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ABSTRACT 

 

Urbanization has emerged as the most drastic and irreversible form of human-induced 

landscape change. Rise in temperature in urban area leads to high building energy 

consumption and degraded environmental qualities in the built environment. Hence, 

Urban Heat Island (UHI) effect has emerged as a key research top in the field of urban 

ecology and urban climatology. In most of the developing countries, man-made 

developments in the environment have led to the growing demand to contextualize the 

Land Use Land Cover (LULC) changes and Land Surface Temperature (LST) 

variations. Due to the modification in the surface properties of the cities, a difference 

in energy balance between the cities and its non-urban surroundings is observed.  The 

present study was focussed on the analysis of spatial and temporal patterns of LULC 

and LST and its interrelationship in Bengaluru Urban district, India during the period 

from 1989 to 2017 using remote sensing data. Bengaluru is one of the rapidly growing 

cities in India and there is an urgent need for investigating the spatio-temporal patterns 

of LULC and LST in the region. The datasets used for the study mainly comprises of 

Landsat images and MODIS data from 1989 to 2020.  

 

The land cover maps of the study area were prepared for the years 1989, 1994, 2001, 

2005, 2014 and 2017 using supervised classification. Intensity analysis was performed 

for the interval to analyse the LULC change and identify the driving forces. The impact 

of land cover change on LST was assessed using hot spot analysis (Getis-Ord Gi* 

statistics). The results of this study show that (a) dominant land cover change 

experienced is the increase in urban area (approximately 40%) and the rate of land cover 

change was faster in the time period 1989-2001 than 2001-2017. (b) the major transition 

witnessed is from barren and agricultural land to urban (c) Over the period of 28 years, 

LST patterns for different land cover classes exhibit an increasing trend with an overall 

increase of approximately 6ºC and the mean LST of urban area increased by about 8ºC 

(d) LST pattern change can be effectively analysed using hot spot analysis (e) As the 

urban expansion occurs, the cold spots have increased, and it is mainly clustered in the 



 

urban area. It confirms the presence of an urban cool island effect in Bengaluru urban 

district.  

 

 LST and land cover interaction was modelled in a comprehensive and efficient way in 

the semi-arid tropical metropolitan city. Even though this interaction has been discussed 

widely in many literatures, the study facilitates the modelling and parameterization of 

LST and urban growth in an adequate way. Spatial distribution of LST and land cover 

types of the area were examined in the circumferential direction, and the contribution 

of land cover classes on LST was studied over 28 years. Urban growth and LST were 

modelled using Landsat and MODIS (Moderate Resolution Imaging 

Spectroradiometer) data for the years 1989, 2001, 2005 and 2017 based on the 

concentric ring approach. The study provides an efficient methodology for modelling 

and parameterization of LST and urban growth by fitting an inverse S-curve into Urban 

Density (UD) and mean LST data. In addition, Multiple Linear Regression (MLR) 

models which could effectively predict the LST distribution based on surface area ratios 

were developed for both day and night time. Further, the relationship between land 

cover types such as urban, vegetation, water and LST is determined for different years 

emphasizing the impact of land cover change on the daytime and night time surface 

heating. The non-linear relationship between surface area ratios and LST was 

established using a hybrid Particle Swarm Optimization - Support Vector Regression 

(PSO-SVR) model for the years 1989, 2001, 2005 and 2017.  

 

Based on the analysis of remotely sensed data for LST, it is observed that over the years, 

urban core area has increased circumferentially from 5 km to 10 km, and the urban 

growth has spread towards outskirts beyond 15 km from the city centre. As urban 

expansion occurs, the area under the study experiences an expansive cooling effect 

during day time; at night, an expansive heating effect is experienced in accordance with 

the growth in UD in the suburban area and outskirts. The regression models that were 

developed have relatively high accuracy with R2 value of more than 0.94 and could 

explain the relationship between LST and land cover types. The study also revealed that 

there exists a negative correlation between urban, vegetation, water body and LST 

during day time while a positive correlation is observed during night.  



