean of APHRODITE = 2.9 mm. 

 

Table 4.3 Daily metrics obtained for the evaluation of satellite precipitation of the upper 

section of the basin. 

Metrics CHIRPS CMORPH IMERG SM2RAIN TRMM 

POD 0.95 1 1 0.84 1 

FAR 0.03 0.04 0.04 0.02 0.04 

CSI 0.92 0.96 0.96 0.82 0.96 

R2 0.05 0.02 0.06 0.09 0 

Mean (mm) 3.89 2.95 3.85 2.53 3.56 

RBIAS 0.06 -0.19 0.05 -0.31 -0.03 

ME (mm) 0.24 -0.7 0.19 -1.12 -0.1 

MAE (mm) 2.65 2.68 2.43 2.73 3.1 

RMSE (mm) 3.96 4.03 3.79 3.96 4.35 

       Note: Daily mean of APHRODITE = 3.65 mm. 

 

The categorical metric POD in Fig.4.2 follows a similar pattern to other error 

metrics for SM2RAIN, with the southern region showing that it was able to represent actual 

precipitation. Precipitation for the other parts of the basin could not be captured by 

SM2RAIN, as confirmed with most of the continuous error metrics. Visually IMERG is 

the best-performing satellite precipitation, followed by TRMM, CMORPH and CHIRPS. 
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Fig. 4.2 Probability of detection (POD) map of satellite precipitation products against 

gauge data 

The basin average also confirms this with the highest POD value of 0.59 for 

IMERG. SM2RAIN is the least-performing satellite product with a POD value of 0.16. The 

remaining products have POD values ranging from 0.3 – 0.5. However, when only the cells 

with precipitation values were considered in calculating the areal precipitation average, a 

different perspective is obtained as shown in Table 4.2. Except for the CHIRPS 

precipitation product, all precipitation products show a POD of unity value (1.00). 

Therefore, spatial variation of POD in the form of a map is indispensable to get a clearer 

picture of the metric. When the POD of precipitation products in the upper part of the basin 

(Table 4.3)  was considered, the SM2RAIN product showed the least mean POD (0.84) 

when compared against other products that tend to show POD between 0.95 - 1.00. The 

POD of the precipitation products in the middle part of the basin (Table 4.4)  again casts a 

similar pattern to the upper portion of the basin. The SM2RAIN again exhibits the least 

POD (0.7), whereas the remaining products show the metric ranging from 0.88- 1.00. In 

contrast, the lower portion of the basin depicts POD like that of the whole basin metric, 
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with all the precipitation products showing the metric ranging from 0.91 – 1.00, as shown 

in Table 4.5. This pattern was observed because the lower section of the basin is in the 

flood plains of India and Bangladesh, where moisture content uncovered by snowpacks is 

the basis for SM2RAIN precipitation products. 

Table 4.4 Daily metrics obtained for the evaluation of satellite precipitation of the middle 

section of the basin 

Metrics CHIRPS CMORPH IMERG SM2RAIN TRMM 

POD 0.88 1 1 0.7 1 

FAR 0.06 0.09 0.09 0.07 0.09 

CSI 0.84 0.91 0.91 0.66 0.91 

R2 0.05 0 0.08 0 0.02 

Mean (mm) 5.28 4.79 6.46 3.11 6.68 

RBIAS 0.01 -0.08 0.24 -0.4 0.28 

ME (mm) 0.06 -0.43 1.24 -2.11 1.46 

MAE (mm) 4.35 4.33 4.2 5.21 5.25 

RMSE (mm) 6.18 5.7 6.08 6.64 7.09 

        Note: Daily mean of APHRODITE = 5.22 mm. 

 

Table 4.5 Daily metrics obtained for the evaluation of satellite precipitation of lower 

section of   the basin 

Metrics CHIRPS CMORPH IMERG SM2RAIN TRMM 

POD 0.91 1 1 1 1 

FAR 0.07 0.1 0.1 0.1 0.1 

CSI 0.85 0.9 0.9 0.9 0.9 

R2 0.42 0.43 0.61 0.27 0.51 

Mean (mm) 8.76 7.01 9.38 7.23 9.22 

RBIAS 0.16 -0.07 0.24 -0.04 0.22 

ME (mm) 1.22 -0.53 1.84 -0.31 1.68 
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MAE (mm) 5.04 4.22 4.22 4.3 4.9 

RMSE (mm) 7.36 5.63 6.03 6.01 6.64 

        Note: Daily mean of APHRODITE = 7.54 mm. 

 

Though FAR (Fig.4.3) seems negligible for SM2RAIN, only the southern part can 

represent precipitation occurrence to a certain extent. Hence, the least-performing product 

is SM2RAIN, with a FAR value of 0.16. The best-performing product is IMERG, with a 

FAR value of 0.06. The second-best performing product is CHIRPS, with a FAR value of 

0.07. CMORPH and TRMM have FAR values of 0.15 and 0.12, respectively. Interestingly, 

CMORPH has higher FAR values over the centre, east, northwest, and upper most part of 

the basin. TRMM has some irregular pattern of higher FAR values over the northwest part. 

CHIRPS and IMERG have almost all the pixels having low FAR values. This is probably 

CMORPH was bias corrected by daily gauge data, which tends to have more with no rainy 

day counts than monthly scale that tends to have lesser counts with no rain.  

Temporally, the FAR values range 0.02- 0.1 for all the precipitation products as 

shown in Table 4.2 – 4.5. As was the case with POD, which was high for all the 

precipitation products, the same is true for FAR magnitudes for all the precipitation 

products. The reason being the grid cells devoid of rainfall were not considered while these 

categorical metrics were calculated on areal average basis for each daily data. 

The pixel-to-pixel CSI values in Fig.4.4 are very similar to POD. However, CSI is 

different from POD with the former having an additional additive term of FALSE counts 

of precipitation. The order of performance of the satellite products is the same as that of 

POD: IMERG (0.56) > TRMM (0.46) > CMORPH (0.4) > CHIRPS (0.37) > SM2RAIN 

(0.14). On temporal basis, CSI follows the same pattern of POD with its magnitude ranging 

0.66 - 0.97 in which SM2RAIN’s performance was the least in the upper and middle 

portions of the basin (Table 4.3 and 4.4). It is to be noted that earlier also the reason for 

SM2RAIN product performing the least in these sections of the basin was highlighted. The 

reason for better performance of the product in the lower part of the basin was also 

highlighted earlier. 
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The categorical metrics alone cannot help us decipher a clear picture on the 

performance of the satellite rainfall estimates. They are more to do with the occurrence of 

rainfall, whereas continuous metrics can provide better picture regarding the magnitude of 

rainfall. Categorical metrics could be used as the first step towards assessment of any 

precipitation products. However, continuous metrics can support the categorical metrics 

for a better assessment of how close satellite rainfall estimates are able to capture the actual 

occurrence of rainfall. 

 

Fig. 4.3 False alarm ratio (FAR) map of satellite precipitation products against gauge data 



51 
 

 

Fig.4.4 Critical success index (CSI) map of satellite precipitation products against gauge 

data 

 

From Fig.4.5, CHIRPS, CMORPH, IMERG, and TRMM have the higher R2 in the 

southwest of the basin, whereas CHIRPS and IMERG have the higher R2 in the upper 

middle of the basin as compared to other products. SM2RAIN has no relationship with 

APHRODITE except in the lower part of the basin. IMERG has the highest average of 

spatial R2 value at 0.4 followed by CHIRPS and TRMM at 0.28. The R2 for the latter two 

products is consistent with the finding of Adige basin, Italy (Duan et al. 2016).   Probably 

IMERG has higher spatial resolution and derived from multi-satellite missions, whereas 

CHIRPS was bias corrected using TRMM along with gauge data. CMORPH has basin 

average of R2 value at 0.22 and SM2RAIN has the least basin average of R2 at 0.17.  
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The temporal R2 (Fig.4.6) for the all the precipitation products strike contrasting 

values as compared to what we have seen for the categorical metrics in which all the 

products show similar magnitude for a particular portion of the basin. Hence, unique R2 is 

observed for the whole and lower portion of the basin (Table 4.2 and 4.5). IMERG has 

highest linear strength (R2 = 0.83) for the basin as a whole, whereas the least linear strength 

(R2 = 0.62) was depicted by SM2RAIN. Similarly, for the lower section of the basin, the 

highest and least linear strength (0.61 and 0.27) are shown by the same products.  However, 

the linear strength measures are not true representation of the performance of non-linear 

variables like rainfall. Therefore, the R2 for the upper and middle portion of the basin (Table 

4.3 and 4.4) indicate a strong non-linear measure most likely because of snow covers and 

lesser rainfall events in these regions. 

 

Fig.4.5 Correlation of determination (R2) map of satellite precipitation products against 

gauge data 
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   Fig. 4.6 Taylor’s diagram of correlation between satellite precipitation and 

APHRODITE in different elevation-based zones of the basin 

On closer inspection of the RBIAS of all the precipitation products in Fig.4.7, 

CMORPH has very close-to-zero basin-average estimate of RBIAS at -0.06, which affirms 

that CMORPH was bias corrected with daily gauge data. TRMM with basin-average 

RBIAS of 0.5 overestimated daily precipitation over the basin, while SM2RAIN 

underestimated the daily precipitation most with basin-average RBIAS of -0.6. CHIRPS 

and IMERG with RBIAS of 0.28 and 0.36, respectively overestimated precipitation over 

the basin. 

Pixel-to-pixel analysis shows different pattern of RBIAS for CHIRPS and IMERG. 

But IMERG and TRMM look very much similar in pattern on spatial distribution of 

RBIAS. It indicates that depending on the analysis required one can choose satellite 

precipitation based on the error metrics obtained either pixel-to-pixel or basin-average 
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basis. CHIRPS underestimated precipitation over the central, northern and some parts of 

the north-eastern part of the basin, whereas the upper section of the basin it mostly 

overestimated precipitation. Some patches of central part of the basin are the flood plains 

of Assam, which receive high rainfall during monsoon season. The high rainfall of north-

eastern India, in which Brahmaputra lies, is sparsely gauged because of which gauge-based 

APHRODITE may not fully reflect true precipitation recorded (Prakash et al. 2015). 

CMORPH underestimated precipitation for most part of the basin except the northern and 

southern part of the basin.  Except most of the southern part of the basin and a small part 

of the centre, SM2RAIN underestimated precipitation over the basin. This was expected as 

SM2RAIN could not capture precipitation in certain conditions of the earth’s surface and 

land cover. The high biases induced in the satellite precipitation products could be due to 

varying orography compounded by precipitation occurrences as reported by (Prakash 

2019).  

 

Fig.4.7 Relative bias (RBIAS) map of satellite precipitation products against gauge data. 
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On a temporal basis slightly underestimating (-0.14) the magnitude of precipitation, 

CMORPH is better than other products as shown in Table 4.2. SM2RAIN underpredicts (-

0.48) precipitation the most as was expected because of it being not gauge-corrected, 

whereas TRMM (0.37) overpredicts the most. CHIRPS is the least overpredicting product 

and IMERG closely follows TRMM in overprediction of precipitation. The latter two 

products’ overprediction is apparently because of the bias correction inherent in the product 

using monthly rainfall data. This pattern was noticed even in the areal averages of all the 

precipitation products. 

Interestingly in Table 4.3, RBIAS values of CHIRPS, IMERG and TRMM products 

are almost same, in the upper section of the basin, with TRMM (-0.03) slightly on the 

underprediction side is the best performing product. The least performance is shown by 

SM2RAIN (-0.31). In middle and lower portions of the basin, TRMM and IMERG behave 

the same way as it is in the whole and upper portion of the basin (Table 4.4 and 4.5). But 

CHIRPS with an RBIAS = 0.01 is the best performing in middle section of the basin, 

whereas SM2RAIN (-0.04) is the best performing in the lower section of the basin. This 

finding is in consistent with other metrics of SM2RAIN, which performed well where there 

is non-existent of snow cover. 

From Fig.4.8, SM2RAIN has the highest ME values on the southern part of the 

basin, whereas on a basin scale it has the least ME (-1.38 mm/day). On the other hand, 

TRMM has the maximum average ME value (1.06 mm/day). IMERG and TRMM appear 

to display similar ME values over the basin though the basin average ME for IMERG is 

slightly lesser at 0.85 mm/day. Except the upper part of the basin, CHIRPS also tend to 

exhibit similar pattern to IMERG and TRMM. However, CHIRPS has ME of 0.45 mm/day. 

CMORPH with ME value of - 0.38 mm/day tends to have the error closer to zero than other 

products. 

In temporal terms, the mean ME pattern is similar to RBIAS with CMORPH (-0.39 

mm/day) being the best for the whole basin (Table 4.2); TRMM (-0.1 mm/day) being the 

best for the upper part of the basin (Table 4.3); CHIRPS (0.06 mm/day) being the best for 
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the middle basin (Table 4.4) and SM2RAIN (-0.31 mm/day) performing the best in the 

lower part of the basin (Table 4.5). It is to be noted that the pattern for all continuous metrics 

is same until now. 

 

Fig.4.8 Mean error (ME) map of satellite precipitation products against gauge data 

In Fig.4.9, the spatial MAE tends to be higher on south, southwest and southeast 

regions of the basin for all the precipitation products, whereas the remaining portion of the 

basin has lower magnitudes of MAE. The basin average MAE for all the data sets varies 

between 2 and 4 mm/day. CHIRPS (3.34 mm/day) and TRMM (3.44 mm/day) have the 

magnitudes of MAE on the higher side, while CMORPH (2.71 mm/day) and IMERG (2.8 

mm/day) have MAE on the lower side. 

The basin wide temporal mean MAE ranges 1.15-1.64 mm/day with CHIRPS being 

the best performer and SM2RAIN being the least performing product (Table 4.2). However, 



57 
 

for the upper portion of the basin, IMERG is the best (2.43 mm/day), whereas SM2RAIN 

(2.73 mm/day) is again the least performing product (Table 4.3). For the middle basin 

(Table 4.4), IMERG (4.2 mm/day) is again the best performing product, whereas TRMM 

(5.25) turns out to be the least performing product. Also, SM2RAIN with MAE= 5.21 

mm/day is very close to TRMM. The lower portion of the basin (Table 4.5) shows that 

CMORPH and IMERG (4.22 mm/day) are the best performing products, whereas CHIRPS 

turns out to be the least performing product (5.04 mm/day).    

 

Fig.4.9 Mean absolute error (MAE) map of satellite precipitation products against gauge 

data 

The RMSE in Fig.4.10 tends to follow similar pattern of MAE for precipitation 

products, with east, southeast, and southwest zones of the basin having higher RMSE. The 

remaining part has lower of the error metric. On the whole, TRMM has the highest RMSE 
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(8.09 mm/day) and SM2RAIN has the lowest R MSE (5.86 mm/day). In consistent with 

the previous error metrics, the RMSE for CHIRPS (7.21 mm/day) is closer to that of 

TRMM probably because of the bias correction of CHIRPS being done using TRMM. As 

with most of the metrics CMORPH has RMSE (5.93 mm/day), which is about the same to 

that of SM2RAIN. The RMSE for IMERG (6.36 mm/day) is consistent in pattern to other 

error metrics.  

In terms of temporal assessment of the products in terms of RMSE, CMORPH is 

the best performing product, whereas CHIRPS and SM2RAIN are the least performing 

products for the whole basin (Table 4.2). With a RMSE of 3.79 mm/day, IMERG is the best 

performing rainfall product, while TRMM shows the least performance (4.35 mm/day) for 

the upper section of the basin (Table 4.3). For the middle and lower sections of the basin, 

CMORPH is the performing product (Table 4.4 and 4.5), whereas TRMM (7.09 mm/day) 

and CHIRPS (7.36 mm/day) are the least performing products the two sections, 

respectively. 

4.3.2 Metrics of daily precipitation in winter season 

In this section, the metrics of daily precipitation in winter season are considered 

for all the zones including the whole basin. Also, only the temporal areal mean of various 

metrics is considered henceforth.  

As mentioned earlier, the categorical metrics of all the precipitation products tend 

to have similar values for the whole and the lower part of the basin because these metrics 

(Table 4.6 and AI.3) depend on whether precipitation products can capture rainfall in a 

particular day against rainfall observation unlike the continuous metrics that depend on the 

magnitude of rainfall occurrence not just occurrence. Also, for the same reason the upper 

and middle sections of the basin with snow-covered areas show similar pattern of the 

metrics (Table AI.1 and AI.2). For example, the SM2RAIN show POD for the whole and 

lower basin to be 1, whereas for the upper and middle portions of the basin 0.76 and 0.74, 

respectively. The latter two values are also amongst the least in comparison to other satellite 

products. In the light of the above discussion, the remaining discussion of the results will 
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centre around continuous metrics, which are known to vary across different satellite 

precipitation estimates. 

 

Fig.4.10 Root mean square error (RMSE) map of satellite precipitation products against 

gauge data 

 

Table 4.6 Daily metrics obtained for evaluation of satellite precipitation of winter season 

of the basin 

Metrics CHIRPS CMORPH IMERG SM2RAIN TRMM 

POD 0.94 1 1 1 1 

FAR 0.05 0.05 0.05 0.05 0.05 

CSI 0.9 0.95 0.95 0.95 0.95 

R2 0.51 0.48 0.73 0.36 0.66 

Mean (mm) 0.45 0.45 0.55 0.12 0.57 
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RBIAS -0.08 -0.1 0.11 -0.76 0.15 

ME (mm) -0.04 -0.05 0.06 -0.38 0.08 

MAE (mm) 0.39 0.4 0.3 0.42 0.35 

RMSE (mm) 0.72 0.66 0.61 0.92 0.64 

        Note: Daily mean of APHRODITE = 0.49 mm. 

 The basin wide R2 estimates show IMERG (0.73) to have the strongest linear 

relationship with the gauge-based APHRODITE and SMRAIN (0.36) to be the least. All 

the individual sections of the basin show R2 estimates to be zero or negligible as shown in 

Table AI.1 – AI.3.  

The CHIRPS and CMORPH products in the case of the basin show the mean to be 

closer to the gauge-based estimate (Table 4.6). The highest areal mean is depicted by 

TRMM (0.57 mm) and the least mean by SM2RAIN (0.12 mm). On other hand, SM2RAIN 

has the highest mean for all the individual portions of the basin as shown in Table AI.1 – 

AI.3. The nearest mean to the gauge data is shown by IMERG for the upper basin, CHIRPS 

for the middle basin and CMORPH for the lower basin. Though CMORPH was bias-

corrected using daily gauge-based rainfall, it shows the least mean for the upper basin 

probably the magnitude of error is higher in this region attributed to sparse rain gauges. 

The near true reflection of the mean of the gauge-based rainfall can be seen in the lower 

basin because the rain gauges in the flood plains are relative higher in number. In absolute 

sense the northeast region of India, which forms part of the flood plain has lesser rain 

gauges. However, it is more conducive to reflect the true rainfall than in the upper 

inhospitable snow-covered terrain. 

The basin wide RBIAS and ME depict CHIRPS to be the best performing rainfall 

estimate, whereas SM2RAIN underestimated the most (RBIAS=-0.76 mm/day, ME=-0.38 

mm/day). Individual sections of the basin portray different scenarios. IMERG is the best 

product in the upper basin, CHIRPS in the middle basin and CMORPH in the lower basin. 

All the respective magnitudes are shown in Table AI.1 – AI.3. 

On the other hand, SM2RAIN continues to be the least performing product in all 

the individual portions of the basin in terms of RBIAS and ME except CMORPH in the 
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upper portion of the basin. All these findings can be attributed to it being not gauge 

corrected. 

The MAE (0.3 mm/day) and RMSE (0.61 mm/day) of IMERG of the basin exhibit 

to be least (highest performance) and that of SM2RAIN (MAE=0.42 and RMSE=0.92 

mm/day) to be the highest (least performance) as shown in Table 4.6. In contrast, 

SM2RAIN is the best performing in the upper basin in terms of the two metrics, whereas 

TRMM is the least performing as noticed in Table AI.1. In the middle basin, CHIRPS 

emerges as the best product in terms of MAE (4.51 mm/day) and RMSE (6.44 mm/day), 

whereas TRMM is the least performing product (MAE=6.07 mm/day and RMSE=7.46 

mm/day) (Table AI.2). With MAE=4.72 and RMSE=5.84 mm/day, TRMM is the least 

performing product and IMERG, which was derived from TRMM with more coverage and 

sensors happens to be the best performing product (MAE= 3.78 mm/day and RMSE =5.22 

mm/day) in the lower section of the basin (Table AI.3).         

4.3.3 Metrics of daily precipitation in summer season 

The summer season shows no different variation in categorical metrics pattern to the winter 

season as evident from Table 4.7, AI.4, AI.5 and AI.6. The least POD was noticed for 

SM2RAIN in the upper (0.81) and middle (0.59) portions of the basin, while the basin wide 

and lower portion shows unity value.     

 In the basin wide and lower basin, the IMERG depicts the highest linear strength at 

0.65 and 0.43, respectively. The least linear strength was shown by CHIRPS (0.38) in the 

basin and SM2RAIN (0.15) in the lower basin. The upper and middle portions of the basin 

show nonlinear strength to be prevalent.  

 The areal mean of CMORPH (2.33 mm/day) is the closest to the gauge product for 

the basin wide case, whereas the highest and least values are demonstrated by TRMM (3.6 

mm/day) and SM2RAIN (1.34 mm/day). The highest and closest mean was shown by 

CHIRPS in the case of upper basin. The least mean precipitation was observed for 

CMORPH. The IMERG and TRMM emerge as the products having closer mean to the 

gauge-based rainfall for the middle and lower sections of the basin, respectively. In 
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addition, the IMERG has also the highest mean for the middle basin and CHIRPS 

demonstrates to have the highest mean for the lower basin. On the other hand, the soil 

moisture-based precipitation (SM2RAIN) depicts the least areal mean both for the middle 

and lower portions of the basin. 

 The optimal continuous metrics right from RBIAS down to RMSE is demonstrated 

by CMORPH for the whole basin (Table 4.7). When it comes to the highest values for 

RBIAS and ME, they were demonstrated by TRMM, whereas the highest MAE and RMSE 

values are demonstrated by CHIRPS. In the upper section, the optimal RBIAS and ME are 

demonstrated by CHIRPS (RBIAS = -0.19 mm/day, ME= -0.71) though the most 

underpredicting product is CMORPH (-0.54 mm/day) as shown in Table AI.4. The IMERG 

is represents the most optimal ME, MAE and RMSE values and the highest negative error 

by CMORPH, highest MAE and RMSE by TRMM.  

 In the middle portion of the basin, the optimal areal mean, RBIAS, ME and MAE 

are depicted by IMERG product. The least optimal representation of the above metrics and 

RMSE are demonstrated by SM2RAIN data. The optimal RMSE is, however, represented 

by CMORPH (5.34 mm/day).  

 The optimal metrics of mean, RBIAS and ME are shown by TRMM, whereas the 

optimal metrics of MAE and RMSE are depicted by CMORPH (Table AI.6) for the lower 

section of the basin. The least optimal metrics as mentioned above are shown by CHIRPS 

for mean, SM2RAIN for RBIAS and ME and CMORPH for MAE and RMSE. 

Table 4.7 Daily metrics obtained for evaluation of satellite precipitation of summer 

season of the basin. 

Metrics CHIRPS CMORPH IMERG SM2RAIN TRMM 

POD 0.98 1 1 1 1 

FAR 0 0 0 0 0 

CSI 0.98 1 1 1 1 

R2 0.38 0.54 0.65 0.46 0.51 
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Mean (mm) 3.01 2.33 3.3 1.34 3.6 

RBIAS 0.13 -0.12 0.24 -0.49 0.35 

ME (mm) 0.35 -0.32 0.64 -1.31 0.94 

MAE (mm) 2.06 1.25 1.34 1.56 1.66 

RMSE (mm) 3.36 1.83 2.14 2.44 2.8 

        Note: Daily mean of APHRODITE = 2.66 mm. 

4.3.4 Metrics of daily precipitation in monsoon season 

The basin wide, upper, middle and lower sections of the basin show all the 

categorical metrics like POD, FAR and CSI follow similar pattern as well in their 

magnitudes except for SM2RAIN in the middle section of the basin (POD and CSI =0.79). 

These findings are slightly in contrast to the findings of winter and summer seasons, 

especially for SM2RAIN product in the upper section of the basin. This might be because 

the sensor used for this product might be able to capture soil moisture given the occurrence 

of rain during this season in this part of the basin.  

 The highest temporal areal average of linear strength (R2) between the satellite 

precipitation and gauge-based rainfall is demonstrated by IMERG for the basin and all 

three different sections as shown in Table 4.8, AI.7-AI.9, whereas the least linear strength 

is depicted by SM2RAIN. The CMORPH shows the most optimal metrics right from areal 

mean to RMSE in the basin wide as well as upper basin assessment, the least optimal 

metrics being shown by SM2RAIN. In the middle section of the basin, the CMORPH 

emerges to have the most optimal mean (5.46 mm/day), RBIAS (-0.06 /day) and ME (-

0.37 mm/day), whereas for the same metrics plus MAE the SM2RAIN depicts the least 

optimal values (mean = 0.13 mm/day, RBIAS = -0.98 mm/day, ME= -5.71 mm/day and 

MAE = 5.71 mm/day).The optimal MAE and RMSE are shown by CMORPH with TRMM 

is found to show the least optimal RMSE (7.01 mm/day).  
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Table 4.8 Daily metrics obtained for evaluation of satellite precipitation of monsoon 

season of the basin 

Metrics CHIRPS CMORPH IMERG SM2RAIN TRMM 

POD 1 1 1 1 1 

FAR 0 0 0 0 0 

CSI 1 1 1 1 1 

R2 0.5 0.56 0.72 0.33 0.61 

Mean (mm) 6.97 4.98 7.84 3.14 8.13 

RBIAS 0.19 -0.15 0.33 -0.47 0.38 

ME (mm) 1.09 -0.9 1.97 -2.74 2.26 

MAE (mm) 2.68 1.96 2.44 3.06 2.84 

RMSE (mm) 3.74 2.63 3.49 4.17 4.08 

        Note: Daily mean of APHRODITE = 5.88 mm. 

 In the lower part of the basin, the optimal mean (10.54 mm/day) and RBIAS (-1.43 

mm/day) are shown by SM2RAIN, the least optimal being shown by IMERG at mean = 

15.07 mm/day and RBIAS = 3.1 mm/day. The most optimal metrics of ME (4.73 mm/day) 

and MAE (6.23 mm/day) are shown by CMORPH, whereas the least optimal metrics are 

shown by CHIRPS (ME = 5.97 mm/day, MAE = 8.04 mm/day). The optimal RMSE is 

shown by SM2RAIN and the least optimal RMSE (3.1 mm/day) is depicted by IMERG     

4.3.5 Metrics of daily precipitation in post monsoon season 

The post monsoon season shows the categorical statistics to be similar in pattern to other 

seasons in the basin wide as well as the upper basin assessments, except that CHIRPS and 

SM2RAIN show their ability to capture about 88% and 70% of areal average of POD in 

the upper part (Table 4.9 and AI.10). The CSI of SM2RAIN being 0.67 in the upper portion 

(Table AI.10). In the middle section of the basin, CMORPH, IMERG and TRMM show the 

highest POD at unity value. On the other hand, CHIRPS and SM2RAIN show POD of 0.75 

and 0.66, respectively. The FAR metric appears to be similar in magnitude for a given basin 

section and this pattern is seen across different sections of the basin as well as the basin 
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itself. As in case of POD, CSI metric variation is similar to it because CSI differs from 

POD only with an additional additive term in the denominator.   

The highest linear strength (R2=0.86) is observed for IMERG product and least 

(0.41) for the soil moisture-based precipitation (SM2RAI) in the total basin wide 

assessment. However, there is no linear strength associated with any of the product in the 

upper and middle sections of the basin. However, there is apparently some linear 

relationship that could be seen in the lower section of the basin assessment.  

The continuous metrics ranging from areal mean to RMSE for CMORPH are the 

most optimal ones in the basin wide analysis, whereas SM2RAIN shows the least optimal 

metrics. In the upper basin section analysis, the CMORPH represents the most optimal 

mean, RBIAS and Me, whereas TRMM represents the least optimal metrics right from the 

mean to RMSE. However, the optimal MAE and RMSE are represented by SM2RAIN. 

Interestingly, CHIRPS, SM2RAIN and TRMM portray the optimal mean at 5.05 mm/day 

in the middle part of the basin analysis. The least optimal mean being represented by 

CMORPH. The CHIRPS represents the most optimal metrics from RBIAS to RMSE 

including a tie representation of ME metric by SM2RAIN. The least optimal metrics are 

represented by TRMM not just for the middle section of the basin, but for the lower part of 

the basin as well. The optimal metrics of mean, RBIAS and ME are represented by 

SM2RAIN in the lower basin part analysis, while the best optimal ME and RMSE are 

represented by IMERG and CMORPH, respectively. 

Table 4.9 Daily metrics obtained for evaluation of satellite precipitation of post monsoon 

season of the basin 

Metrics CHIRPS CMORPH IMERG SM2RAIN TRMM 

POD 0.91 1 1 0.99 1 

FAR 0.08 0.09 0.09 0.09 0.09 

CSI 0.84 0.91 0.91 0.9 0.91 

R2 0.72 0.82 0.86 0.41 0.82 

Mean (mm) 0.87 0.74 0.99 0.39 1.06 
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RBIAS 0.14 -0.02 0.31 -0.48 0.4 

ME (mm) 0.11 -0.02 0.23 -0.36 0.3 

MAE (mm) 0.57 0.47 0.5 0.62 0.55 

RMSE (mm) 1.61 0.91 1.44 1.8 1.44 

        Note: Daily mean of APHRODITE = 0.76 mm. 

4.3.6 Uncertainty analysis of precipitation across the basin 

In this subsection, we discuss how areal mean daily precipitation varies across 

different precipitation products, basins, and sections of basins. We also discuss the variation 

of precipitation for different seasons. 

Violin plots are a useful tool for visualising the distribution (kernel density) of 

continuous data, especially when the data are not normally distributed. Violin plots provide 

more information than boxplots, which only provide summary statistics. The width of the 

violin plot at any given point is proportional to the density of data points at that value. 

Thicker sections of the violin plot indicate higher density, while thinner sections indicate 

lower density.  In Fig.4.11(a), CHIRPS has the highest precipitation, whereas SM2RAIN 

has the least. However, APHRODITE and CMORPH have similar distributions, which is 

attributed to the latter being bias corrected using daily precipitation as opposed to using 

monthly precipitation for bias correction of IMERG and TRMM. This pattern of variation 

was also evident when continuous metrics were discussed. Additionally, CHIRPS, IMERG, 

and TRMM are the only products with maximum values exceeding 40 mm/day. Excluding 

the ungauged-corrected SM2RAIN, all the remaining precipitation products have similar 

distribution patterns. Furthermore, all the products exhibit bimodal distributions. What 

does it mean is there are two dominant frequencies of precipitation. One distribution is 

between zero and 5 mm/day and the other between 5 and 10 mm/day. The trends appear to 

be same for all the precipitation products for the middle  and lower sections Fig.4.11(c)-

(d) of the basin in comparison to upper part (Fig.4.11(b). 
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Fig.4.11 Violin plots of precipitation 

The kernel density plots in Fig.4.12 show the distribution of precipitation in the 

winter season. The basin as a whole and the lower part do not show any distribution of 

rainfall magnitude (Fig.4.12(a) and (b)) because the lower section of the basin does not 

receive rainfall during the months of January and February (winter season). However, the 

upper and middle sections of the basin show a different picture, with each product 

following the same pattern when transitioning from one section to the other. The frequency 
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of lower magnitude rainfall in the upper part is skewed towards zero, whereas the upper 

frequency is skewed towards the range 4-8 mm/day. Similarly, the frequency of the lower 

magnitude of the middle basin is similar to that of the previous section, but the higher 

magnitude hovers around 5-10 mm/day frequency. The findings convey that winter 

precipitation is prevalent in the upper and middle sections of the basin. 

The trends in rainfall distribution for the summer season (Fig.4.13) are similar when 

compared to the total time series of the basin (Fig.4.11). The magnitude of frequency of a 

given rainfall occurrence also appears to be similar. 

In Fig.4.14, the rainfall characteristics appear to be very different for the monsoon 

season compared to other seasons discussed so far. All the products captured precipitation 

on the extremes. The flood plain of the Brahmaputra basin lies in the lower section of the 

basin, which is why the rainfall distribution from the monsoon season contributes over 75% 

of the river flow. The violin plots are evident, with their width depicting only unimodal 

distribution (Fig. 4.14(d)). Therefore, while considering the whole basin, the same pattern 

is reflected in the distribution of rainfall. A slightly perceptible frequency distribution for 

the upper section is visible, while no such distribution is distinguishable in the middle 

section of the basin.  

In the post-monsoon season, the basin does not reveal any clear distribution of the 

data of the precipitation though the extremes are still evident as shown in Fig4.15(a). The 

bimodal distributions as shown by kernel density in Fig.4.15(b) for the upper part resemble 

to the distribution of rainfall in winter season for the same section of the basin. The higher 

magnitude frequency is denser than the lower magnitude frequency for this section. The 

frequency distribution flattens for the middle basin (Fig.4.15(c)) though the magnitude of 

the frequency is greater than the upper portion of the basin. It is indicative of a particular 

value of precipitation occurrence is lesser in frequency that the kernel density with broader 

distribution of data. The lower section could be likened to the middle section (Fig.4.15(d).  
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Fig.4.12 Violin plots of precipitation in winter 
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Fig.4.13 Violin plots of precipitation in summer 
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Fig.4.14 Violin plots of precipitation in monsoon 
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Fig.4.15 Violin plots of precipitation in post-monsoon 

4.5 CONCLUSIONS 

In this study, five satellite-based precipitation data were evaluated using both 

categorical and continuous statistical metrics against a recently updated gauge-based 

precipitation data on a daily basis for the whole basin as well as the different elevation-

based zones of the Brahmaputra river basin. Also, temporal assessment of the precipitation 
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products was carried out. In addition, daily data were disaggregated in terms of winter, 

summer, monsoon and post-monsoon seasons. The time period of evaluation was 2001-

2015. 

Spatial performance: 

(a) GPM IMERG is the best-performing precipitation product overall, in terms of both 

POD and R2. 

(b) SM2RAIN is the worst-performing precipitation product overall. 

(c) TRMM and CMORPH perform similarly, with TRMM slightly better in terms of 

POD and CMORPH slightly better in terms of R2. 

(d) IMERG outperforms other precipitation products in terms of RMSE in almost all 

zones. 

Temporal performance:  

(a) CMORPH is the best-performing precipitation product in terms of the number of 

optimal metrics it performs across the basin and the elevation-based zones for the 

whole time series.  

(b) IMERG is very close to CMORPH in terms of the total number of optimal metrics 

obtained for the whole-time length.  

(c) CMORPH is the best-performing precipitation product for the monsoon and post-

monsoon seasons in terms of the total number of optimal metrics obtained. 

(d) IMERG is the best-performing precipitation product for the winter season in terms 

of the number of optimal metrics it performs. 

(e) CMORPH and IMERG are the best-performing precipitation products for the 

summer season. 

Overall conclusion: 

(a) IMERG is the best-performing precipitation product overall, considering the spatial 

and temporal mean for the whole time series. 

(b) CMORPH is the best-performing precipitation product on a seasonal basis. 
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(c) SM2RAIN is the least-performing precipitation product on all counts. 

 



CHAPTER 5 

EVALUATION OF PRECIPITATION FOR RISK ASSESSMENT OF WATER 

CYCLE VARIABLES 

5.1 OVERVIEW 

No water budget variable occurs in isolation because there is an interplay between different 

variables in a river basin like the Brahmaputra. To assess the risk associated with ET, Q 

and TWSC, three different precipitation data ranging from gauge to reanalysis data were 

used. IMERG was chosen because of its overall performance and ERA5 being a model-

based precipitation product was introduced to compare its performance with IMERG and 

the gauge-based APHRODITE data.  Bivariate copula dependence measure was used to 

predict the first three variables given certain thresholds of precipitation amount.  

5.2 METHODS 

The dependence measure between random variables is often determined using Pearson's 

correlation based on the normal distribution. However, such an assumption could be 

misleading while dealing with hydrometeorological variables having a nonlinear 

relationship between such random variables. Moreover, a nonlinear relationship also 

warrants the application of non-normal distributions. In this context, copula has been 

around for nearly two decades in hydrologic sciences opening new understanding and 

insights embedded in hydrometeorological variables. The copula is attractive and 

advantageous over traditional bivariate methods. It is flexible to model two random 

variables (bivariate case) irrespective of the marginal distributions and handle linear and 

nonlinear variables. According to Sklar’s (1959) theorem, if 𝑋 and 𝑌 are the continuous 

random variables, then their joint distribution 𝐻𝑋𝑌(𝑥, 𝑦) and 𝐶: [0,1]2 → [0,1]   copula is 

connected as: 

( , ) ( , ) [ ( ), ( )] ( , )XY XY X YH x y F x y C F x F y C u v= = =
 

, ,x y R  
5.1 
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where 𝐹𝑋(𝑥) and 𝐹𝑌 (𝑦) are the cumulative distribution functions of 𝑋 and 𝑌, respectively. 

In general, Archimedean copulas carry the following expressions: 

[ 1]( , ) [ ( ) ( )],C u v u v  −= +  
, [0,1]u v  

5.2 

where ∅(•) is a generator function of the copula and ∅[−1](•) is the pseudo-inverse of ∅(•

). The flexibility and ease of construction make Archimedean copulas widely used in 

different research areas with well-established copula functions (Genest and Favre 2007; 

Nelsen 2006; Zhang and Singh 2006). The Archimedean copulas, viz., Clayton, Frank, and 

Gumbel-Hougaard copulas, were applied in this study. The details of such copulas are as 

shown in Table 5.1 

Table 5.1 Description of the most commonly used Archimedean copulas 

Copula  CDF of copula, 𝐶(𝑢, 𝑣) Function 

generator, 𝜑𝛼 

Range of 

paramete

r 

Kendall’s 

tau, 𝜏𝛼 

Clayton (𝑢−𝛼 + 𝑣−𝛼 − 1)−1/𝛼 (𝑡−𝛼 − 1)/𝛼 𝛼 ≥ −1 𝛼/(𝛼

+ 2) 

Frank 
− (

1

𝛼
) ln [1

+ 
(𝑒−𝛼𝑢 − 1)(𝑒−𝛼𝑣 − 1)

(𝑒−𝛼 − 1)
] 

− ln (
𝑒−𝛼𝑡 − 1

𝑒−𝛼 − 1
) 

𝛼 ∈  𝑅 
1 − (

4

𝛼
)

+ 4𝐷1(𝛼)

/𝛼 

Gumbel

-

Hougard 

exp (−[(− ln 𝑢)𝛼+(− ln 𝑣)𝛼]1/𝛼 (− ln 𝑡)𝛼 𝛼 ≥ 1 (𝛼

− 1)/𝛼 

Note: 𝐷1(𝛼) = ∫ (
𝑥

𝛼
)

𝛼

0
/(𝑒𝑥 − 1)𝑑𝑥 denotes the first Debye function. 