 

 

The values of the statistical indices prove the feasibility and efficacy of PSO algorithm 

in tuning the hyperparameters of SVR. The Hybrid PSO-SVR model was built on the 

tuned hyperparameters for modelling LST with different surface area ratios at different 

time frames. For surface area ratio, R2 value in the range of 0.94 and 0.97 was obtained 

for MLR and Hybrid PSO-SVR model respectively. 

 

The spatio-temporal variation of urban surface characteristics and its relationship with 

LST was also modelled over the period from 1989 to 2017. Remote sensing indices 

such as NDVI (Normalized Difference Vegetation Index), NDWI (Normalized 

Difference Water Index), and NDBI (Normalized Difference Built-up Index), was 

determined from Landsat images for the years 1989, 2001, 2005 and 2017. Linear 

relationship between LST and these remote sensing indices were studied by employing 

MLR technique. Further, the proposed Hybrid PSO-SVR model was applied to the 

datasets to predict the values of LST based on these remote sensing indices. 

Hypothetical scenarios were introduced in the prediction to assess the impact of change 

in vegetation and water bodies on LST. Temporal variation of urban heat anomaly of 

the region over the period of study was also investigated.  

 

NDBI has drastically increased in the year 2017 which is caused by the increase in 

barren land and urban areas while NDVI and NDWI has decreased over the years. 

Higher values of NDBI are scattered in the outskirts while higher NDVI and NDWI 

values are distributed in the urban centre. R2 value in the range of 0.80 and 0.85 was 

obtained for MLR and Hybrid PSO-SVR model respectively. Hybrid PSO-SVR model 

proved to be effective in establishing the relationship between LST and urban surface 

characteristics, NDVI, NDBI and NDWI and in predicting the future LST. From the 

hypothetical scenario analysis, it can be concluded that introduction of vegetation and 

water bodies in the suburban and urban fringes will reduce the difference in LST 

between urban and rural areas. The magnitude of urban heat anomaly can be curtailed 

by developing green corridors and artificial lakes in the suburban and urban fringes of 

Bengaluru. 

 



 

Thus, this study could assist urban planners and policymakers in understanding the 

scientific basis of urban heating effect and predict LST for the future implementation 

of green infrastructure. The findings of this work can be used as a scientific basis for 

the sustainable development and land use planning of the region in the future. The 

proposed methodology could be applied to other urban areas for quantifying the 

distribution of LST and different land cover types and their interrelationships. 

 

Keywords: Land use land cover, Land surface temperature, Intensity analysis, Urban 

cool island, Urban density, Concentric ring approach, Multiple linear regression, 

Support vector regression, Particle swarm optimization, Bengaluru. 
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CHAPTER 1 

  

INTRODUCTION 

 

1.1 GENERAL 

Urbanization is regarded as one of the main apprehensions of a rapidly developing 

world. Due to urbanization, the magnitude of human activities is increased which in 

turn lead to the rapid change in the surface cover and climate of the region. The 20th 

century is witnessing "the rapid urbanization of the world’s population", as the global 

proportion of urban population rose dramatically from 13% (220 million) in 1900 to 

29% (732 million) in 1950, to 49% (3.2 billion) in 2005 and is projected to rise to 60% 

(4.9 billion) by 2030 (Ramachandra and Uttam 2009). India will also face a high rate 

of urbanization. It is estimated that the country's population will reach 1.47 billion in 

2030, with around 40 percent urbanization; close to 590 million will be living in cities 

(UN-DESA, 2012). This will lead to tremendous pressure on providing civic amenities 

such as water supply, sewerage, drainage and housing.  

 

Urban ecosystems are the consequence of the fundamental nature of humans as social 

beings to live together. The growth of villages into towns, towns into cities and cities 

into metros can be attributed to infrastructure initiatives, population growth and 

migration which are the outcome of the process of urbanization. Urbanization and urban 

sprawl have posed severe challenges to the decision-makers in the city planning and 

management process. It involves a series of issues like infrastructure development, 

traffic congestion, and basic amenities such as electricity, water and sanitation. 