 

  The conditional distribution of a continuous variable for a value of another 

continuous variable could be obtained once the joint probability distribution function 

between the random variables is known. Then for the bivariate case, the probability 
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distribution of 𝑈 conditioned on 𝑉 ≤ 𝑣 is given as (Uttarwar et al. 2020; Zhang and Singh 

2006):                                  

( | )

( , )
( | )U V v

C u v
C C U u V v

v
 =   =

 

5.3 

 In the present study, the single-parameter copulas were used to study the two 

extrema of TWSC, ET, and streamflow, viz., non-exceedance probability (≤

5th percentile) for the lower extreme and the exceedance probability (≥ 95th percentile) 

for the upper extreme given different scenarios of precipitation (5th,  25th, 50th, 75th, and 

95th percentiles).   

The following steps were followed for the current study: 

(i) Select any two random variables between a precipitation dataset and TWSC or ET or 

streamflow. 

(ii) Determine the statistically significant dependence measure using rank based 

Spearman’s rho (like Pearson’s correlation, but calculated on ranked values) for the two 

selected variables, for example, precipitation and TWSC. It The correlation will help us 

decide whether to go ahead with dependence modelling. 

(iii) Fit the parametric theoretical distributions, viz., gamma, logistic, lognormal, and 

Weibull to precipitation, TWSC, ET, and streamflow. The best fit marginal distribution for 

each variable is obtained using the Kolmogorov–Smirnov (KS) goodness of fit test. 

(iv) Obtain copula parameter using the pseudo-maximum-log-likelihood (MLE) method 

(1000 simulations) for all the copulas.  

(iv) Obtain the best-fit copula based on Akaike Information Criterion (AIC), the lowest 

being the best.  

𝐴𝐼𝐶=−2ln𝑀𝐿𝐸+2 (𝑛𝑜.  𝑜𝑓 𝑓𝑖𝑡𝑡𝑒𝑑 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠) 5.4 

 

𝐴𝐼𝐶=𝑁ln𝑀𝑆𝐸+2 (𝑛𝑜.  𝑜𝑓 𝑓𝑖𝑡𝑡𝑒𝑑 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠) 5.5 
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𝐴𝐼𝐶 = 2 𝑁 ln(𝑅𝑀𝑆𝐸) + 2 (𝑛𝑜.  𝑜𝑓 𝑓𝑖𝑡𝑡𝑒𝑑 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠) 5.6 

 

The root mean square error (𝑅𝑀𝑆𝐸) is related to the mean square error  (𝑀𝑆𝐸)  as 

𝑅𝑀𝑆𝐸 = √𝑀𝑆𝐸. Therefore, 𝑀𝑆𝐸 may be expressed as (Chen and Guo 2019): 

𝑀𝑆𝐸 =
1

𝑛
∑(𝐶𝑛(𝑢𝑖, 𝑣𝑖) − 𝐶Ɵ𝑚

(𝑢𝑖, 𝑣𝑖))2

𝑛

𝑖=1

 5.7 

 

where 𝐶𝑛(𝑢𝑖𝑣𝑖) is the empirical copula (observed) joint probability for the ith observation 

and  𝐶Ɵ𝑚
(𝑢𝑖 , 𝑣𝑖) is the simulated copula for 𝑚 parameters in Ɵ.  

In addition, the Nash-Sutcliffe efficiency equation (NSE) was used to confirm the findings 

of AIC by expressing it in the following: 

𝑁𝑆𝐸 = 1 −  
∑ (𝐶𝑒𝑖 − 𝐶𝑓𝑖)

2𝑖=𝑛
𝑖=1

∑ (𝐶𝑒𝑖 − 𝐶𝑒
̅̅ ̅)2𝑖=𝑛

𝑖=1

 
5.8 

where 𝐶𝑒𝑖 is the empirical copula of ith observation, 𝐶𝑓𝑖 is the fitted copula of ith observation 

and 𝐶𝑒
̅̅ ̅ is the mean of the empirical copula of all the n observations. 

 (v) Derive conditional probability distribution of TWSC, ET, and streamflow given the 

explanatory variable, precipitation. 

5.3 RESULTS 

5.3.1 Identification of Marginal Distribution of Precipitation, TWSC, ET, and 

Discharge  

The best marginal distribution for APHRODITE and IMERG precipitation is gamma at 5% 

significance level and lognormal for ERA5 precipitation at 10% significance level as per 

the KS statistics shown in Table 5.2. The optimal marginal distribution for ERA5 and the 

other two precipitations could be due to differences in magnitudes; lower values of ERA5 

are higher than those of the other two precipitation products. Moreover, IMERG is gauge-

corrected satellite precipitation, which could resemble APHRODITE derived from gauge 

precipitation.  
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Table 5.2 KS statistics of different marginal distributions fitted to precipitation 

Marginal 

distribution 

APHRODITE ERA5 IMERG 

Gamma 0.1112 (0.0539*) 0.0769(0.3483) 0.1120 (0.0506*) 

Normal/Lognormal 0.1428(0.0056)  0.1021 (0.0945**) 

Lognormal 

0.1515(0.002654), 

 

Weibull 0.1128(0.0483) 0.0771(0.3453) 0.1143(0.0440) 

Note: * indicates p-value at 5% level of significance **indicates p-value at 10 % level of 

significance. Bold figures indicate optimal distribution.  

The theoretical cumulative distribution curves are visually compared with the 

empirical distribution for each precipitation in Fig. 5.1. TWSC being in anomaly form, 

could be fitted only by kernel density functions like normal and quadratic, but among them 

only normal kernel density function was fitted in this study. Hence, no KS statistics were 

calculated, as shown in Table 5.3. Logistic and lognormal distributions, respectively, best 

represented ET and discharge. The cumulative distribution function curves of TWSC, ET, 

and discharge are presented in Fig. 5.2 compared to their corresponding empirical 

distribution curves. 

 

Fig.5.1 Cumulative distribution function plots of precipitation products. 
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Fig.5.2 Cumulative distribution function plots of dependent variables 

5.3.2 Dependence Modelling of Precipitation with TWSC, ET, and Discharge 

The bivariate Archimedean copulas were constructed using the optimal marginal 

distribution for each variable. All the Archimedean copulas simulated for different pairs of 

precipitation and other water budget variables are shown in Table 5.4 - 5.6. Similar to the 

concept by Tao et al.(2020), Pearson's linear and Spearman’s rank correlations were 

obtained for each pair of variables. All the pairs are either optimally represented by Frank 

or Clayton copulas, as shown in Table 5.7. The correlations (Pearson’s and Spearman’s) 

between all precipitation products (APHRODITE, ERA5, and IMERG) and TWSC and ET 

are significant for both observed and simulated data.  

Table 5.3 KS statistics of different marginal distributions fitted to dependent variables 

Marginal 

distribution 

TWSC Evapotranspiration(ET) Discharge(Q) 

Gamma - 0.1169(0.0369) 0.0842(0.2483) 

Weibull - 0.1282(0.0165) 0.0832(0.2607) 

Logistic/Lognormal - 0.1059(0.0751**),logistic 0.1095(0.0599*) 

Normal kernel Optimal  - - 

Note: * indicates 5% level of significance  **indicates 10 % level of significance                     

Bold figures indicate optimal distribution  
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Table 5.4 Performance statistics of precipitation-TWSC pair 

APHRODITE-TWSC 

Copula Copula 

parameter, 𝛼 

AIC RMSE NSE 

Clayton 1.78 -797.16 0.061 0.95 

Frank 5.92 -825.72 0.055 0.96 

Gumbel-

Hougard 

2.05 -808.71 0.059 0.96 

ERA5-TWSC 

Clayton 1.25 -933.54 0.038 0.98 

Frank 6.39 -994.14 0.031 0.99 

Gumbel-

Hougard 

2.23 -991.25 0.031 0.99 

IMERG-TWSC 

Clayton 1.71 -792.24 0.062 0.95 

Frank 5.54 -815.66 0.057 0.96 

Gumbel-

Hougard 

1.97 -798.64 0.061 0.95 

 

Table 5.5 Performance statistics of precipitation-ET pair 

APHRODITE-ET 

Copula Copula 

parameter, 𝛼 

AIC RMSE NSE 

Clayton 2.20 -896.69 0.043 0.98 

Frank 10.09 -887.83 0.045 0.98 

Gumbel-

Hougard 

3.04 -851.67 0.051 0.97 

ERA5-ET 



82 
 

Clayton 1.74 -879.66 0.046 0.98 

Frank 9.24 -900.99 0.043 0.98 

Gumbel-

Hougard 

2.80 -869.28 0.048 0.97 

IMERG-ET 

Clayton 2.36 -892.72 0.044 0.98 

Frank 10.88 -881.32 0.046 0.98 

Gumbel-

Hougard 

3.19 -843.36 0.052 0.97 

 

Table 5.6 Performance statistics of precipitation-Q pair 

APHRODITE-Q 

Copula Copula 

parameter, 𝛼 

AIC RMSE NSE 

Clayton 0.26 -932.99 0.038 0.98 

Frank 1.84 -930.71 0.038 0.98 

Gumbel-

Hougard 

1.32 -890.93 0.044 0.97 

ERA5-Q 

Clayton 0.15 -947.51 0.036 0.98 

Frank 1.63 -956.96 0.035 0.98 

Gumbel-

Hougard 

1.29 -917.88 0.040 0.98 

IMERG-Q 

Clayton 0.29 -932.62 0.038 0.98 

Frank 1.98 -931.15 0.038 0.98 

Gumbel-

Hougard 

1.35 -887.05 0.045 0.97 
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However, the correlations of the precipitation products with discharge are 

significant only for the observed values (r=0.38-0.45, ρ=0.35-0.4). In comparison, the 

correlations for simulated precipitation-discharge pairs are lesser (r=0.09-0.22, ρ=0.19-0.6). 

The correlations for precipitation-TWSC and precipitation-ET pairs are higher than those 

of precipitation-discharge pairs because the lags between the pairs may not influence much 

on the dependence measure of the first two pairs more than the last pair. This is true when 

precipitation occurs; ET also occurs without much time lag.  The same is true with the 

occurrence of precipitation; the amount of TWSC is manifested with little elapse of time. 

The common rainfall-runoff concept demonstrates how rainfall occurring at a particular 

time in a given day or cumulative rainfall occurring in a given month may influence 

discharge at the outlet in days or months. As a result, the dependence measure expressed 

in Spearman's rank correlation and Pearson's linear correlation is found to be lesser for the 

precipitation-discharge pair than the other two pairs. 

Table 5.7 Performance measures of the optimal copula of different pairs of the water 

cycle variables 

Pair Optimal 

copula 

Copula 

parameter 

(ϴ) 

Pearson’s linear 

correlation (r) 

Spearman’s rank 

correlation(ρ) 

Observed Simulated

* 

Observed Simulated* 

APHRODITE_

TWSC 

Frank 5.9233 0.7639 0.5911 0.7658 0.7083 

ERA5_TWSC Frank 6.3882 0.7786 0.5553 0.7733 0.7511 

IMERG_TWSC Frank 5.5380 0.7437 0.6041 0.7517 0.7240 

APHRODITE_

ET 

Clayton 2.1978 0.9024 0.4989 0.8893 0.7007 

ERA5_ET Frank 9.2382 0.8895 0.6182 0.8718 0.8371 

IMERG_ET Clayton 2.3581 0.9107 0.5499 0.8956 0.7491 

APHRODITE_

Q 

Clayton 0.2606 0.4237 0.0903 0.3829 0.1863 

ERA5_Q Frank 1.6343 0.3871 0.2239 0.3514 0.5971 
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IMERG_Q Clayton 0.2888 0.4531 0.1032 0.4008 0.1905 

Note: *Correlation is calculated from simulation values of 1000 data samples.  

The scatter diagrams in Fig.5.3 and Fig.5.4 show that the simulated values of 

precipitation-TWSC and precipitation-ET pairs represent the observed values well. The 

scatter plots of APHRODITE and IMERG with TWSC look similar in pattern because both 

precipitations are connected to the gauge dataset. The scatter plots (Fig.5.5) for 

precipitation-discharge look different from the other two pairs, as evident from the linear 

and rank correlations.  

 

Fig.5.3 Scatter diagrams of different precipitation-TWSC pairs 

 

Fig.5.4 Scatter diagrams of different precipitation-ET pairs 
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5.3.3 Risk Evaluation Of Twsc Conditioned On Different Precipitation Scenarios 

The conditional distribution of TWSC under different precipitation scenarios could be 

evaluated once the joint distribution between TWSC and a given precipitation scenario is 

obtained. The risk evaluation of the occurrence of an event is associated with the 

exceedance/ non-exceedance of the TWSC for a given threshold of explanatory variable 

precipitation (Liu et al., 2018; Salvadori and De Michele, 2004). The next step is to 

evaluate the probability of occurrence of TWSC under five different precipitation scenarios 

on establishing joint distribution, as shown in Table 5.7. To achieve this, two scenarios of 

TWSC were investigated (TWSC ≤ 5th percentile and TWSC ≥ 95th percentile as shown 

in Table 5.9) for every precipitation scenario. For example, the probabilities of occurrence 

of an event (TWSC ≤5th percentile from Fig. 5.6) for different scenarios of gauge-based 

APHRODITE precipitation are 28%, 26%, 16%, 10%, and 8%, corresponding to 5th, 25th, 

50th, 75th, and 95th percentiles, respectively.  

 

Fig.5.5 Scatter diagrams of different precipitation-Q pairs 

Table 5.8 Magnitudes of precipitation corresponding to each percentile 

Precipitation Percentile 

5th 25th 50th 75th 95th 

APHRODITE 

(mm) 

2.7453 15.2911 74.5768 151.8014 205.0797 

ERA5 (mm) 24.2 58.5 144 274 361.6 
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IMERG (mm) 3.177638 17.78558 86.51642 201.9606 253.9442 

 

Table 5.9 Magnitudes of the dependent variable corresponding to each percentile 

Dependent variable Percentile 

5th 95th 

TWSC (mm) -84.1232 71.7037 

Evapotranspiration (ET) 

(mm) 

227.0304 281.7144 

Discharge(Q) (m3/s) 4751.536 42238.01 

 

Similarly, the probability of the lower value of TWSC (≤5th percentile) for the same 

precipitation scenarios of gauge-corrected satellite-based GPM-IMERG and reanalysis 

ERA5 follows a very similar pattern. 

 The conditional distribution of TWSC ≥ 95th percentile (Fig.5.6) increases with 

precipitation (for the same precipitation scenarios). For example, the conditional 

distribution of TWSC for APHRODITE precipitation scenarios is less than 1% for 5th (100 

– 99.718 = 0.28%), 25th (0.32%) and 50th (0.83%) percentiles. However, the conditional 

probabilities are about 4% and 8%, respectively, for precipitation less than equal to the 75th 

and 95th percentiles. Similar is the case for GPM-IMERG and ERA5.  
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Fig.5.6 Conditional distribution plots of TWSC given different precipitation products 

5.3.4 Risk Evaluation of ET Conditioned on Different Precipitation Scenarios 

The joint distribution of APHRODITE-ET is applied to obtain the conditional distribution 

of ET for different scenarios of APHRODITE. The conditional probabilities of ET ≤ 5th 

percentile (Table 5.9 and Fig. 5.7(a)) are 92, 48, 18, 13, and 12 %, corresponding to the 

APHRODITE precipitation values at 5th, 25th, 50th, 75th, and 95th percentiles.  
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Similarly, the conditional probabilities of ET at its lower end (≤ 5th percentile), 

given the precipitation scenarios of IMERG are almost identical to that of APHRODITE. 

However, the conditional probabilities of ET given the scenarios of ERA5 are lesser than 

that of the other two precipitation datasets up to ≤ 25th percentile (Fig. 5.7(b)). 

The conditional probability of mean ET (≥ 95th percentile) (Table 5.9 and Fig.5.7) 

for all the scenarios of precipitation lies between 0 and 5. It means that the higher events 

of precipitation have a lesser effect on the evapotranspiration process.   

5.3.5 Risk Evaluation of Q Conditioned on Different Precipitation Scenarios 

The conditional distribution of Q for different precipitation scenarios (5th to 95th 

percentiles) decreases with the increase in precipitation. The probabilities of the Q≤5th 

percentile (Table 5.9 and Fig. 5.8 (a)) are approximately 20%, 12%, 7%, 6% and 6 %, 

corresponding to APHRODITE precipitation at 5th to 95th percentiles, respectively.  

Similarly, for IMERG precipitation, the probabilities of occurrence of Q ≤5th 

percentile are approximately 22%, 13%, 8%, 6%, and 6 % (Fig. 5.8(c)) at 5th to 95th 

percentiles, respectively. Furthermore, for ERA5 precipitation, the probabilities of 

occurrence of Q≤5th percentile are approximately 10%, 9%, 7%, 6%, and 6 %, (Fig. 5.8(b)) 

at 5th to 95th percentiles, respectively.  

The conditional probabilities of the Q≥ 95th percentile (Table 5.9 and Fig.5.8) for 

different scenarios of precipitation increase with the increase in precipitation. Also, given 

the scenarios of all three precipitation products, the probability of occurrence is between 4 

and 9 %. 
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Fig. 5.7 Conditional distribution plots of ET given different precipitation products 
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Fig.5.8 Conditional distribution plots of Q given different precipitation products 

5.4 DISCUSSION 

The risk assessment of the occurrence of an event is the exceedance/ non-exceedance 

probability of the GRACE terrestrial water storage change (TWSC), evapotranspiration 

(MODIS-16 ET), and discharge (Q) for a given threshold of explanatory variable 
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precipitation derived from in-situ measurement (APHRODITE), model-based reanalysis 

(ERA5), and gauge corrected satellite-based data (GPM IMERG). The study attempted to 

probabilistically predict the dependent water budget variables, namely, TWSC, ET, and Q 

for five scenarios of precipitation derived from various sources. We proved the hypothesis 

that precipitation data ERA5 and IMERG are equally helpful as APHRODITE to predict 

the non-exceedance and exceedance probabilities of the dependent variables. 

5.4.1 Assessment of Risk of TWSC for given Precipitation Scenarios 

 The magnitude of the non-exceedance probability of TWSC (≤ 5 percentile) for different 

scenarios of ERA5 follow a very similar pattern to that of when obtained for the scenarios 

of APHRODITE. In contrast, the conditional distributions of TWSC with respect to 

IMERG lie between the other two products. It is observed that lower values of TWSC are 

more sensitive to lower precipitation values for all the precipitation products. In contrast, 

the sensitivity of TWSC reduces with an increase in precipitation. For instance, when 

precipitation is less than equal to the 95th percentile, the sensitivity of TWSC reduces by 

about a third/fourth of when precipitation is less than equal to the 5th percentile. This could 

be because smaller rainfall events have more opportunity for infiltration and get into the 

groundwater system than for larger storm events, which could flow as runoff to surface 

water bodies.  

The harmonization of low extremes precipitation and TWSC occur during 

November – January and high extremes during June – September, which is similarly 

reported by Jia et al.(2020). Though the periods of harmonization are different, the present 

study covers not only the upper part of the Brahmaputra basin but also the whole basin. 

Moreover, there was a modulation between wetness and dryness of the lower and upper 

parts of the basin (Chun et al. 2020). The dependence structure of the joint distribution of 

TWSC-precipitation can evaluate the risk to about the same degree irrespective of 

precipitation data (Bibi et al. 2019). This is helpful, particularly for Brahmaputra basin, 

which is poorly gauged due to inhospitable terrain and has varying topographic features 

and climate making it too difficult to record in-situ hydrometeorological data. 
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5.4.2 Assessment of Risk of ET for given Precipitation Scenarios 

ET is the link between water and energy budgets. Hence, it is necessary to understand its 

role in water budget and cycle components assessment. ET estimation could be useful to 

determine the water availability of the basin (Li et al. 2019).  