 

Urban sprawl is perceived as one of the potential threats to development as the biggest 

confront is to ensure adequate housing with basic infrastructure and amenities including 

health, sanitation, etc. The dynamics and pattern of urbanization can be studied using 

differential urbanization models.  This model will identify the cities which grow in each 



2 
 

stage of development by describing the clustering and de-clustering based on the city 

size (Jain and Korzhenevych 2020). Remote sensing coupled with geospatial analysis 

aid significantly in monitoring and management of the urbanization process. The 

spectral pattern present within the remote sensing data for each pixel is used to perform 

the classification and is used as the numerical basis for categorizing various spatial 

features. The proposed research aims to develop a relationship between land surface 

temperature and significant land use classes to predict the impacts of urbanization such 

as Urban Heat Island (UHI) and Urban Cool Island (UCI).  

 

The effect of urbanization can be evaluated in several ways. With the rapid 

development of earth observation systems, satellite-based imaging technology has been 

widely applied to study urban climate change. The main advantage of this approach is 

that it can offer an efficient way to monitor the effect of urbanization across different 

spatio-temporal scales. From the perspective of remote sensing technique, it has been 

proved that the most suitable spatial resolution for urban thermal anomaly studies is 

approximately less than 100 m since coarser resolution may result in the loss of details 

for urban structures (Liu et al., 2016). 

 

1.2 IMPACT OF URBANIZATION ON TEMPERATURE 

One of the critical factors causing an abnormal change in climate patterns across the 

globe is urbanization. The population of the cities tends to increase in comparison to 

the population of rural areas. The 21st century is witnessing rapid urbanization with 

55% of the population dwelling in urban areas (2018) and is projected to increase to 

68% in 2050 (Bocquier, 2005). The most significant urban expansion is expected to 

occur in Asia, especially in India and China in the future (Jiao, 2015; Seto et al., 2012). 

The land conversion from one type to another can cause positive and negative impacts 

on the region and its communities (Aryal et al., 2019; Bhatti et al., 2019). Urbanization 

has led to the conversion of natural land surfaces comprising of pervious surfaces and 

vegetation into built-up and impervious surfaces, one of the main reasons for global 

climate change (Mathew et al., 2016; Streutker, 2002; Touchaei & Wang, 2015).  
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Unplanned and uncontrolled urban growth has led to several severe social and 

environmental problems and influences various climate variables like rainfall, 

temperature, etc. (Bhat et al., 2017). Hence, there is a need to explore the environmental 

physics of an urban conglomeration as it directly affects labour productivity, well-being 

and health of the urban inhabitants through air quality and thermal comfort (Theeuwes 

et al., 2015). Urban land use strongly influences the energy and water balance of the 

city and impacts the weather and climate of a region (Shastri et al., 2017). 

Developments in remote sensing technologies have enabled the acquisition of satellite 

images at large spectral ranges with suitable spatial resolution. The satellite images are 

available at reasonable time intervals for monitoring the land surface features while in-

situ reading can be obtained from specific ground based stations and at particular time 

spans only (Javed Mallick and Bharath 2008; Myint et al., 2013; Nichol and To, 2012). 

 

The increase in the heat storage capacity of urban surfaces creates so called Urban Heat 

Island (UHI), in which built-up areas are hotter than nearby rural areas (Tran et al., 

2017). This local difference in temperatures negatively impacts human beings and the 

environment because it hampers air quality, increases energy consumption, loses 

biological control, and affects human health. Advances in thermal remote sensing, 

Geographical Information Systems (GIS), and statistical methods have enabled the 

research community to characterize and examine UHI versus landscape relationships. 

Many studies deal with UHI analysis, providing effective feedback to policy-makers 

and researchers.  

 

Heat waves can be exacerbated by UHI, increasing the heat burden on urban dwellers 

(Tan et al., 2010). Moreover, high heat waves will be more frequent and intense in 

future due to climate change. Heat stress will be more common among city dwellers, 

reducing human thermal comfort and increasing the risk of heat-related diseases. 

Studies on UHI in the recent years (such as geographical and temporal patterns, driving 

variables, and mitigation techniques) have grown and gained much attention (Phelan et 

al., 2015). The first step in these subjects is to quantify UHI intensity (UHII) accurately. 