The non-exceedance probability of ET beyond 25th percentile of ERA5 is similar 

to that of the other two precipitation data. This behavior of lower probabilities of 

occurrence of ET may be attributed to the higher precipitation amount of ERA5 for lower 

percentiles (≤5th, 25th) because it is seen that with the increase in the precipitation, the 

probabilities of ET decrease.  

Lower precipitation events have higher chances of evaporating than higher ones. It 

is evident from the values of APHRODITE and IMERG precipitation (Fig.5.7 (a), (c)) at 

≤ 5th percentile, which is about 1/8 of ERA5, as shown in Table 5.8. It is more than 1/3 of 

ERA5 for APHRODITE and IMERG precipitation ≤ 25th percentile. It is noteworthy that 

beyond 25th percentile of precipitation, ERA5 precipitation is a little more than one time of 

the other two precipitation products.  

The exceedance probabilities of ET increase with the increase in precipitation. Such 

probabilities are negligible during the non-monsoon season because it is very much less 

likely for a small amount of rainfall to contribute to a large amount of ET.  

5.4.3 Assessment of Risk of Q for given Precipitation Scenarios 

It is to be noted that the probabilities of occurrence of Q for APHRODITE and IMERG are 

very similar in pattern to each other, probably since IMERG is gauge-corrected satellite 

precipitation leading to a closer estimate of precipitation. However, the probabilities of 

occurrence of Q given ERA5 differ for scenarios up to ≤5th, 25th compared to given 

APHRODITE and IMERG. Though the magnitude of ERA5 ≤ 5th percentile is about eight 

times (Table 5.8) that of APHRODITE and IMERG (≤5th percentile), the probability of 

occurrence of Q (≤5th percentile) given ERA5 is only about one half when compared to 

given APHRODITE and IMERG in this scenario.  
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The non-exceedance predictive capability of APHRODITE and IMERG for 

discharge is very similar as both the products are linked to in-situ measurements. Though 

APHRODITE and IMERG are better at predicting low flows, all three products equally 

perform to predict high flows. The non-exceedance probabilities of Q decrease with the 

increase in precipitation by almost three times (from 5th to 95th percentile).  

In contrast, the exceedance probabilities increase with the increase in precipitation 

by about two times. This is because higher precipitation has a greater likelihood of causing 

a flood or a high flow. It is well known that the Brahmaputra basin experiences flooding 

every year when maximum precipitation occurs during the monsoon season, leading to an 

increased flow level in the river. Hence, the copula concept in this context could be used 

for water supply management and flood control (Liu et al. 2016; Liu and Menzel 2018). 

Copula could also be helpful in determining the threshold of low flow for the ecological 

balance of the Brahmaputra River. 

The limitation of bivariate copula is that if a variable is controlled by more than one 

variable (Bibi et al. 2019), the probabilistic prediction may not represent the actual 

prediction. However, as a preliminary study, the present research could be extended to more 

than two variables. To further explore this investigation, it is recommended to use 

hierarchical/ vine copulas to model the dependence structure of more than two variables. 

Also, the interaction between ET-Q, ET - TWSC, and TWSC-Q pairs could be explored. 

In addition to these combinations, TWSC was not subdivided into different components 

like snow water equivalent storage (SWE), groundwater storage (GWS) and soil moisture 

storage (SMS). Future studies could look into the probabilistic prediction of the sub-

components of TWSC for the same scenarios of a given precipitation used in this study by 

extending the work of Shamsudduha and Taylor  (2020). Probabilistic predictions could 

also be carried out on a seasonal basis (Bibi et al. 2019). 

5.5 CONCLUSIONS 

Precipitation is known to be the major component of the terrestrial water cycle. 

Precipitation data obtained from gauge records is plagued by wind-induced under-catch 
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and altitude bias. It is also sparsely recorded in mountainous regions. Reanalysis data are 

derived from the model and are not gauge-corrected. Satellite-based precipitation has wide 

coverage but can under/over predict low/high precipitation depending on the climate of a 

region. For a transboundary basin like Brahmaputra, where gauge data of 

hydrometeorological variables are rarely available in the public domain, the alternative is 

to use the data sets obtained from various types, as stated above.  

This study is the first attempt to conduct a comparative analysis of APHRODITE, 

ERA5, and IMERG to probabilistically predict TWSC, ET, and Q for a large river basin, 

the Brahmaputra using the concept of dependence structure and copulas. This study 

constructed a bivariate dependence structure to predict the conditional distributions of 

TWSC, ET, and Q for different precipitation scenarios.  

(a) The optimal marginal distributions for the variables are: 

- Gamma for APHRODITE and IMERG precipitation 

- Lognormal for ERA5 precipitation and discharge 

- Normal kernel density function for TWSC 

- Logistic for ET 

(b) The optimal copula function for all three precipitation-TWSC pairs, ERA5-ET, and 

ERA5-ET is the Frank copula. 

(c) The optimal copula function for the remaining pairs is the Clayton copula. 

(d) Pearson's linear and Spearman's rank correlations for all the pairs of variables are 

significant for observed and simulated values. 

(e) The non-exceedance probability of all the dependent variables (lower percentile) 

decreases with increased precipitation, while the exceedance probability of the 

same variables (upper percentile) increases gradually with increased precipitation. 

 



CHAPTER 6 

EVALUATION OF SATELLITE PRECIPITATION ESTIMATES TO 

RECONSTRUCT MAJOR WATER BUDGET COMPONENTS 

6.1 OVERVIEW 

Precipitation is the major water budget variable, so it is essential to understand how to 

reconstruct other water budget variables like ET, Q and TWSC. Several studies have 

examined water budget error closure, including how the error is distributed among the 

variables. However, simply following the water budget equation based on mass 

conservation (in this study) can provide information on how these errors vary across 

different precipitation products. In addition to using statistical metrics, visual plots like 

rainclouds can offer insights beyond boxplots and scatter diagrams. 

6.2 METHODS 

There are several studies conducted on water budget closure. Nevertheless, only some 

studies exist on evaluating satellite precipitation to reconstruct water budget variables like 

evapotranspiration, change in storage and runoff. The monthly water budget equation 

(Oliveira et al. 2014) for the Brahmaputra basin is based on the conservation of mass 

principle, which can be expressed as: 

𝑑𝑆

𝑑𝑡
= 𝑃 − 𝐸𝑇 − 𝑄 

6.1 

where 𝑑𝑆/𝑑𝑡 is the change in storage, 𝑃 is precipitation, 𝐸𝑇 is evapotranspiration and 𝑄 is 

runoff.  

The change in storage (𝑇𝑊𝑆𝐶) derived from GRACE total water storage anomaly (𝑇𝑊𝑆𝐴) 

may be derived from the following relationship: 

𝑑𝑆

𝑑𝑡
= 𝑇𝑊𝑆𝐶(𝑡) = 𝑇𝑊𝑆𝐴𝑡+1 − 𝑇𝑊𝑆𝐴𝑡 

6.2 
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𝑇𝑊𝑆𝐶 is the difference between two consecutive monthly anomalies. Since 𝑇𝑊𝑆𝐶 is 

derived from the anomalies of  𝑇𝑊𝑆𝐴, we also express all other water budget terms in 

anomaly form in equation 6.1. Therefore, equation 6.1 may be written as (Oliveira et al. 

2014): 

𝑑𝑆

𝑑𝑡
= (

𝑃𝑡+1 − 𝑃𝑡

2
) − (

𝐸𝑇𝑡+1 − 𝐸𝑇𝑡

2
) − (

𝑄𝑡+1 − 𝑄𝑡

2
) 

6.3 

The residual 𝑑𝑆/𝑑𝑡 from equation 6.3 is compared with the 𝑇𝑊𝑆𝐶 from equation 6.2 using 

the correlation coefficient. Then, the water budget error is estimated as the difference 

between 𝐺𝑅𝐴𝐶𝐸 𝑇𝑊𝑆𝐶 and 𝑑𝑆/𝑑𝑡 as (Zhang et al. 2016): 

𝜀(𝑡) = 𝑇𝑊𝑆𝐶(𝑡) −
𝑑𝑆

𝑑𝑡
 

6.4 

The mean absolute error in mm/month for the given time frame is expressed as (Zhang et 

al. 2016): 

𝜀̅ =
1

𝑛
∑|𝜀(𝑡)|

𝑛

𝑡=1

 
6.5 

The bias (mm/month) is expressed as (Zhang et al. 2016): 

𝜀𝑏̅ =
1

𝑛
∑ 𝜀(𝑡)

𝑛

𝑡=1

 
6.6 

 

Equations 6.4 – 6.6 were applied to 𝐸𝑇 and 𝑄 as well. The error analysis for precipitation 

was not carried out because the present study was aimed at assessing the ability of different 

precipitation for how well 𝑇𝑊𝑆𝐶, 𝐸𝑇 and 𝑄 could be reconstructed and the errors thereof.    

6.3 RESULTS AND DISCUSSION  

6.3.1 Assessment of monthly water budget components 

In Fig.6.1, the reconstructed change in storage term (𝑑𝑆/𝑑𝑡) of the water budget equation 

(equation (6.1)) is compared against GRACE TWSC derived monthly time series. The time 

series plots and the corresponding scatter plot is placed on the right hand side of the figure. 
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It is to be mentioned here that the MOD16 derived 𝐸𝑇 and the in-situ runoff (𝑄) are 

subtracted from each precipitation product resulting in different residuals (𝑑𝑆/𝑑𝑡). The 

correlation between these residuals and GRACE TWSC show that the residual 

reconstructed using ERA5 precipitation has the highest linear strength (0.82). The least 

optimal correlation coefficient is shown by SMRAIN (0.08). The CMORPH (0.31) is the 

other precipitation product that shows a lesser correlation than that obtained by gauged-

based precipitation APHRODITE.  

 In addition to ERA5, the CHIRPS (0.69), TRMM (0.78) and IMERG (0.73) show 

greater correlation because these products overestimated precipitation, whereas the 

remaining products underestimated precipitation amount. The same pattern could be seen 

by using MOD16, while maintaining the same discharge and precipitation products. 

Another reason for the lesser correlation coefficient is the residuals for the APHRODITE, 

CMORPH and SM2RAIN is that these residuals lag the GRACE TWSC. So, it could 

improve marginally by considering lags for these residuals.  Similarly, the correlation 

coefficients are depicted in the first row in Table 6.1.  

An interesting picture emerges when referring Fig.6.2 in which the derived 𝐸𝑇𝑠  

were not reconstructed well as evidenced from the correlation with the MODIS16 ET 

(Fig.6.2 and Table 6.1). The reconstructed 𝐸𝑇𝑠 were obtained by subtracting GRACE 

TWSC and in-situ discharge from individual precipitation products. Though a similar 

pattern in the correlation coefficient of derived ETs and MODIS16 ET is seen as compared 

to that of the reconstructed 𝑑𝑆/𝑑𝑡 and GRACE TWSC, the linear strength appears to be 

insignificant for those derived using APHRODITE, CMORPH and SM2RAIN. However, 

there is a strong correlation for those reconstructions using ERA5 (0.68) and TRMM (0.51). 

A moderate linear strength for IMERG (0.40) and a weaker correlation for CHIRPS (0.29) 

were noticed. The results are tabulated in the second row of Table 6.1.  
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Fig.6.1 Time series of reconstructed dS/dt against GRACE TWSC 

In contrast to the reconstructions of 𝑑𝑆/𝑑𝑡 and 𝐸𝑇, the correlation coefficient of 

the reconstructed runoffs with in-situ runoff shows a different outcome. From Fig.6.3, the 

reconstructed runoff time series data are plotted against the in-situ runoff. The 

reconstructed runoff was obtained by subtracting MODIS16 ET and GRACE TWSC from 

the individual precipitation products using equation 6.2. Though IMERG (0.89) derived 

runoff is the most optimal correlation, there is hardly much deviation in terms of absolute 
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value as compared to those derived using the gauge-based APHRODITE (0.85), ERA5 

(0.83), CHIRPS (0.88) and TRMM (0.87). As expected, the non-gauge corrected 

SM2RAIN (0.40) shows the least correlation strength and the much relative better 

CMORPH (0.68). All the correlation coefficient values have been recorded in third row of 

Table 6.1.  

The mean absolute error (𝜀 ̅ ) or which is also known as water balance error was 

calculated using equation (6.5) and the corresponding bias using equation (6.6). From Table 

6.1, the mean absolute error (𝜀 ̅) of TWSC derived using TRMM precipitation, MODIS16 

ET and in-situ runoff is the most optimal one at 26.44 mm/month, amounting to 30% of 

gauge-based APHRODITE precipitation (mean rainfall at 88.48 mm/month for 2003-

2014). The least optimal being captured by SM2RAIN at 65.17 mm/month, amounting to 

74% of the gauge-based rainfall. This pattern has been clearly visible whenever the non-

gauge corrected SM2RAIN was used. However, the findings of this study are more 

reasonable than a claim by Zhang et al. (2016) that overestimated TRMM resulted in lower 

absolute bias magnitudes. It is clearly seen that the mean precipitation of SM2RAIN is the 

least in comparison to other precipitation products. So, its low magnitude is attributed to 

the higher magnitude of water balance error.  

On the other hand, the mean absolute error with the least value (optimal) is IMERG 

for ET reconstruction at 31.31 mm/day (Table 6.1), which is about 35% of the gauge-based 

APHRODITE precipitation. The SM2RAIN shows the highest mean absolute error at 57.53 

mm/day that works out to be about 65% of the gauge precipitation. The higher error is 

attributed to the lesser precipitation captured the product and the lower error due to higher 

capturing of precipitation. Similarly, in Table 6.1, the IMERG driven runoff shows the least 

absolute error at 28.6 mm/day, which amounts to about 32% of the gauge precipitation and 

the highest absolute error at 59.15 mm/day working out to be about 67% of gauge 

precipitation.  
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                Table 6.1 The evaluation of monthly precipitaton products with respect to three metrics (MOD16_0.5 ET) 

 

 

 

 

 

 

 

   

    Note: bold figures represent the best value. GRACE TWSC, MOD16_0.5, in-situ Q were used for evaluation. 

 

    

Metrics APHRODITE ERA5 CHIRPS CMORPH SM2RAIN TRMM IMERG 

𝑟𝑇𝑊𝑆𝐶 0.53 0.82 0.69 0.31 0.08 0.78 0.73 

𝑟𝐸𝑇 -0.06 0.68 0.29 -0.29 -0.68 0.51 0.40 

𝑟𝑄 0.85 0.83 0.88 0.68 0.40 0.87 0.89 

𝜀𝑇̅𝑊𝑆𝐶(mm/month) 39.75 30.25 31.18 50.75 65.17 26.44 28.65 

𝜀𝐸̅𝑇(mm/month) 36.92 40.53 30.80 46.53 57.53 31.57 31.31 

𝜀𝑄̅(mm/month) 36.95 36.58 30.89 47.80 59.15 29.13 28.60 

𝜀𝑏̅,𝑇𝑊𝑆𝐶(mm/month) -7.49 -12.44 -8.31 -13.03 -7.63 -9.67 -8.67 

𝜀𝑏̅,𝐸𝑇(mm/month) -7.62 -12.38 -8.39 -13.19 -7.88 -9.69 -8.73 

𝜀𝑏̅,𝑄(mm/month) -7.81 -12.75 -8.63 -13.35 -7.94 -9.99 -8.99 
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 The negative biases of TWSC, ET and Q indicate that the reconstructed values 

overpredicted the observed values. However, in the absence of measured TWSC and ET 

the associated uncertainties could be high enough to obscure the true reflection of those 

variables. Nevertheless, they are still able to provide insights on the dynamics of 

hydrological variables. Each precipitation driven biases for the three water budget variables 

appear to be almost same in magnitude. It will become clearer when the analysis is carried 

out on a seasonal basis in the subsequent sections.  

6.3.2 Assessment of winter water budget components 

The assessment of water budget variables for the winter season was done by considering 

these variables only for the month of January and February from 2003- 2014. From Table 

6.2, the TWSC is the only variable that could be successfully reconstructed using 

APHRODITE, ERA5, CHIRPS, TRMM and IMERG. The ERA5 product emerges as the 

product having the highest linear strength (0.88), followed by TRMM (0.78) and IMERG 

(0.74). The ETs and runoffs did not reconstruct well as revealed from the correlation 

coefficient tabulated in the second and third rows of Table 6.2.  

 The mean absolute error (𝜀 ̅ ) associated with TWSC reveals that TRMM (21.18 

mm/year) and SM2RAIN (68.23 mm/year) to be the best and least performing precipitation 

product, respectively. The errors are at staggering figures of about 144% (TRMM) and 

462% (SM2RAIN) of the winter precipitation (14.76 mm/year). The best and the least 

mean absolute error for ET are demonstrated by the TRMM and SM2RAIN at 16.15 

mm/year and 66.42 mm/year, working out to be 109% and 450% of the winter precipitation. 

Similarly, the TRMM and SM2RAIN are the best and least performing precipitation 

estimates for runoff reconstruction with the mean absolute error at 21.27 mm/year and 

67.87 mm/year, amounting to about 144% and 460% of the total gauge precipitation. It is 

clear that all the reconstruction of water budget variables shows similar magnitudes of the 

error. All the biases are negative, meaning reconstructed variables were overpredicted. 
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Fig.6.2 Time series of reconstructed ET against MOD16 ET 
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Fig.6.3 Time series of reconstructed Q against observed runoff 
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                    Table 6.2 The evaluation of winter precipitaton products with respect to three metrics (MOD16_0.5 ET)  

 

 

 

 

 

 

 

 

 

  

    Note: bold figures represent the best value. GRACE TWSC, MOD16_0.5, in-situ Q were used for evaluation. 

 

Metrics APHRODITE ERA5 CHIRPS CMORPH SM2RAIN TRMM IMERG 

𝑟𝑇𝑊𝑆𝐶 0.5 0.88 0.61 0 0.05 0.78 0.74 

𝑟𝐸𝑇 0.21 0.3 0.12 0.09 0.01 0.21 0.2 

𝑟𝑄 -0.13 -0.51 -0.08 -0.18 -0.06 -0.16 -0.25 

𝜀𝑇̅𝑊𝑆𝐶(mm/year) 41.9 21.7 27.84 53.98 68.23 21.18 27.16 

𝜀𝐸̅𝑇(mm/year) 37.32 19.59 23.84 50.08 66.42 16.15 20.93 

𝜀𝑄̅(mm/year) 41.97 22.57 27.68 54.06 67.87 21.27 27 

𝜀𝑏̅,𝑇𝑊𝑆𝐶(mm/year) -40.54 -10.34 -24.04 -53.92 -68.23 -14.41 -22.22 

𝜀𝑏̅,𝐸𝑇(mm/year) -34.21 4.58 -19.09 -48.78 -66.42 -5.23 -14.05 

𝜀𝑏̅,𝑄(mm/year) -40.17 -9.97 -23.68 -53.55 -67.87 -14.04 -21.85 
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6.3.3 Assessment of summer water budget components 

The water budget variables for the summer season were assessed considering the months 

of March through May from 2003 to 2014. The reconstruction of TWSC (dS/dt) was 

successful using all the precipitation estimates except SM2RAIN for which the linear 

strength was weak (Table 6.3). However, ERA5, CHIRPS, TRMM and IMERG show 

greater correlation than APHRODITE and CMORPH. The reason being the first four 

precipitation measures slightly overestimated precipitation, which might in fact be a better 

representation of observed rainfall because of their ability to detect precipitation over a 

large spatial extent as opposed to point measurement estimates like APHRODITE. The 

CMORPH comes with bias correction using daily gauge precipitation. As already known 

SM2RAIN was not gauge corrected. The product with the highest linear strength is the 

TRMM (0.83), followed by ERA5 and IMERG (0.81) and CHIRPS (0.79). According to 

the correlation coefficient listed in the second row of Table 6.3, the ETs did not reconstruct 

well because of uncertainties in the satellite products. Though the runoff reconstruction 

was similar in pattern to that of TWSC reconstruction, the correlation coefficient is only 

significant for ERA5, CHIRPS, TRMM and IMERG. The highest linear strength was 

demonstrated by TRMM (0.63), whereas the least linear strength was depicted by 

SM2RAIN (-0.03).     

 The best and least performing precipitation estimates, respectively, are IMERG 

(22.15 mm/year) and SM2RAIN (37.3 mm/year) as per the mean absolute error values for 

TWSC reconstruction.  The error works out to be about 27% and 46% of the average 

summer precipitation of 81.13 mm. The IMERG and ERA5 show the best and the least 

mean absolute error for ET at 31.05 mm/year and 38.78 mm/year, or 38% and 48% of the 

winter precipitation, respectively. Similarly, the IMERG and ERA5 provide the best and 

least runoff reconstruction estimates, respectively, with mean absolute errors of 30.35 

mm/year and 44.11 mm/year, or about 37% and 54% of the total gauge precipitation. The 

findings lead to the fact that SM2RAIN was able to reconstruct similar to other products 

like TRMM, ERA5 and CMORPH, may be because the soil moisture sensor was able to 

detect moisture during summer season when rainfall events are not frequent.  
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 Another factor could be the runoff contribution from rainfall also will be lesser than 

the runoff from snowmelts. The Brahmaputra River basin has over 75% of its runoff 

contribution coming from monsoon rainfall that occurs between June and September.  What 

is interesting is the bias errors are all negative values, which mean overestimation of the 

water budget variables. This is apparently clear from the biases from the reconstruction of 

the variables using ERA5 and TRMM estimates.  

6.3.4 Assessment of monsoon water budget components 

In Table 6.4, the months of June through September were considered for the 

reconstruction of TWSC, ET and runoff for the same period used in other seasons. 

Interestingly, the reconstruction of TWSC using ERA5 (0.84) and TRMM (0.77) depicts 

to have among the highest linear strength. The CHIRPS and IMERG have closer correlation 

values of 0.68 and 0.72, respectively. Then, with a much lower correlation values of 

APHRODITE (0.5) and CMORPH (0.39). The least performing precipitation estimates 

being SM2RAIN (0.01). Except ERA5 with a lesser significant correlation of 0.27, the 

reconstruction of ET did not project well when compared with MOD16 ET. However, all 

most all the precipitation data aided in reconstructing runoff with correlation ranging from 

0.35 – 0.62. This means that GRACE TWSC and MOD16 ET might have been able to 

capture storage change and evapotranspiration in proportion to what the variables captured 

in summer season. 

 With absolute errors of 32.64 mm/year (18% of 179.56 mm/year gauge 

precipitation) and 78.92 mm/year (44% of the same seasonal average), the TRMM and 

SM2RAIN are the best and least performing precipitation estimates for reconstructing 

TWSC. However, for reconstruction of ET, the CMORPH turns to be having the least error 

at 39.39 mm/year (22%) as opposed to the highest error of SMRAIN at 69.42 mm/year 

(39%). In continuation, though the SM2RAIN shows the highest error at 73.45 mm/year 

(41%), the least error is exhibited by IMERG at 32.16 mm/year (18%) for runoff 

reconstruction. It is also interesting to note that most of the precipitation estimates show 

positive biases, which mean underprediction of rainfall. As expected, the SM2RAIN 

depicts the highest positive biases indicating the under representation of high rainfall. 
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                Table 6.3 The evaluation of summer precipitaton products with respect to three metrics (MOD16_0.5 ET)  

 

 

 

 

 

 

 

 

              Note: bold figures represent the best value. GRACE TWSC, MOD16_0.5, in-situ Q were used for evaluation. 

 

 

 

 

Metrics APHRODITE ERA5 CHIRPS CMORPH SM2RAIN TRMM IMERG 

𝑟𝑇𝑊𝑆𝐶 0.69 0.81 0.79 0.52 0.28 0.83 0.81 

𝑟𝐸𝑇 -0.19 0.14 -0.04 -0.25 -0.56 0.16 -0.05 

𝑟𝑄 0.35 0.59 0.6 0.11 -0.03 0.63 0.58 

𝜀𝑇̅𝑊𝑆𝐶(mm/year) 28.34 30.56 24.08 35.3 37.03 25.07 22.15 

𝜀𝐸̅𝑇(mm/year) 33.61 38.78 31.32 36.14 35.29 32.48 31.05 

𝜀𝑄̅(mm/year) 32 44.11 34.1 42.38 35.27 36.48 30.35 

𝜀𝑏̅,𝑇𝑊𝑆𝐶(mm/year) -6.96 -22.61 -11.49 -12.08 -1.96 -16 -7.73 

𝜀𝑏̅,𝐸𝑇(mm/year) -8.45 -11.05 -4.92 -16.94 -11.02 -6.83 -2.31 

𝜀𝑏̅,𝑄(mm/year) -25.4 -41.05 -29.93 -30.53 -20.4 -34.44 -26.18 
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6.3.5 Assessment of postmonsoon water budget components 

Similar to monsoon seasonal assessment of the water balance variable reconstruction, 

the ERA5 (highest at 0.85), CHIRPS, TRMM and IMERG show a strong linear strength 

and relatively lower strength for APHRODITE and CMORPH (Table 6.5). The least 

strength being shown by SM2RAIN (0.05). Also, the first four precipitation estimates show 

relatively significant correlation for ET reconstruction. However, all the rainfall estimates 

show similar kind of correlation for runoff estimation.  

 The TRMM and SM2RAIN are respectively the most optimal and least optimal 

estimates for TWSC, ET and Q. Therefore, the errors are 23.03 mm/year (98% of 23.51 

mm/year) and 72.95 mm/year (310% of 23.51 mm/year), respectively, for TWSC 

estimation. The errors for ET estimation are 21.63 mm/year and 57.98 mm/year, 

respectively following the sequence of the least and highest errors. Similarly, 22.53 

mm/year and 58.15 mm/year, respectively, for the estimation of Q. 

 In a striking contrast to the evaluation of rainfall estimates in monsoon season, 

ERA5 turned out to be demonstrating positive bias, thereby confirming lesser rainfall 

amount being captured by ERA5. Overall, the least bias was depicted by TRMM and 

highest biases by SM2RAIN.   
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Table 6.4 The evaluation of monsoon precipitaton products with respect to three metrics (MOD16_0.5 ET) 

 

 

 

 

 

 

 

 

                Note: bold figures represent the best value. GRACE TWSC, MOD16_0.5, in-situ Q were used for evaluation. 

 

 

 

 

 

Metrics APHRODITE ERA5 CHIRPS CMORPH SM2RAIN TRMM IMERG 

𝑟𝑇𝑊𝑆𝐶 0.5 0.84 0.68 0.39 0.01 0.77 0.72 

𝑟𝐸𝑇 -0.12 0.27 -0.17 -0.14 -0.44 -0.02 -0.04 

𝑟𝑄 0.62 0.53 0.59 0.41 0.35 0.6 0.62 

𝜀𝑇̅𝑊𝑆𝐶(mm/year) 46.5 39.04 38.02 56.46 78.92 32.64 35.25 

𝜀𝐸̅𝑇(mm/year) 43.62 60.19 39.39 54.16 69.42 46.05 43.53 

𝜀𝑄̅(mm/year) 42.45 41.03 34.15 51.99 73.45 32.5 32.16 

𝜀𝑏̅,𝑇𝑊𝑆𝐶(mm/year) 31.68 -20.6 15.41 38.58 67.42 0.73 6.58 

𝜀𝑏̅,𝐸𝑇(mm/year) 19.4 -43.81 -0.92 28.79 60.67 -18.18 -9.72 

𝜀𝑏̅,𝑄(mm/year) 32.44 -19.84 16.17 39.35 68.19 1.49 7.34 
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Table 6.5 The evaluation of postmonsoon precipitaton products with respect to three metrics (MOD16_0.5 ET) 

 

 

 

 

 

 

 

 

 

 

 

 

 

                 Note: bold figures represent the best value. GRACE TWSC, MOD16_0.5, in-situ Q were used for evaluation.

Metrics APHRODITE ERA5 CHIRPS CMORPH SM2RAIN TRMM IMERG 

𝑟𝑇𝑊𝑆𝐶 0.5 0.85 0.71 0.43 0.05 0.8 0.73 

𝑟𝐸𝑇 0.12 0.5 0.32 0.01 -0.25 0.41 0.37 

𝑟𝑄 0.67 0.65 0.7 0.64 0.59 0.72 0.72 

𝜀𝑇̅𝑊𝑆𝐶(mm/year) 40.73 23.93 31.4 56.44 72.95 23.03 27.33 

𝜀𝐸̅𝑇(mm/year) 31.02 30.01 23.45 44.37 57.98 21.63 22.18 

𝜀𝑄̅(mm/year) 31.23 32.45 25.49 43.46 58.15 22.53 23.18 

𝜀𝑏̅,𝑇𝑊𝑆𝐶(mm/year) -38.22 7.23 -26.26 -55.53 -72.95 -14.06 -20.92 

𝜀𝑏̅,𝐸𝑇(mm/year) -25.07 16.88 -14.7 -41.7 -57.09 -4.22 -10.27 

𝜀𝑏̅,𝑄(mm/year) -22.31 23.15 -10.35 -39.62 -57.04 1.86 -5 
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6.3.6 Uncertainty estimation of reconstructed monthly water budget variables 

The raincloud plots provide a transparent and robust visualisation of original sample data, 

probability density and important summary statistics like median, mean and pertinent 

confidence intervals (Allen et al. 2019). The plots are useful beyond just using boxplots, 

which provide summary statistics or violin plots that provide information on the spread of 

data. Raincloud plots are not a new technique of visualisation, but a combination of the 

existing plots like boxplots, half-violin plots and spread of data. 

  In this section, the uncertainty assessment of reconstructed water budget variables 

will be discussed only for monthly scale. In Fig.6.4, the x-axis denotes the TWSC measures 

and on y-axis various TWSCs derived using equation 6.3. On visual inspection, the 

interquartile (difference between 3rd quartile and 1st quartile) range of SM2RAIN derived 

TWSC is the highest, followed by the ERA5 derived TWSC. However, the interquartile 

ranges of APHRODITE, CHIRPS, TRMM and IMERG are the least. These interquartile 

ranges are very close to the interquartile range of GRACE TWSC. These are to some extent 

consistent with the correlation coefficient and mean absolute error in Table 6.1. However, 

ERA5 stands out to be different here compared to the better performance of the indicators 

in Table 6.1. It is worth mentioning here that ERA5 is not a direct measure of rainfall, but 

model derived precipitation obtained using various sources of data as inputs including 

satellite data, gauge measurement and climate data. Therefore, even though ERA5 tends to 

perform better than some of the precipitation data for reconstructing water budget 

variables, its uncertainty analysis offered a better understanding. 

 Lesser the interquartile, better the spread of data. Therefore, GRACE TWSC and 

the TWSC derived from the best performing precipitation data have better spread of data 

that those TWSCs derived from ERA5, CMORPH and SM2RAIN. These findings can be 

complemented by looking at the shape of half-violin plots representing kernel densities of 

various TWSCs. Interestingly, TWSC derived ERA5 shows a flat density curve with no 

skewness despite the second largest interquartile range. This could be because the spread 

of data is less dense, albeit uniform.    
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Fig.6.4 Raincloud plots of GRACE TWSC and derived TWSCs 

The density curves of TWSCs derived using APHRODITE, CMORPH and SM2RAIN 

show the data skewed towards right. In other words, these findings complement the reason 

why the mean absolute errors of these TWSCs show relatively higher than those derived 

using the remaining precipitation measures as shown in Table 6.1. To some degree, IMERG 

derived TWSC also tend to be slightly positively skewed. However, its curve is bimodal 

shape that might have contributed to still have lesser error. In fact, only TWSCs derived 

from TRMM and CHIRPS did show a unimodal distribution of data and ERA5 to some 

extent.  
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From Fig.6.5, the derived ETs from APHRODITE, CHIRPS and IMERG appear to 

show similar interquartile ranges to that of MOD16 ET. These confirm from the mean 

absolute errors for ETs shown in Table 6.1. The higher interquartile ranges are 

demonstrated by ETs derived from SM2RAIN and ERA5, but the correlation coefficient 

depicted by ERA5 is the highest. Therefore, correlation coefficient is not a good measure 

for assessing performance non-linear variables. That might be the reason why ET derived 

from ERA5 shows a higher error as compared to those ETs performing better. It is known 

that MOD16 ET is a satellite-based ET data, which comes with uncertainties and ETs 

derived using all the precipitation and GRACE TWSC and in-situ runoff also do have 

different uncertainties. GRACE TWSC is also a satellite-based TWSC measure and the 

runoff measure derived from the discharge at the outlet of Brahmaputra basin dividing it 

by the area of the basin will also contribute to lots of uncertainties, especially GRACE 

TWSC. Hence, most of the density curves of derived ETs do not resemble MOD16 ET.  

In Fig.6.6, though the interquartile ranges of runoffs derived using ERA5, TRMM 

and IMERG are higher than those runoffs derived using APHRODITE, CMORPH and 

SM2RAIN, they are very close to the interquartile range of in-situ runoff. Another 

interesting finding is that though CHIRPS derived runoff shows in between interquartile 

range its correlation coefficient and error values in Table 6.1 tend to be closer to that of 

IMERG and TRMM. This is possibly the spread of data is similar to each other when 

considering the density plots of in-situ runoff and runoffs derived using ERA5, CHIRPS, 

TRMM and IMERG.  

The above findings indicate that a single metric is not recommended to decide the 

ability of precipitation data for water budget variables reconstructions. Multiple metrics 

can complement a visualisation tool like raincloud plots to make better informed decision 

in wate management.  
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Fig.6.5 Raincloud plots of MOD16 ET and derived ETs 

 

Fig.6.6 Raincloud plots of observed runoff and derived runoffs 
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6.4 CONCLUSIONS 

The reconstruction (estimation) of water budget variables like dS/dt, ET and Q using 

different precipitation data on a monthly and seasonal basis from 2003 to 2014 for the 

Brahmaputra basin. The present study is one of the few studies in the context of water 

budget analysis that used empirical water budget equation for a large river basin using 

different datasets instead of using merged precipitation so as to know the strengths and 

weaknesses of such datasets on a standalone basis. 

 

ERA5-derived TWSCs and Qs provide the highest linear correlation with gauge-based 

data. 

TRMM, IMERG, and CHIRPS also show a closer correlation with ERA5-derived TWSCs 

and Qs, to a greater extent than other precipitation datasets. 

The linear strength of derived ETs shows that the inherent uncertainties in the water budget 

variables did not reconstruct ETs well. 

On a monthly basis: 

(a) TRMM-derived TWSCs have the lowest mean absolute error (MAE) at 26.44 

mm/month, amounting to 30% of gauge-based APHRODITE precipitation. 

(b) IMERG has the lowest MAE for ET reconstruction at 31.31 mm/day, which is about 

35% of gauge-based APHRODITE precipitation. 

(c) SM2RAIN shows the highest MAE for TWSC and ET reconstruction at 57.53 

mm/day and 66.42 mm/day, respectively. 

(d) IMERG-derived runoff shows the least absolute error at 28.6 mm/day, which 

amounts to about 32% of the gauge precipitation, and the highest absolute error by 

SM2RAIN at 59.15 mm/day, about 67% of gauge precipitation. 

For the winter season: 

(a) TRMM demonstrates the best mean absolute error for ET at 16.15 mm/year, 109% 

of the winter precipitation. 

(b) SM2RAIN shows the least mean absolute error for TWSC reconstruction at 37.3 

mm/year, 46% of the average summer precipitation. 
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(c) TRMM and IMERG provide the best and least mean absolute error for runoff 

reconstruction, respectively. 

For the summer season: 

(a) IMERG and SM2RAIN are the best and least performing precipitation estimates 

for TWSC reconstruction, respectively. 

(b) IMERG and ERA5 show the best and the least mean absolute error for ET at 31.05 

mm/year and 38.78 mm/year, respectively. 

(c) IMERG and ERA5 provide the best and least runoff reconstruction estimates, 

respectively. 

For the monsoon season: 

(a) TRMM and SM2RAIN are the best and least performing precipitation estimates for 

reconstructing TWSC. 

(b) CMORPH has the least error for ET reconstruction at 39.39 mm/year, 22% of the 

monsoon precipitation. 

(c) IMERG exhibits the least error for runoff reconstruction at 32.16 mm/year, 18% of 

the total gauge precipitation. 

For the post-monsoon season: 

(a) TRMM and SM2RAIN are the most and least optimal estimates, respectively, for 

TWSC, ET, and Q. 

(b) The errors are 23.03 mm/year (98% of gauge precipitation) and 72.95 mm/year 

(310% of gauge precipitation), respectively, for TWSC estimation. 

Overall: 

TRMM, IMERG, and CHIRPS show much lesser uncertainties than other precipitation 

datasets. 



 

 

CHAPTER 7 

INNOVATIVE TREND ANALYSIS OF WATER BUDGET COMPONENTS 

7.1 OVERVIEW 

The trend analysis of water budget variables has been carried out in many studies, but 

most of them have concentrated on either precipitation or temperature. Though there has 

been surge in the applications of recently developed trend analysis method like 

innovative trend analysis (ITA), yet many findings were centred around precipitation. 

There are very few studies on the trend analysis of water budget using ITA. To fill the 

gap, all the major components of water budget were used to analyse trend analysis of 

individual months and trend transitions between months. Sub-trend was also carried out. 

7.2 METHODS 

The innovative trend analysis (ITA) (Şen 2012) has recently gained attention, as evident 

from several studies reported in the literature. However, most of them were concentrated 

on a variable or two. Therefore, to extend the works for trends of major water budget 

components (Oliveira et al., 2014; Zhang et al., 2016) the present study was attempted. It 

does not dependent on serial correlation, normality, and sample size of data. The 

following procedures were followed to carry out the ITA test (Chowdari et al., 2023):  

(i) Two equal subseries were extracted from the original rainfall time series (first and 

second halves).  

(ii) The two separate datasets were then placed in ascending order.  

(iii) In the Cartesian coordinate system, the first sub-series of data were plotted on the x-

axis and the second on the y-axis. When coordinates fall on the 45° line, there is no trend. 

Below the line, there is a downward trend, and above the line, there is an upward trend. 