The most commonly utilized methodologies for studying UHI include in-situ 

observation, remote sensing observation, and numerical modelling (Li et al., 2019).  
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A phenomenon of Urban Cool Island (UCI) is observed in some cities where the 

temperature in the urban area is cooler than the surrounding rural area. UCI 

phenomenon usually occurs during the daytime and is common in arid and semi-arid 

climatic regions (Yang et al., 2017). Many researchers have characterized the cooling 

effect of water bodies and green spaces. However, Surface Urban Cool Island (SUCI) 

investigation on the urban area is limited (Rasul et al., 2017). 

 

Land Surface Temperature (LST) is one of the most critical environmental variables 

monitored by Earth-observing remote sensing systems (Bendib et al., 2017). Compared 

to air temperatures collected from weather stations, thermal imagery provides 

temperature anomaly at different spatial and temporal scales (Myint et al., 2013). LST 

derived from satellite imagery is a distinctive source of information to define surface 

urban heat islands. Satellite based thermal infrared image has been widely used as an 

indicator for UHI research. 

  

In addition, land surface temperature derived from remote sensing imagery is better to  

understand the hottest and coolest areas than temperature collected from the urban 

weather station, which is located in the tree park-like surroundings (Nichol and To 

2012). The Land Use Land Cover (LULC) characteristics also directly impact surface 

temperature. Urbanization leads to the expansion of built-up areas and impervious 

surfaces, increasing land surface temperature. Therefore, the analysis of the relationship 

between land use land cover and land surface temperature is crucial to understand the 

effects of urbanization. 

 

1.3 URBANIZATION IN INDIA 

India is now confronting the rise of more than 35 cities with populations of one million 

or more, and it is expected to contain 14% of the World's urban population by 2025 

(Sankhe et al., 2010). The number of urban agglomerations were 1827 in 1901 and it 

has increased to 7935 in 2011. The overall population increased fivefold from 238.4 

million in 1901 to 1210.2 million in 2011, while the urban population increased nearly 
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fifteenfold from 25.85 million in 1901 to 377.1 million in 2011 (Franco et al., 2017). 

Figure 1.1 depicts the trend of urbanization in India. 

 

 

Figure 1.1 Urbanization trends in India (Source: Franco et al., 2017) 

 

Delhi is the World's second most populous metropolitan agglomeration, with 22.7 

million people, whereas Mumbai and Kolkata rank seventh and tenth, respectively, with 

19.7 million and 14.4 million citizens. By 2025, the populations of Bangalore, Chennai, 

and Hyderabad are likely to approach 10 million (UN-DESA, 2012). 

 

According to United Nations Department of Economic and Social Affairs 2014, India's 

urban population is expected to increase to around 800 million people in the year 2050. 

Also, based on researchers’ analysis, two-thirds of India's buildings in 2030 will be 

built after 2010, mainly in metropolitan areas, to handle the increase in population. 

Between 1990 and 2014, the built environment is expected to have grown by 95 percent, 

exceeding population growth and municipal planning initiatives (Khosla and Bhardwaj, 

2019). Megacities, multiple medium-sized cities, and tiny urban clusters will be among 

the new urban formations (Denis and Zerah, 2017). According to most industrialized 

World's historical experience, urbanization is a necessary component of modernization 

and progress. Indian cities are becoming economic hubs due to rapid urbanization 

(Ahmed et al., 2020).  
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Though population growth within the administrative bounds of large metropolitan areas 

have slowed in recent years. It has accelerated in their peripheries due to the expansion 

of census towns. The interplay between the core city and the periphery is critical for 

both sorts of entities growth and development (Pradhan, 2017). Contemporary urban 

studies in India make a concerted attempt to comprehend migration and migrants. The 

presence of a vast number of rural villages with urban features, on the other hand, is 

not widely recognized, and their economic significance is under appreciated (Jain and 

Jehling, 2020). 

 

Rapid urbanization and urban development have diminished green cover and made 

cities vulnerable to climate change. Urbanization significantly impacts energy 

consumption and carbon dioxide emissions, although the impact varies depending on 

the region's economic development stage (Franco et al., 2017). The living environment 

is deteriorating due to the creation of UHIs, declining urban green cover, increased 

carbon emissions, and air pollution. Heat stress-related mortality and rising urban 

temperatures are still serious problems. Although the national aims of "improved 

energy efficiency" and "green India" are emphasized in the National Action Plan on 

Climate Change, the thermal climate of Indian towns is worsening due to an imbalance 

between constructed and natural spaces (Imam and Banerjee, 2016). 

 

The Southwest Indian Subcontinent Monsoon is changing, seasonal swings are 

becoming more severe, and temperature anomalies are becoming more common. 

Furthermore, poor air quality and a severe water deficit exacerbate the situation. In 

cities, susceptibility of children to respiratory infections, and pavement dwellers' 

vulnerability to extreme climate conditions has increased dramatically. Around 2330 

people died due to the 2015 summer heat wave (Imam and Banerjee, 2016). As a result, 

a study of climate change in urban areas of India and the development of commercially 

feasible avenues for its mitigation is critical, and it remains a worldwide concern. 
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1.4 SCOPE OF THE RESEARCH WORK 

India has been facing a high rate of urbanization for the past few decades. As the 

population increases, people migrate from rural areas to cities, searching for 

employment and a better standard of living. Due to this, most of the metropolitan cities 

in India are becoming urban jungles. The rapid urbanization in the cities like Mumbai, 

Delhi, Kolkata, Chennai and Bengaluru has led to severe environmental issues in the 

respective regions. Bengaluru district marked a significant growth rate of 47.18 percent 

during 2001-2011. Urbanization will lead to tremendous pressure to provide civic 

amenities such as water supply, sewerage, drainage and housing. The expansion 

occurring presently in these areas is not planned growth, and hence the ecological 

balance of the area has affected. Due to this urbanization and the changing land use 

patterns, there is a notable change in the climate of the region.  

 

From the previous studies, it is clear that many studies have been conducted to study 

the effect of urbanization on climate change. Nevertheless, only a few studies have been 

conducted in the Bengaluru region relating to the effect of urbanization on climate 

change using remote sensing techniques. This study mainly focuses on the impact of 

urbanization on the temperature, particularly using remote sensing data. Assessing the 

spatial and temporal distribution of LST and LULC in the region is the need of the hour. 

Previous studies mainly focused on Greater Bengaluru, a small part of the Bengaluru 

urban district (Ramachandra & Uttam, 2009; Ramachandra et al., 2013). None of the 

studies considers the whole of the Bengaluru Urban district. Considering the district as 

a whole help in understanding the spatiotemporal patterns of LULC and LST.  

 

1.5 RESEARCH OBJECTIVES 

The urban cool island effect in the study area is very less explored. Very few studies 

have been reported on UCI in a semi-arid environment. Bengaluru is one of the fast-

growing metropolitan cities of India with a semi-arid tropical climate. Considering the 

district as a whole help in understanding the spatio-temporal patterns of LULC and LST 

in a better way as there are agricultural activities by farmers and urban area is 

surrounded by barren mountains with shrubs. This study focusses on the 
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characterisation of UCI based on hot spot analysis which is one of a kind in the study 

area. The major contribution of this study being the investigation of UCI in Bengaluru 

urban district and identification of statistically significant hot and cold spots in the 

region. 

 

The objectives of the research work are listed below: 

1. To assess the spatio-temporal patterns in land surface temperature and land 

cover in the context of urban cool island. 

2. To model the land cover and land surface temperature interaction in the 

Bengaluru urban district region. 

3. To explore the variation of urban surface characteristics and urban heat 

anomaly of the Bengaluru urban district area. 

 

1.6 ORGANIZATION OF THESIS 

The thesis report comprises eight chapters as listed below: 

 

Chapter 1 presents the overview of urbanization in global and national perspective, the 

basis of the research and objectives set for the research work. 

 

Chapter 2 presents a detailed review of the past literature related to the impact of land 

cover change due to urbanization on LST, state-of the art, tools and methodologies used 

by different authors across the globe. Summary of research gaps were also presented 

based on thorough literature survey. 