Unlike conventional approaches, which can only detect monotonic trends, the ITA 

test can also discover sub-trends (Şen 2012). The sub-trends in this study were 



 

118 
 

determined using specific thresholds. Based on such threshold points, three clusters were 

consequently developed (Chowdari et al., 2023; Wang et al., 2020). On the x-axis (or y-

axis), the low cluster is defined as all values lower than the 10th percentile of the original 

time series' first (or second) half. The high cluster, in a similar manner, is for values that 

are above the 90th percentile of the first (second) half of the time series. The middle 

cluster is found between values in the first (second) half of the original data that are 

larger than or equal to the 10th percentile and less than or equal to the 90th percentile. It 

is worth to mention here that the trend in the high cluster indicates the likelihood of a 

flood event, while the trend in the low cluster indicates the likelihood of a drought 

occurrence (Chowdari et al., 2023; Öztopal and Şen 2017)  

The monthly ITA slope (𝑠) was calculated as (Şen 2017): 

𝑠 =
2(𝑦2̅̅ ̅ − 𝑦1̅̅ ̅)

𝑛
 

7.1 

where 𝑦2̅̅ ̅ is the mean of the ordered second half time series, 𝑦1̅̅ ̅ is the mean of the ordered 

first half-time series, and 𝑛 is the total number of samples in the original time series. At 

5% significance level (critical value of 𝑠𝑐𝑟𝑖 = ∓1.96 ), 𝑠 is significant if 𝑠 <  (0 − 1.96 ∗

𝜎𝑠) and 𝑠 > (0 + 1.96 ∗ 𝜎𝑠). The 𝜎𝑠 is the standard deviation of the slope, which may be 

expressed as (Şen 2017):  

𝜎𝑠 =
2√2

𝑛√𝑛
𝜎√1 − 𝑟𝑦1̅̅̅̅  𝑦2̅̅̅̅  

7.2 

where 𝜎 is the sample time series standard deviation, 𝑟𝑦1̅̅̅̅  𝑦2̅̅̅̅  is the correlation between the 

means of first and second half ordered time series. Equations 7.1 and 7.2 were applied to 

the monthly precipitation, evapotranspiration, change in storage and runoff of the 

Brahmaputra basin for innovative trend analysis. The results were compared with the 

traditional MK-test (Kendall 1938; Mann 1945). The innovative polygon trend analysis 

(IPTA) developed by Şen et al. (2019) was also used in this study to determine the trend 

volume (TV) and trend slope (TS) of the long-term mean water budget components. If 𝑋1 

and 𝑋2 are the long-term mean/ standard deviation of two consecutive months (January 

and February, for example) of the first half time series of a variable and if 𝑌1 and 𝑌2 are 
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long-term mean/ standard deviation of two consecutive months, e.g., January and 

February) of second half time series of the variable, then the trend length (𝑇𝐿)/volume 

(𝑇𝑉) is given by: 

𝑇𝐿/ 𝑇𝑉 = √(𝑋2 − 𝑋1)2 + (𝑌2 − 𝑌1)2 7.3 

And the trend slope (TS) is given by: 

𝑇𝑆 =  
(𝑌2 − 𝑌1)

(𝑋2 − 𝑋1)
 

7.4 

 

7.3 RESULTS AND DISCUSSION 

7.3.1 Innovative trend analysis of different precipitation products 

The monthly ITA and MK tests and Sen’s slopes were obtained for eight precipitation 

estimates, including the ensemble of those estimates: APHRODITE, ERA5, CHIRPS, 

CMORPH, SM2RAIN, TRMM, and IMERG. The monthly trend slopes of 

evapotranspiration (ET) (MOD16, CLSM, Noah, and, TerraClimate), runoff (Q), and 

GRACE TWSC were also evaluated. In addition, IPTA was employed to determine the 

trend length/volume (TL/TV) and trend slope (TS) for two consecutive months covering 

all the months in a year.  

From Table 7.1, 75% of the months show a significant decreasing trend, and 25% 

of the months show an insignificant increasing trend using APHRODITE precipitation 

for ITA. In contrast, the MK test indicates about 8% of the month with a significant 

decreasing trend, 25% of the months with an insignificant positive trend, and about 67% 

of the month’s insignificant negative trend.  

The ITA for ERA5 precipitation reveals about 33% of the months to be a 

significant increasing trend, 50% of the months have a significant decreasing trend, and 

about 17% have an insignificant positive trend. In contrast, the MK test reveals about 

33% of the month’s insignificant increasing trend and about 67% of the months 

insignificant decreasing trend.  

The ITA test of CHIRPS shows 17% of the months significantly increasing trend, 

about 67% of the months significantly decreasing trend, and about 8% each for both 
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insignificantly increasing and decreasing trend. On the other hand, the MK test depicts 

about 25% and 75% insignificantly increasing and decreasing trends, respectively.  

The CMORPH for ITA indicates approximately 75% of the months with a 

significant positive trend, 8% with a significant downward trend, and 17% with an 

insignificant positive trend. MK test, in comparison, finds a 33% positive, a 58% 

insignificantly negative trend, and 8% of the months positively insignificant trend. 

SM2RAIN (ITA) shows a significant positive trend of about 17% of the month, a 

significant negative trend of about 75%, and an insignificant decreasing trend of about 

8%. In contrast, the MK test shows a significant negative trend in 25% of the months, an 

insignificant positive trend of 17%, and a much greater insignificant negative trend of 

58%.  

According to the ITA for TRMM, there is a significant positive trend in 17% of 

the months, a major significant negative trend in 58% of the months, and an insignificant 

negative trend in around 25%. On the other hand, the MK test shows that about 25% of 

the months had an insignificant increasing trend, and a high 75% had an insignificant 

falling trend. 

The IMERG precipitation (ITA) shows about 17% of the month’s positive 

significant trend, about 67% significant decreasing trend, about 8% insignificant 

increasing trend, and 8% insignificant decreasing trend. In contrast, the MK test reveals 

25% of the month’s insignificant positive and 75% insignificant negative trends. 

The ensemble findings then reveal that roughly 33% of the months had a 

significant positive trend, whereas approximately 42% had a significant falling trend. 

Additionally, 17% of the months had an insignificant falling trend, while 8% had an 

insignificant ascending trend. The MK test, however, showed that 42% of the months had 

an insignificant positive trend and 58% had an insignificant descending trend.   

From Table 7.2, July shows the highest trend magnitude at 6.44 mm/year 

significant downward trend for APHRODITE using the ITA test. In contrast, October 

(6.23 mm/year) reveals the highest significant downward trend as per Sens’s slope.  
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Table 7.1 ITA and MK trend tests of precipitation products 

Variable Trend 

slope 

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 

APHRODITE ITA – * – * –* –* + – * – * + + – * –* – * 

MK – – – –  –  – + + – * – – 

ERA5 ITA –* – * – * – *  * + – * * * – * + + * 

MK – – – – + – – + + – – + 

CHIRPS ITA –* –* –* –* + – –* +* +* – * – * – * 

MK – – – – + – – + + – – – 

CMORPH ITA + +* +* +* +* +* +* +* +* –* + +* 

MK + + + + +* +* + +* +* – + + 

SM2RAIN ITA –* – * – * –* –  –* –*  + * + * –* –* –* 

MK – – – – – – – + + –* – * – * 

TRMM ITA –* –* –  – * – – * – *  +* +* –* – * – 

MK – – – – –  + – + + – – – 

IMERG ITA –* – * – – * + – * – * + * + * –* – * –* 

MK  – – – – + – – + + – – – 

Ensemble ITA – * – * – – *  *  + –*  *  * – * –  * 

MK – – – –  + + – + + – – + 

Note: * indicates significance at 5% level. 
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August shows the highest trend at 6.86 mm/year significant increasing trend for 

ERA5 precipitation (ITA test), whereas Sen’s slope shows no significant trend for any 

month. Similarly, CHIRPS detected a significantly decreasing trend (3.58 mm/year) for 

April using ITA and an insignificant trend for any month from Sen’s slope values. 

Interestingly, CMORPH captured a significant upward ITA trend of 7.91 mm/year for 

August and a significant ascending trend of 6.79 mm/year for May using Sen’s slope. The 

month of July for SM2RAIN shows a significant downward trend of 2.49 mm/year as per 

ITA, whereas Sen’s slope for November and December shows a 2.81 mm/year significant 

downward trend. With no significant trend as per Sen’s slope for TRMM, the ITA reveals 

a 5.92 mm/year significant downward trend for July. Similarly, for the same month, 

IMERG shows 6.02 mm/year significant decreasing trend (ITA) with no significant trend 

for any month using Sen’s slope. The ensemble precipitation also does not show any 

significant trend from Sen’s slope measures for any month, but the ITA test reveals a 

significant positive trend for August. Our study corroborates with the findings of 

previous research (Chowdari et al., 2023; Marak et al., 2020; Singh et al., 2021)  

7.3.2 Innovative trend analysis of ET, Q, and GRACE TWSC 

Extracting data from Table 7.3, the ITA test of MOD16 ET exhibits about 67% of the 12 

months’ significant upward trends, about 17% significant decreasing trend, and about 8% 

of each insignificant increasing and decreasing trend. However, the MK test reveals about 

17% significant increasing trends, about 58% of insignificant increasing trends, and 25% 

of insignificant decreasing trends. The CLSM ET ITA test shows around 58% of the 

month’s significant positive trend, 33% a significant negative trend, and 8% insignificant 

downward trend. The MK test, however, reveals that only 8% of the months in which 

trends are significantly increasing, 17% are significantly declining, a high of 50% are 

insignificantly increasing, and 25% are decreasing. The Noah ET ITA reveals that 

approximately 17% of the months had a significant positive trend, 57% a significant 

negative trend, and 8% each for insignificant upward and downward trends. However, the 

MK test shows that only 8% of the months have a significant uptrend, a 17% (significant) 

downtrend, up to 17% (insignificant) uptrend, and a high 58% (insignificant) downtrend.  
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Table 7.2 ITA and Sen’s slopes of precipitation products 

Variable Trend 

slope 

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 

APHRODITE ITA -0.86* -2.06* -0.87* -1.35* 1.29 -1.98* -6.44* 0.57 0.22 -4.86* -0.30* -0.13* 

Sen’s -0.52 -1.14 -1.83 -4.93 0.22 -1.11 -5.88 0.63 1.25 -6.23* -0.3 -0.24 

ERA5 ITA -1.14* -1.53* -1.64* -2.22* 5.03* 1.75 -3.11* 6.86* 3.89* -3.03* 0.58 1.5* 

Sen’s -0.64 -2 -2.39 -4.46 2 -0.48 -5.6 4.57 4.15 -4 -0.76 0.67 

CHIRPS ITA -0.61* -0.93* -0.53* -3.58* 1.16 -0.34 -3.15* 3.3* 1.35* -3.12* -0.29* -0.09* 

Sen’s -0.32 -0.35 -1.07 -4.84 1.64 -0.95 -1.93 1.26 0.77 -3.48 -0.17 -0.1 

CMORPH ITA 0.1 0.4* 2.25* 2.75* 6.73* 7.13* 1.57* 7.91* 5.01* -1.61* 0.31 0.52* 

Sen’s 0.62 1.1 1.76 2.17 6.79* 8.1* 3.38 5.76* 4.85* -1.51 0.65 0.59 

SM2RAIN ITA -0.07* -0.53* -0.52* -1.56* -0.08 -1.3* -2.49* 1.31* 1.19* -1.97* -0.21* -0.07* 

Sen’s -1.44 -1.58 -1.17 -1.71 -0.21 -0.62 -1.3 1.44 1.71 -1.99* -2.81* -2.81* 

TRMM ITA -0.66* -2.12* -0.82 -1.04* -1.01 -0.86* -5.92* 5.56* 3.38* -3.75* -0.27* -0.01 

Sen’s -0.23 -0.67 -0.82 -4.76 -1.18 1.28 -6.57 4.13 3.1 -3.8 -0.05 -0.16 

IMERG ITA -0.8* -1.5* -0.47 -1.18* 0.47 -1.61* -6.02* 3.97* 2.44* -4.08* -0.75* -0.08* 

Sen’s -0.24 -0.79 -0.09 -4.53 0.53 -1.06 -5.42 2.2 2.77 -5.09 -0.1 -0.16 

Ensemble ITA -0.58* -1.18* -0.37 -1.17* 1.94* 0.4 -3.65* 4.21* 2.5* -3.2* -0.13 0.24* 

Sen’s -0.14 -0.38 -0.76 -2.82 1.43 1.22 -3.23 2.41 2.16 -3.47 -0.05 0.12 

Note: * indicates significance at 5% level. The units of slopes are in mm/year.  
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Table 7.3 ITA and MK trend tests of ET, Q, and TWSC 

Variable Trend 

slope 

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 

MOD16 ET ITA + –* –* – +* +* +* +* +* +* +* +* 

MK + – – – + + +* + + +* + + 

GLDAS 

CLSM ET 

ITA – * +* – +* +* +* +* +* +* –* –* –* 

MK – – + + + +* + + + – –* –* 

GLDAS 

Noah ET 

ITA –* –* –* –* – +* –* –* –* + +* –* 

MK – – –* – + +* – – –* – + – 

Terra ET ITA –* –* –* –* –* +* – +* – –* –* –* 

MK –* – – – – + + + No + – – 

Ensemble 

(ET) 

ITA –* –* –* –* + +* +* +* +* –* –* –* 

MK –* –* – – + +* + + + – – –* 

Runoff (Q) ITA –* –* –* –* –* –* –* + –* –* –* –* 

MK – – – – – – – + – – – – 

GRACE 

TWSC 

ITA –* –* –* +* –* – +* –* No + –* +* 

MK – –* – + – + + – – – – + 

Note: * indicates significance at 5% level.
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According to the TerraClimate ET ITA, there were significant upward trends in 

about 17% of the months, significant downward trends in 66% of the months, and 

insignificant downward trends in 17% of the months. MK test, however, reveals that just 

8% have a significant downtrend, up to 33% have an insignificant trend, and as high as 

58% have an insignificant downtrend. With a significant uptrend of 34% of the months, 

the ensemble ET shows a staggering 58% significant downtrend. It only shows just 8% 

insignificant uptrend. The MK test for the ensemble shows a mere 8% of the months with 

significant uptrend, a higher 25% significant downtrend and a little higher 33% each for 

insignificant uptrend and downtrend.    

The ITA test of in-situ runoff shows about 92% of the months with a significant 

decreasing trend and just about 8% insignificant decreasing trend, whereas in MK test, 

about 8% show insignificant uptrend and about 92% insignificant downtrend. The ITA 

test of GRACE TWSC shows 25%, 50%, 8% and 17% of the months significant up and 

down trends and insignificant up and down trends, respectively. The MK test shows 

about 8%, 33% and 59% of the months significant down trend, insignificant up and down 

trends, respectively. 

Referring Table 7.4, MOD16 ET shows the highest significantly up trend of 0.86 

mm/year for the month of July, whereas Sen’s slope shows about the same significant 

uptrend of 0.9 mm/year for the same month. For the month of June, CLSM ET shows the 

highest significant uptrend of 1.62 and 1.93 mm/year as per ITA and Sen’s slope, 

respectively. For the months of July (ITA) and March (Sen’s slope), Noah ET reveals the 

significant downtrends are respectively 0.84 mm/year and 0.96 mm/year. For the months 

of April (ITA) and January (Sen’s slope), TerraClimate ET shows downtrends of 0.83 

mm/year and 0.31 mm/year, respectively. The ensemble ET reveals significant up trends 

of 0.84 and 0.94 mm/year, respectively for ITA and Sen’s slope.  
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While Sen’s slope reveals no significant trend in Q, the ITA test shows the 

highest significant downtrend of 1073 cumecs/year for the month of November. ITA test 

for the GRACE TWSC depicts an upward trend of 4.15 mm/year for June, whereas a 

significant decreasing trend of 2.26 mm/year was noticed for February.  

The above results are in consistent with the results found elsewhere (Chowdari et 

al. 2023; Marak et al. 2020; Singh et al. 2021).  

7.3.3 Sub-trends of precipitation estimates, ET, Q and GRACE TWSC 

Since the ITA method has the advantage of detecting the hidden trends, sub-trend 

analysis was carried out on continuous monthly data instead of the individual months for 

the sake of maintaining brevity and to better understand how ITA is different from 

traditional MK tests. Red (low), green (middle), and blue (high) represent different 

clusters, reflecting the sub-trends. Brick red symbolizes the original time series trend. 

In Fig.7.1(a), the APHRODITE shows the highest downtrend of 3.3425 

mm/month in the higher percentile cluster. This is closely followed by a downtrend in 

IMERG data (3.2626 mm/month), as shown in Fig.7.1(g). However, SM2RAIN 

(Fig.7.1(e)) shows the least downtrend at 1.3043 mm/month in the same cluster. 

CMORPH is the only data to show an increasing trend at 0.883 mm/month in this 

category in Fig.7.1(d).  

With a magnitude of 0.3487 mm/month, CMORPH Fig.7.1(d) reveals the highest 

uptrend in the medium cluster. While the highest decreasing trend in this category is 

depicted by APHRODITE (Fig.7.1(a)) at 0.1235 mm/month, and the least decreasing 

trend is seen in TRMM (0.0325 mm/month) in Fig.7.1(f).  

In the low cluster in Fig.7.1(d), CMORPH shows the highest uptrend of 0.631 

mm/month, whereas the highest downtrend of 0.0669 mm/month was seen in CHIRPS 

(Fig.7.1(c)). The least uptrend is seen in IMERG (0.0424 mm/month), while the least 

downtrend is noticed in APHRODITE data at 0.0377 mm/month (Fig.7.1(a)). 
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Fig.7.1 Subtrends of precipitation products using ITA        
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Table 7.4 ITA and Sen’s slopes of ET, Q, and TWSC 

Variable Trend 

slope 

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 

MOD16 ET ITA 0.05 -0.19* -0.18* -0.03 0.29* 0.58* 0.86* 0.32* 0.53* 0.42* 0.19* 0.09* 

Sen’s 0.08 -0.08 -0.09 -0.21 0.34 0.57 0.9* 0.17 0.59 0.5* 0.18 0.14 

GLDAS 

CLSM ET 

ITA -0.73* 0.13* -0.08 0.37* 0.62* 1.62* 1.1* 0.68* 0.21* -0.56* -1.39* -1.51* 

Sen’s -0.54 -0.24 0.08 0.85 0.63 1.93* 1.53 0.56 0.03 -0.42 -1.14* -1.18* 

GLDAS 

Noah ET 

ITA -0.25* -0.23* -0.87* -1.17* -0.02 0.65* -0.84* -0.24* -0.51* 0.01 0.22* -0.22* 

Sen’s -0.23 -0.28 -0.96* -0.74 0.19 0.58* -0.77 -0.6 -0.56* -0.07 0.16 -0.2 

Terra ET ITA -0.39* -0.44* -0.41* -0.83* -0.69* 0.51* -0.13 0.34* -0.05 -0.1* -0.17* -0.17* 

Sen’s -0.31* -0.24 -0.55 -0.5 -0.07 0.57 0.28 0.32 0 0.13 -0.13 -0.21 

Ensemble 

(ET) 

ITA -0.33* -0.18* -0.38* -0.42* 0.05 0.84* 0.25* 0.27* 0.05* -0.05* -0.29* -0.45* 

Sen’s -0.28* -0.21* -0.4 -0.21 0.23 0.94* 0.42 0.17 0.06 -0.02 -0.22 -0.33* 

Runoff (Q) ITA -445* -496* -555* -459* -387* -629* -477* 6 -717* -629* -

1073* 

-748* 

Sen’s -284 -172 -170 -190 -59 -498 -150 150 -103 -283 -709 -418 

GRACE 

TWSC 

ITA -3.29* -1.09* -1.24* 2.85* -1.97* -0.23 4.15* -2.33* 0 0.2 -0.75* 1.93* 

Sen’s -1.77 -2.26* -1.98 3.57 -2.52 0.89 4.28 -3.26 -0.53 -0.06 -0.27 0.52 

Note: * indicates significance at 5% level. The units of slopes are in mm/year except for runoff (Q) which is in m3/s/ year.  
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From Fig.7.2(b), the highest uptrend in the high cluster is depicted by CLSM ET 

(0.5505 mm/month), whereas the least uptrend is observed in TerraClimate ET (0.0205 

mm/month) as shown in Fig.7.2(d). In addition, the only downtrend is noticed for Noah 

ET (0.2208 mm/month) in Fig.7.2(c). 

In the medium cluster, the highest and lowest uptrends are 0.024 mm/year 

(Fig.7.2(a)) for MOD16 ET and 0.0048 mm/month for CLSM ET (Fig.7.2(b), 

respectively. The highest and least down trends are shown by TerraClimate ET (0.0254 

mm/month) in Fig.7.2(d) and ensemble ET (0.0055 mm/month) in Fig.7.2(e).  

With a downtrend of 0.5246 mm/month, CLSM ET shows the highest decrease, 

as shown in Fig.7.2(b) in the low cluster. And the least downtrend being led by 0.1134 

mm/month. MOD16 ET establishes the only uptrend at 0.0564 mm/month.  

 

Fig.7.2 Subtrends of ET products using ITA 

In Fig.7.3(a), the high cluster observed runoff at a decreasing trend of 339.0191 

mm/month, whereas GRACE TWSC shows a downtrend of 7.7501 mm/month. The 

medium cluster shows discharge decreasing at 65.3471 mm/month and the GRACE 

TWSC at decreasing trend of 1.3522 mm/month. In the low cluster, a rate of 176.7871 

mm/month and 8.6855 mm/month down trends were observed for observed discharge and 

GRACE TWSC. The findings are consistent with the sub-trend analysis reported 

elsewhere (Chowdari et al., 2023; Wang et al., 2020). 
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Fig.7.3 Subtrends of discharge and GRACE TWSC using ITA 

7.3.4 Innovative polygon trend analysis of different precipitation products 

The IPTA, as an extended version of the ITA method, is used to understand the 

transition behaviour of a water budget variable between months or seasons or any other 

suitable scale used in water resources management. Fig.7.4 is the representation of 

precipitation climatology (long-term mean), and Table 7.5 provides information on the 

trend length/volume (TL) and trend slope (TS) of monthly mean precipitation. The 

corresponding TL and TS for the long-term standard deviation of the rainfall estimates 

are shown in Table 7.6 along with Fig.7.5, which is the IPTA template like Fig.7.4. 

 In Fig.7.4(a), only the month of May is in trend increasing region (above 1:1 or 

45º), whereas August, September, November, and December appear to be on the no-trend 

line (1:1), and the remaining months are in trend decreasing zone. There appear to be 

trend transitions from April to May and July to August. Also, the polygon seems to be 

more than one loop. Water budget variable like precipitation is more dynamic and 

chaotic. Hence, it is expected to have more than one polygon (Şen et al. 2019). The 

maximum trend length and slope for the APHRODITE climatology are 105.5 mm and 

1.66, respectively. Similarly, all other rainfall products show similar shapes of the 

polygon. However, there could be some months of a precipitation measure like 

CMORPH in which many months of the year fall in the increasing zone of the IPTA 

(Fig.7.4(d)). February through September are in the growing region of the IPTA, whereas 

the remaining months are either on the no-trend line or in decreasing region. Since the 
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description of Fig.7.4 is self-explanatory, the explanation of one IPTA diagram is 

sufficient. Accordingly, the trend lengths (TL) of ERA5. CHIRPS, CMORPH, 

SM2RAIN, TRMM, IMERG, and ensemble precipitation are 168.4, 130.42, 92.2, 61.5, 

149.9, 145.5 and 120.45 mm, respectively. Their corresponding trend slopes are 2.36, 

3.24, 2.53, 1.72, 1.52, 1.48 and 1.69. It is also worth mentioning that the trend length 

transition occurred from September to October, except for SM2RAIN, which has the 

maximum trend length from May-June. The trend slopes occurred in April-May transition 

for all the precipitation climatology except for SM2RAIN, TRMM, and IMERG, whose 

maximum trend slopes occurred while transitioning from September – October. 

 

Fig.7.4 IPTA diagram for mean of the precipitation. 



 

132 
 

Table 7.5 IPTA of mean of precipitation products 

Variable Trend Jan-

Feb 

Feb-

Mar 

Mar-

Apr 

Apr-

May 

May-

Jun 

Jun-

Jul 

Jul-

Aug 

Aug-

Sep 

Sep-

Oct 

Oct-

Nov 

Nov-

Dec 

Dec-

Jan 

APHRODITE 

 

TL 16.3 31.5 59.8 46.8 87.8 68.7 65.3 72.6 105.5 75.8 4.7 8.0 

TS 0.50 1.39 0.93 1.66 0.72 0.55 0.32 1.04 1.53 0.58 0.72 0.41 

ERA5 

 

TL 34.0 61.3 73.2 82.0 154.1 113.5 119.6 126.1 168.4 119.1 9.0 22.8 

TS 0.91 0.98 0.93 2.36 0.83 0.69 0.45 1.22 1.43 0.77 0.35 0.28 

CHIRPS TL 9.64 29.37 96.07 43.05 127.17 48.24 60.17 78.28 130.42 91.94 2.54 8.42 

TS 0.75 1.12 0.76 3.24 0.9 0.59 0.32 1.24 1.34 0.77 0.47 0.57 

CMORPH TL 11.55 29.47 57.17 42.56 67.17 41.92 28.88 77.07 92.2 60.71 6.91 4.02 

TS 1.25 1.76 1.08 2.53 1.05 0.19 -0.44 1.39 1.94 0.76 0.78 0.34 

SM2RAIN TL 5.3 16.15 33.86 33.42 61.5 6.32 26.64 37.58 52.18 42.49 2.72 1.14 

TS 0.43 1 0.77 1.47 0.84 -0.14 0.14 1.03 1.72 0.7 0.63 0.99 

TRMM TL 19.24 44.85 80.52 75.75 126.07 68.32 84.17 92.8 149.9 100.97 7.68 6.05 

TS 0.49 1.28 0.98 1 1.01 0.5 0.17 1.22 1.52 0.74 0.74 0.32 

IMERG 

 

TL 18.1 39.4 71.0 55.3 125.0 75.0 72.0 85.2 145.5 95.7 7.3 7.7 

TS 0.71 1.25 0.92 1.29 0.87 0.59 0.16 1.17 1.48 0.74 0.40 0.40 

Ensemble  TL 16.14 35.86 67.28 53.37 106.82 59.72 63.98 81.32 120.45 83.74 5.79 8.28 

TS 0.72 1.21 0.9 1.69 0.88 0.54 0.24 1.2 1.52 0.73 0.56 0.37 
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Table 7.6 IPTA of standard deviation of precipitation products 

Variable Trend Jan-

Feb 

Feb-

Mar 

Mar-

Apr 

Apr-

May 

May-

Jun 

Jun-

Jul 

Jul-

Aug 

Aug-

Sep 

Sep-

Oct 

Oct-

Nov 

Nov-

Dec 

Dec-

Jan 

APHRODITE 

 

TL 4.17 20.09 23.73 10.51 6.64 20.24 20.08 18.95 5.71 30.57 3.62 6.95 

TS -0.21 1.51 -9.21 -3.21 -0.74 -0.69 -4.93 0.5 -2.88 0.95 1.29 0.72 

ERA5 

 

TL 8.92 31.54 29.83 16.45 29.86 40.61 32.6 33.23 18.86 25.84 8.7 17.1 

TS 2.53 1.93 -1.87 -0.75 0.16 -0.79 -1.52 0.53 1.09 0.8 0.98 0.6 

CHIRPS TL 3.08 10.01 30.82 13.3 7.35 13.95 6.49 19.43 17.82 29.1 2.12 4.54 

TS 0.04 1.62 2.34 8.7 1.26 -0.74 0.18 -3.65 1.13 1.82 0.71 0.3 

CMORPH TL 5.76 8.5 21.71 14.02 6.45 16.11 2.57 30.32 15.16 14.56 8.39 7.25 

TS -

38.79 

1.04 8.35 -0.5 -0.49 -0.59 0.57 -0.48 3.89 2.15 0.07 0.04 

SM2RAIN TL 1.13 5.53 6.15 4.76 3.23 8.46 5.55 10.07 8.24 10.17 0.56 0.31 

TS 0.68 1.16 2.21 0.12 2.71 -0.63 -0.37 0.08 -1.37 0.41 0.74 1.42 

TRMM TL 5.33 24.17 37.88 29.27 9.93 36.75 12.25 22.37 15.87 36.65 8.15 5.49 

TS 0.41 1.82 -10.09 -1.35 -2.69 -0.47 -0.11 -0.8 2.09 1.34 0.66 0.36 

IMERG 

 

TL 2.03 24.09 30.15 18.58 7.75 29.15 13.59 22.93 18.65 34.43 8.4 7.41 

TS 0.45 1.77 -6.25 -1.59 0.24 -0.58 -0.25 -1.76 2.16 1.59 0.29 0.28 

Ensemble TL 1.64 17.65 24.72 14.01 7.63 23.52 11.37 17.79 13.23 25.44 5.47 6.87 

TS 0.02 1.66 -21.99 -1.32 0.35 -0.63 -0.84 -0.35 2.35 1.24 0.53 0.42 

Note: TL=trend length, TS= trend slope; All TL are in mm and TS is unit less.   
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Fig.7.5 shows at least three loops for all the precipitation datasets except for 

CMORPH. The more the number of polygons, the more dynamic the variable is. For 

example, the standard deviation of APHRODITE in Fig.7.5(a) shows April, May, and 

June in the increasing region, whereas the remaining months are in the downtrend region. 

The increasing transitions occurred from March to April, August to September, whereas 

the decreasing transition occurred from September to October and June to July. The 

maximum trend length and trend slope are 30.57 mm and 1.51, as shown in Table 7.6.     

 

Fig.7.5 IPTA diagram for standard deviation of the precipitation 

The maximum TL for the standard deviation of ERA5, CHIRPS, CMORPH, SM2RAIN, 
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TRMM, IMERG, and ensemble precipitation (no IPTA plot for ensemble precipitation) 

are 40.61, 30.82, 30.32, 10.17, 37.88, 34.43 and 25.44 mm, respectively. And the 

maximum trend slope for the standard deviation of ERA5, CHIRPS, CMORPH, 

SM2RAIN, TRMM, IMERG, and ensemble precipitation are 2.53, 2.34, 8.35, 2.71, 2.09, 

2.16, and 1.66 respectively. 

7.3.5 Innovative polygon trend analysis of ET, Q, and GRACE TWSC 

From Fig.7.6, the polygons of the mean of ETs are not distinct for MOD16 ET, but 

CLSM ET and Noah ET tend to have more distinct polygons. For example, CLSM ET in 

Fig.7.7(b) was considered for the discussion. February to March lie on a 1:1 or no trend 

line, April to September in the increasing region. In contrast, October, November, 

December, and January lie in the decreasing region of the IPTA. September to October 

transitions from an increasing to decreasing region, while March to April transitions from 

a no trend to an increasing trend region. From Table 7.7, the maximum trend length (TL) 

of the mean of GLDAS CLSM ET is 23.63 mm, and the maximum slope is 3.81. 

Similarly, the maximum TL of the standard deviation of MOD16 ET, Noah ET, 

TerraClimate ET, and ensemble ET are 27.3, 24.86, 34.33, and 26.03 mm, whereas the 

corresponding trend slopes are 5.84, 1.75, 2.21, and 1.96.  

In Fig.7.7(d), the vertices polygons of TerraClimate ET represent its monthly 

standard deviations. March, June, April, October, November, and December are in the 

increasing trend region, whereas the remaining months are in the decreasing trend region. 

The transition increase trend occurs between September to October, May to June, and 

decreasing transition between April to May and December to January. The maximum TL 

of the standard deviation of TerraClimate ET is 5.85 mm, and the maximum TS is 4.17. 

Similarly, the maximum TL of the standard deviation of MOD16 ET, CLSM ET, Noah 

ET, and ensemble ET are 2.31, 6.66, 4.16, and 2.59 mm, respectively (Table 7.8). The 

corresponding maximum TS are 7.69, 5.32, 19.22, and 4.7, respectively (Table 7.8). 

In Fig.7.8(a), the observed discharge shows that all the months except August 

liein decreasing trend region of the IPTA diagram. The month of August lies on no trend 

line. However, the standard deviation of the same variable in Fig.7.8(c) shows a different 
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scenario: Only April, May, October, and September lie in the uptrend region. In contrast, 

the rest lie in the downtrend region. The maximum TV of the mean of Q is 17276.6 m3/s, 

and the corresponding TS is 3, as shown in Table 7.7. Its corresponding maximum TV of 

the standard deviation of Q is 6648.5 m3/s, and the maximum TS is 21.83, as shown in 

Table 7.8.  Similarly, the maximum TL of the mean of GRACE TWSC is 85.8 mm, and 

the maximum TS is 31.64 (Table 7.7). Also, the maximum TL of the standard deviation 

of GRACE TWSC is 29.06 mm, and the corresponding TS is 4.96. 

 

Fig.7.6 IPTA diagram for mean of the ET 
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Fig.7.7 IPTA diagram for standard deviation of the ET 

It is to be noted that the TL/TV tells us about the magnitude of transitioning of 

trend, whereas the magnitude of slope tells us about the intensity of occurrence of events. 

The lower the slope, the greater the intensity of the hydrological events. Our study 

corroborates previous findings on TL/TV and TS estimations (Akçay et al. 2021; Şen et 

al. 2019; Sezen 2022).  



 

138 
 

Table 7.7 IPTA of mean of ET, Q and TWSC 

Variable Tren

d 

Jan-

Feb 

Feb-

Mar 

Mar-

Apr 

Apr-

May 

May-

Jun 

Jun-Jul Jul-

Aug 

Aug-

Sep 

Sep-

Oct 

Oct-

Nov 

Nov-

Dec 

Dec-

Jan 

MOD16 

ET 

 

TL 3.5 9.6 9.8 19.7 18.6 21.8 4.0 16.7 22.3 27.3 11.7 1.6 

TS 0.52 1.02 1.13 1.15 1.14 1.12 5.84 0.90 1.04 1.08 1.08 1.19 

GLDAS 

CLSM 

ET 

TL 7.25 26.6 9.39 17.98 4.31 9.4 6.96 16.88 19.4 23.63 14.13 3.82 

TS 3.81 0.93 1.53 1.12 -0.75 0.61 0.58 1.27 1.41 1.36 1.08 -0.28 

GLDAS 

Noah ET 

TL 1.99 12.73 24.86 23.67 10.27 6.36 9.6 15.81 21.73 22.16 15.74 5.57 

TS 1.08 0.65 0.9 1.53 1.81 -1.3 1.75 1.16 0.81 0.92 1.27 1.05 

Terra ET TL 4.27 18.51 24.01 29.3 14.41 11.17 4.51 22.48 34.33 31.25 9.37 1.42 

TS 0.9 1.01 0.86 1.04 2.21 0.6 0.35 1.16 1.01 1.02 1 0.07 

Ensembl

e (ET) 

TL 4 16.81 16.94 22.61 10.85 10.53 2.17 17.92 24.34 26.03 12.72 2.05 

TS 1.37 0.9 0.98 1.19 1.96 0.61 1.11 1.11 1.04 1.08 1.12 0.58 

Runoff 

(Q) 

 

TV 1835.

1 

1447.

5 

5957.

4 

8392.

1 

17276.

6 

26386.

0 

10962.

9 

6856.

3 

12500.

3 

14799.

7 

8649.

3 

5102.

9 

TS 1.25 0.69 1.15 1.08 0.89 1.05 0.68 3.00 0.94 1.29 0.72 0.59 

GRACE 

TWSC 

TL 27.3 28.0 23.7 50.8 10.8 85.8 52.5 73.2 11.1 16.9 38.8 40.8 

TS 2.14 0.96 -29.28 0.39 31.64 0.64 4.19 0.76 0.86 0.61 1.88 0.21 

Note: TL=trend length, TV= trend volume, TS= trend slope; All TV in mm, except for runoff in m3/s. TS is unit less.   
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Table 7.8 IPTA of standard deviation of ET, Q and TWSC 

Variable Tren

d 

Jan-

Feb 

Feb-

Mar 

Mar-

Apr 

Apr-

May 

May-

Jun 

Jun-Jul Jul-

Aug 

Aug-

Sep 

Sep-

Oct 

Oct-

Nov 

Nov-

Dec 

Dec-

Jan 

MOD16 

ET 

 

TL 0.22 2.19 1.22 1.59 3.49 1.31 1.89 1.55 2.31 1.06 0.33 0.59 

TS 0.36 0.8 -0.92 0.37 0.33 0.57 -0.34 0.02 0.17 7.69 -0.37 0.36 

GLDAS 

CLSM 

ET 

TL 1.43 0.4 1.83 5.82 6.23 4.66 4.74 6.66 1.6 0.57 1.7 2.99 

TS -1.05 1.2 0.46 -0.42 0.36 -0.2 -0.84 2.88 0.69 5.32 0.57 2.19 

GLDAS 

Noah 

ET 

TL 1.03 2.99 4.16 4.08 1.65 0.57 1.62 1.87 2.74 2.14 0.93 1.13 

TS -0.67 1.7 19.22 -2.25 0.6 -1.95 -0.56 5.51 1.77 1.82 1.36 -0.2 

Terra 

ET 

TL 1.59 5.17 3.28 4.75 2.91 5.85 2.63 1.27 2.95 2.68 0.54 2.15 

TS 2.33 2.15 -0.02 -0.4 -1.51 -3.43 -0.61 4.17 -0.59 3.35 1.71 0.06 

Ensembl

e (ET) 

TL 0.57 2.45 1.56 0.97 1.95 2.34 1.79 2.59 1.36 1.6 0.73 1.08 

TS -0.1 1.62 -2.56 4.7 0.77 -1.44 -0.83 2.15 -0.54 2.94 1.1 1.15 

Runoff 

(Q) 

 

TV 541.3

8 

749.6

3 

1696.8

9 

3586.3

6 

6209.0

8 

4068.8

9 

6648.5

1 

2944.

4 

2354.5

4 

3684.

5 

2249.7

3 

948.1

6 

TS 21.83 4.44 -1.29 1.85 0.51 0.35 0.7 -3.47 0.79 8.84 1.82 1.25 

GRACE 

TWSC 

TL 6.02 15.26 14.09 29.06 16.05 15.35 15.2 22.7 8.36 5.48 1.38 13.33 

TS -1.2 4.96 -1.24 -1 -0.16 -1.65 -1.05 2.72 -2.68 4.81 0.29 -5.88 

Note: TL=trend length, TV= trend volume, TS= trend slope; All TV in mm, except for runoff in m3/s. TS is unit less.  
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Fig.7.8 IPTA diagram for the mean and standard deviation of discharge and GRACE 

TWSC 

7.4 Conclusions 

In this study the innovative trend analysis of different precipitation products, ETs, 

discharge and GRACE TWSC of the Brahmaputra River basin for individual months 

from 2003 to 2014 was carried out. 
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(a) Across multiple precipitation datasets, ITA consistently identified both rising 

and falling trends, albeit with varying proportions, while the MK test often 

failed to recognize significant trends. To elaborate, ITA pinpointed declining 

trends in APHRODITE, ERA5, CHIRPS, SM2RAIN, TRMM, and IMERG 

precipitation data, whereas CMORPH displayed notable upward trends. The 

ensemble findings revealed a mixture of positive and declining trends. In 

contrast, the MK test typically indicated the absence of significant trends in 

these datasets. 

(b) MOD16 ET and CLSM ET exhibited a substantial positive significant 

uptrend, whereas Noah ET, TerraClimate ET, and Ensemble ET showed a 

substantial negative significant downtrend using the ITA method. Using the 

MK-test, the ET products did not exhibit either positive or negative trends as 

significantly as with the ITA method. These analyses revealed diverse trends 

in ET across the datasets, with ITA and MK tests providing insights into the 

extent and significance of these trends. 

(c) In the case of in-situ discharge analysed using ITA, a substantial and 

consistent decreasing trend was observed throughout about 92% of the 

months. Surprisingly, the MK test did not detect any significant trend in this 

dataset. 

(d) For GRACE TWSC, the ITA analysis revealed a mixture of trends. 

Approximately 25% of the months showed significant increases in water 

storage, while 50% exhibited significant decreases. In contrast, the MK test 

only identified a significant downtrend in about 8% of the months. 

(e) The IPTA diagram provided the trend transition between months regarding the 

mean and standard deviation of all the variables used in this study. The trend 

slope provided information on how the intensity of events could vary. 



 

 

CHAPTER 8 

SUMMARY AND CONCLUSIONS 

8.1 SUMMARY  

The study focuses on evaluating the water budget components of the Brahmaputra river 

basin using satellite data. The basin is transboundary and has sparse hydrometeorological 

data, making it difficult to carry out hydrological studies. Satellite data can be useful for 

large basins like the Brahmaputra, but there is a need to evaluate satellite precipitation 

estimates against existing gauge-based data. Additionally, there is a need to assess the risk 

of water budget variables given precipitation data, reconstruct water budget variables using 

multiple precipitation data sources, and analyse the trend of water budget variables using 

innovative trend analysis.  

In this regard, categorical and continuous metrics are used to assess the ability of 

satellite precipitation to capture rainfall quantity, the probabilistic prediction of 

evapotranspiration, discharge, and terrestrial water storage change given precipitation 

quantity using bivariate dependence measures like copula, water budget error analysis and 

application of innovative trend analysis to individual months. 

The satellite precipitation data were assessed using categorical and continuous 

metrics, spatially and temporally considering the whole basin, upper, middle and lower 

sections of the basin based on elevation measure. Also, the analysis was carried out for 

winter, summer, monsoon and postmonsoon seasons.   

The results obtained from the study are promising. Though satellite data come with 

uncertainties, they are useful, particularly for a large river basin like Brahmaputra, which 

is largely ungauged. Also, satellite data have a wider coverage than gauge data. The satellite 

precipitation data that are gauge corrected were found to perform well using both 

categorical and continuous statistics. The satellite precipitation was equally good as the 

gauged-based data in risk assessment of evapotranspiration, discharge and terrestrial water 
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storage change, while the reanalysis precipitation data slightly differed in the outcome of 

risk assessment.  

Similarly, the gauge-corrected satellite precipitation data performed well in 

reconstructing the water budget variables, especially runoff and terrestrial water storage 

change. However, evapotranspiration could not be reconstructed well possibly due to 

uncertainties in precipitation, runoff and terrestrial water storage change apart from its own 

uncertainties. Also, as in most of the studies, the innovative trend analysis detected either 

positive or negative trends in precipitation data, substantial significant positive trends in 

evapotranspiration data, significant negative trends in discharge and a mixture of 

significant positive as well as negative trends in terrestrial water storage change. Subtrends 

using the innovative trend analysis (ITA) method also revealed differing pictures in all the 

variables. Then, the polygon version of the ITA method indicated the trend transition 

between months.   

8.2 CONCLUSIONS 

8.2.1 General conclusions 

(a) IMERG is the most reliable for precipitation data, whereas CMORPH is best for 

seasonal use. SM2RAIN is generally unreliable. 

(b) Copula functions reveal complex dependencies between variables, supporting model 

validation. Changing probabilities with precipitation offer insights for climate change 

adaptation. 

(c) The ERA5 dataset is best for reconstructing total water storage change (TWSC) and 

streamflow (Q). Reconstructing evapotranspiration (ET) from precipitation data alone is 

difficult. The best dataset to use depends on the season and variable. SM2RAIN should be 

avoided. 

(d) ITA outperforms the MK test in trend detection for precipitation. ET data shows diverse 

trends using ITA method. Consistent decreasing trends in discharge data emphasise the 

need for trend identification. ITA offers insights for water resource management and 
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drought monitoring by identifying subtrends, while IPTA diagrams and trend slopes aid 

water resources decision making. 

8.2.2 Satellite data evaluation    

(a) IMERG emerges as the top-performing product in the evaluation of precipitation 

products, outperforming all other products in terms of both spatial and temporal 

accuracy. This finding has important implications for researchers and practitioners 

who rely on precipitation data, as it suggests that IMERG is the most reliable source 

of precipitation data available. 

(b)  While CMORPH performs well overall, it is particularly suited for seasonal 

applications, given its strong performance during the monsoon and post-monsoon 

seasons. 

(c) SM2RAIN, on the other hand, is the least-performing precipitation product on all 

counts, suggesting that it is not a reliable source of precipitation data for most 

applications. 

8.2.3 Risk assessment of water budget variables 

(a) The Frank copula is the optimal copula function for all three precipitation-

TWSC pairs, ERA5-ET, and ERA5-ET, while the Clayton copula is the optimal 

copula function for the remaining pairs. This suggests that the dependence 

structure between these variables is complex and non-linear. This information 

can be used to develop more sophisticated models that capture the complex 

relationships between the variables. 

(b) Pearson's linear and Spearman's rank correlations for all the pairs of variables 

are significant for observed and simulated values. This indicates that there is a 

strong correlation between the variables, even though the dependence structure 

is complex. This information can be used to validate the models developed in 

this study. 

(c) The non-exceedance probability of all the dependent variables (lower 

percentile) decreases with increased precipitation, while the exceedance 
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probability of the same variables (upper percentile) increases gradually with 

increased precipitation. This is consistent with the expected impacts of climate 

change, which is projected to lead to more extreme precipitation events. This 

information can be used to assess the vulnerability of the Brahmaputra basin to 

climate change and to develop adaptation strategies. 

8.2.4 Reconstruction of water budget variables  

(a) ERA5-derived TWSCs and Qs provide the highest linear correlation with gauge-

based data, while TRMM, IMERG, and CHIRPS also show a closer correlation, to 

a greater extent than other precipitation datasets. This implies that ERA5 is the best 

precipitation dataset to use for reconstructing TWSCs and Qs, but TRMM, IMERG, 

and CHIRPS are also good options. 

(b) The linear strength of derived ETs shows that the inherent uncertainties in the water 

budget variables did not reconstruct ETs well. This means that it is difficult to 

accurately reconstruct ET using precipitation data alone, and other sources of data, 

such as satellite observations of vegetation and soil moisture, may be needed. 

(c) The linear strength of derived ETs shows that the inherent uncertainties in the water 

budget variables did not reconstruct ETs well. This means that it is difficult to 

accurately reconstruct ET using precipitation data alone, and other sources of data, 

such as satellite observations of vegetation and soil moisture, may be needed. 

(d) When choosing a precipitation dataset for reconstructing water budget variables, it 

is important to consider the season and the variable(s) of interest. TRMM, IMERG, 

and CHIRPS are generally good choices, but ERA5 may be better for some 

applications. SM2RAIN should be avoided. 

8.2.5 Innovative trend analysis of water budget variables 

(a) ITA, compared to the MK test, consistently detects both rising and falling trends 

in precipitation datasets, yielding more robust and practical climate insights. 
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This can enhance our ability to make informed decisions in water resource 

management and climate adaptation. 

(b)  ITA reveals diverse trends in evapotranspiration (ET) data, with some products 

showing substantial positive uptrends and others significant negative 

downtrends, making it crucial for assessing climate impacts on water resources 

and agricultural planning. 

(c)  In-situ discharge data analyzed with ITA consistently reveals a significant 

decreasing trend in the majority of months, underscoring the importance of 

recognizing these trends for effective water resource planning and management. 

The ability to identify these trends is essential for effective water resource 

planning. 

(d) ITA analysis of GRACE Terrestrial Water Storage Change (TWSC) data reveals 

mixed trends, including both increases and decreases in water storage, offering 

comprehensive insights for water resource management and drought 

monitoring. 

(e) The IPTA diagram visually displays trend transitions between months for 

climate variables, while trend slopes help assess the intensity of climate events, 

aiding decision-making in various fields, including disaster preparedness and 

infrastructure planning. 

8.3 RESEARCH CONTRIBUTIONS 

(a) A comprehensive evaluation of several satellite precipitation products was conducted 

on a daily and seasonal basis. Additionally, temporal and spatial assessments of the 

precipitation products were performed. 

(b) For the first time, satellite and reanalysis precipitation data, along with gauge data, were 

utilized to assess the risk of major water budget variables in the basin. 

(c) Notwithstanding, a meticulous assessment of multiple precipitation products was 

undertaken, with the aim of reconstructing evapotranspiration, runoff, and terrestrial water 

storage through the utilization of water budget equations. This method is particularly 
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favoured when the financial constraints associated with elaborate modelling endeavours 

render them unfeasible.   

(d) Innovative trend analysis and its extended version were employed to identify trends in 

water budget variables within the basin, incorporating various precipitation, 

evapotranspiration, river discharge, and terrestrial water storage data. A comprehensive 

subtrend analysis was also carried out.   

8.4 LIMITATIONS OF THE STUDY 

The seasonal precipitation variation was not evaluated based on the spatial distribution of 

rainfall. It is recommended to carry out the categorical and continuous metrics spatially for 

different seasons to understand rainfall distribution over the basin better. Also, bias 

correction of the satellite data might increase their performance. The bivariate copula may 

not be sufficient when more than one variable could influence a water budget. To overcome 

this limitation, it is recommended to use the trivariate or vine copula concept that can 

handle more than one controlling variable. The water budget error might change if it is 

enforced to distribute the errors, as seen in different studies. Though the innovative trend 

analysis is sample size independent, to make a fair comparison with the MK test, it may be 

advisable to use longer data because the MK test is affected by data length.  

8.5 SCOPE FOR FURTHER STUDY 

(a) The categorical and continuous metrics could be carried out based on elevation and 

rainfall intensities as reported in many other studies. 

(b) Merging of two or more satellite precipitation data could be explored to ascertain 

whether it improves the performance of of such merged products when compared against 

gauged data. 

(c) Various bias correction methods of precipitation could be applied to assess the 

performance of bias corrected data.  
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(d) In real life water budget variables are interrelated to each other. Hence, the risk 

assessment of such variables may be assessed based on two or more other variables to be 

able to understand the risk variation. Therefore, vine copula is suggested for a similar 

analysis to the bivariate copulas. 

(e) The merged as well as bias-corrected precipitation products could be used to reconstruct 

evapotranspiration, runoff and terrestrial water storage change. 

(f) Extreme precipitation events over the basin could be identified using several trend 

detection methods.  

(g) The wetness and dryness events could be related to both the phases of large atmospheric 

indices like ENSO, for example. 
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APPENDIX 
 Table AI.1 Daily metrics obtained for evaluation of satellite precipitation of winter 

season of    the upper basin 

Metrics CHIRPS CMORPH IMERG SM2RAIN TRMM 

POD 0.92 0.99 1 0.76 1 

FAR 0.06 0.07 0.07 0.06 0.07 

CSI 0.87 0.92 0.93 0.72 0.93 

R2 0 0 0 0.02 0.01 

Mean (mm) 4.74 3.81 4.68 5.41 3.53 

RBIAS 0.02 -0.18 0.01 0.17 -0.24 

ME (mm) 0.11 -0.81 0.06 0.78 -1.1 

MAE (mm) 3.3 3.63 3.43 2.86 3.98 

RMSE (mm) 4.79 5.02 4.89 4.44 5.25 

        Note: Daily mean of APHRODITE = 4.63  mm. 

 

Table AI.2 Daily metrics obtained for evaluation of satellite precipitation of winter 

season of  the middle basin 

Metrics CHIRPS CMORPH IMERG SM2RAIN TRMM 

POD 0.79 1 1 0.74 1 

FAR 0.17 0.2 0.2 0.17 0.2 

CSI 0.68 0.8 0.8 0.64 0.8 

R2 0.01 0 0 0 0.07 

Mean (mm) 5.43 6.09 6.17 6.89 5.96 

RBIAS 0.34 0.51 0.52 0.7 0.47 

ME (mm) 1.39 2.04 2.12 2.85 1.91 
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MAE (mm) 4.51 5.24 4.98 5.04 6.07 

RMSE (mm) 6.44 6.74 6.74 6.83 7.46 

        Note: Daily mean of APHRODITE = 4.04  mm. 

Table AI.3 Daily metrics obtained for evaluation of satellite precipitation of winter 

season of  the lower basin 

Metrics CHIRPS CMORPH IMERG SM2RAIN TRMM 

POD 0.81 1 1 1 1 

FAR 0.21 0.23 0.22 0.23 0.22 

CSI 0.67 0.77 0.78 0.77 0.78 

R2 0.01 0 0.02 0 0.03 

Mean (mm) 5.14 4.79 5.04 6.27 4.93 

RBIAS 0.42 0.32 0.39 0.73 0.36 

ME (mm) 1.51 1.16 1.41 2.64 1.3 

MAE (mm) 3.85 4.13 3.78 4.04 4.72 

RMSE (mm) 5.28 5.47 5.22 5.41 5.84 

        Note: Daily mean of APHRODITE =  3.63  mm. 

 

Table AI.4 Daily metrics obtained for evaluation of satellite precipitation of summer 

season of  the upper basin 

Metrics CHIRPS CMORPH IMERG SM2RAIN TRMM 

POD 0.97 1 1 0.81 1 

FAR 0 0 0 0 0 

CSI 0.97 1 1 0.81 1 

R2 0.06 0.03 0.08 0.13 0 

Mean (mm) 3.1 1.77 2.76 2.38 2.04 
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RBIAS -0.19 -0.54 -0.28 -0.37 -0.46 

ME (mm) -0.71 -2.04 -1.05 -1.43 -1.77 

MAE (mm) 2.67 2.96 2.36 2.66 3.11 

RMSE (mm) 3.89 4.25 3.72 3.97 4.3 

        Note: Daily mean of APHRODITE = 3.81 mm. 

 

Table AI.5 Daily metrics obtained for evaluation of satellite precipitation of summer 

season of  the middle basin 

Metrics CHIRPS CMORPH IMERG SM2RAIN TRMM 

POD 0.91 1 1 0.59 1 

FAR 0 0 0 0 0 

CSI 0.91 1 1 0.59 1 

R2 0.01 0.02 0.04 0.01 0.01 

Mean (mm) 5.17 4.19 6.08 2.69 5.24 

RBIAS -0.19 -0.34 -0.05 -0.58 -0.18 

ME (mm) -1.19 -2.18 -0.29 -3.68 -1.12 

MAE (mm) 4.61 4.19 3.82 5.25 4.69 

RMSE (mm) 6.05 5.34 5.37 6.57 6.37 

        Note: Daily mean of APHRODITE = 6.37 mm. 

Table AI.6 Daily metrics obtained for evaluation of satellite precipitation of summer 

season of  the lower basin 

Metrics CHIRPS CMORPH IMERG SM2RAIN TRMM 

POD 0.94 1 1 1 1 

FAR 0 0.01 0.01 0.01 0.01 

CSI 0.94 0.99 0.99 0.99 0.99 
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R2 0.24 0.4 0.43 0.15 0.37 

Mean (mm) 8.18 5.93 8.08 5.6 7.36 

RBIAS 0.08 -0.22 0.07 -0.26 -0.03 

ME (mm) 0.62 -1.64 0.51 -1.96 -0.2 

MAE (mm) 5.8 3.74 3.81 3.92 4.34 

RMSE (mm) 8.77 5.02 5.4 5.23 5.98 

        Note: Daily mean of APHRODITE = 7.57  mm. 

 

Table AI.7 Daily metrics obtained for evaluation of satellite precipitation of monsoon 

season of  the upper basin 

Metrics CHIRPS CMORPH IMERG SM2RAIN TRMM 

POD 0.99 1 1 1 1 

FAR 0 0 0 0 0 

CSI 0.99 1 1 1 1 

R2 0.27 0.28 0.41 0.08 0.31 

Mean (mm) 3.58 2.68 3.69 0.32 3.89 

RBIAS 0.27 -0.05 0.31 -0.89 0.38 

ME (mm) 0.76 -0.14 0.88 -2.5 1.07 

MAE (mm) 1.95 1.27 1.54 2.5 1.93 

RMSE (mm) 2.79 1.94 2.25 3.11 2.87 

        Note: Daily mean of APHRODITE = 2.82  mm. 

 

Table AI.8 Daily metrics obtained for evaluation of satellite precipitation of monsoon 

season of  the middle basin 

Metrics CHIRPS CMORPH IMERG SM2RAIN TRMM 
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POD 0.98 1 1 0.79 1 

FAR 0 0 0 0 0 

CSI 0.98 1 1 0.79 1 

R2 0.16 0.18 0.3 0.01 0.25 

Mean (mm) 5.46 3.56 7.24 0.13 7.81 

RBIAS -0.06 -0.39 0.24 -0.98 0.34 

ME (mm) -0.37 -2.28 1.41 -5.71 1.97 

MAE (mm) 4.25 3.4 3.96 5.71 4.57 

RMSE (mm) 6.13 4.39 5.95 6.65 7.01 

        Note: Daily mean of APHRODITE = 5.83  mm. 

Table AI.9 Daily metrics obtained for evaluation of satellite precipitation of monsoon 

season of  the lower basin 

Metrics CHIRPS CMORPH IMERG SM2RAIN TRMM 

POD 1 1 1 1 1 

FAR 0 0 0 0 0 

CSI 1 1 1 1 1 

R2 0.43 0.51 0.68 0.29 0.58 

Mean (mm) 13.63 9.9 15.07 10.54 14.95 

RBIAS 1.66 -2.07 3.1 -1.43 2.98 

ME (mm) 5.97 4.73 5.05 4.89 5.49 

MAE (mm) 8.04 6.23 7.09 6.82 7.72 

RMSE (mm) 1.66 -2.07 3.1 -1.43 2.98 

        Note: Daily mean of APHRODITE = 11.97  mm. 
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Table AI.10 Daily metrics obtained for evaluation of satellite precipitation of post 

monsoon season of  the upper basin 

Metrics CHIRPS CMORPH IMERG SM2RAIN TRMM 

POD 0.88 1 1 0.7 1 

FAR 0.1 0.11 0.11 0.06 0.11 

CSI 0.8 0.89 0.89 0.67 0.89 

R2 0.01 0 0.02 0.04 0.03 

Mean (mm) 4.56 3.94 4.6 3.76 4.64 

RBIAS 0.14 -0.01 0.15 -0.06 0.16 

ME (mm) 0.57 -0.04 0.61 -0.22 0.66 

MAE (mm) 3.16 3.68 3.02 3 4.06 

RMSE (mm) 4.68 5.02 4.58 4.57 5.29 

        Note: Daily mean of APHRODITE = 3.99  mm. 

 

Table AI.11 Daily metrics obtained for evaluation of satellite precipitation of post 

monsoon season of  the middle basin 

Metrics CHIRPS CMORPH IMERG SM2RAIN TRMM 

POD 0.75 1 1 0.66 1 

FAR 0.17 0.22 0.22 0.17 0.22 

CSI 0.65 0.78 0.78 0.58 0.78 

R2 0.06 0 0.06 0 0.01 

Mean (mm) 5.05 6.2 6.01 5.05 5.05 

RBIAS 0.25 0.54 0.49 0.26 0.76 

ME (mm) 1.03 2.17 1.98 1.03 3.06 

MAE (mm) 4.11 5.13 4.41 4.63 6.2 
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RMSE (mm) 6.21 6.75 6.47 6.58 7.63 

        Note: Daily mean of APHRODITE = 4.03   mm. 

Table AI.12 Daily metrics obtained for evaluation of satellite precipitation of post 

monsoon season of  the lower basin 

Metrics CHIRPS CMORPH IMERG SM2RAIN TRMM 

POD 0.79 0.99 1 0.99 1 

FAR 0.19 0.25 0.25 0.25 0.25 

CSI 0.67 0.75 0.75 0.74 0.75 

R2 0.35 0.24 0.43 0.02 0.29 

Mean (mm) 5.2 5.67 5.92 5.07 6.23 

RBIAS 0.26 0.37 0.43 0.22 0.5 

ME (mm) 1.06 1.53 1.78 0.93 2.09 

MAE (mm) 3.83 4.1 3.8 4.08 4.81 

RMSE (mm) 5.86 5.48 5.59 5.98 6.18 

        Note: Daily mean of APHRODITE = 4.14  mm. 
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