 

Chapter 3 describes the physiography and climate of the Bengaluru Urban district 

located in southern India considered as study area in this research. The urbanization 

experienced by Bengaluru over the years and its impact on the environment is also 

discussed in this section. 

 

Chapter 4 explains the various data sources and the detailed methodology used in the 

research study. One of the widely used machine learning algorithm, support vector 
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machines and popular meta-heuristic optimization technique particle swarm 

optimization which is employed in this research is discussed in detail 

 

Chapter 5 deals with the spatio-temporal patterns of LULC and LST from 1989 to 

2017. The techniques employed to analyse the spatial and temporal patterns of LST and 

LULC is discussed in detail. The results obtained from this analysis and its discussion 

followed by the conclusions drawn from the analysis is enumerated. 

 

Chapter 6 deals with the modelling of land cover and the LST relationship. The spatial 

distribution of urban area and LST are characterised followed by modelling the 

interaction between land cover and LST. The algorithms employed for the modelling 

and its efficiency is explained. A detailed discussion on the outcomes of the model and 

the inferences are elaborated. 

 

Chapter 7 describes the variation of urban surface characteristics and urban heat 

anomaly of the region. The spatial variation of urban surface characteristics over the 

years from 1989 to 2017 and its interaction with LST is modelled. Future LST is 

predicted using a machine learning algorithm and the impact of change in surface cover 

on LST is analysed by formulating hypothetical scenarios. The variation of urban heat 

anomaly of the region is also investigated.   

 

Chapter 8 presents the summary and significant conclusions drawn from the research 

work. A brief summary of the study is provided. The general conclusions from the 

research and objective specific conclusions are presented. The limitation of the study 

and the scope for future research is also listed.  
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CHAPTER 2 

  

LITERATURE REVIEW 

 

2.1 GENERAL 

This chapter attempts to critically review the various techniques for LST retrieval from 

Landsat images and the impact of land cover change on LST. This chapter also 

discusses the studies on SUHI and SUCI. The applications of support vector machine 

algorithms in remote sensing are explored and the studies on the impact of urbanization 

on Bengaluru are described. Further, the gaps identified from the review of literature 

are detailed. 

 

2.2 LAND SURFACE TEMPERATURE RETRIEVAL 

LST can be easily obtained from remote sensing data by using the thermal infrared band 

at different spatial and temporal scales which gives a better perception of the 

temperature distribution compared to the in-situ observation data. To estimate LST 

from remotely sensed data, three types of approaches have been developed: the single 

channel algorithm, split window algorithm, and a day-night MODIS LST method (Li 

et al. 2013).  

 

To estimate LST from Landsat TM6 data, Qin et al. (2001) devised a mono window 

technique. According to the algorithm's sensitivity study, the hypothetical inaccuracy 

in ground emissivity has a negligible influence on the likely LST prediction. Sobrino et 

al. (2004) suggested a generalised single channel method that relies solely on the overall 

atmospheric water vapour concentration and the effective wavelength of the channel. 

The key benefit of this approach over previous single channel techniques is that it does 

not need effective mean ambient temperature measurements and can be applied to a 

variety of thermal sensors using the same equation and coefficients. 
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The single channel approach, two channel method, and temperature emissivity 

separation method were examined by Benmecheta et al. (2013) for LST retrieval. It 

simplifies the process of selecting and implementing these algorithms based on the 

image and set of parameters accessible to the user. By entering mean atmospheric water 

vapour concentration, temperature, and land surface emissivity, Song et al. (2014b) 

refined the mono window technique and applied it to Landsat TM or ETM+ data. 

 

LST was calculated from Landsat 8 TIRS using the mono window technique from 

spectral radiance of band 10, and the surface emissivity was calculated using the 

Normalised Difference Vegetation Index (NDVI), which was calculated using OLI 

bands 5 and 4 (Bendib et al. 2017). The results were compared to MODIS products and 

found to be in good agreement. For Landsat images, Dai et al. (2016) refined the mono 

window technique by including mixed pixel categorization and subpixel mapping. LST 

results derived with the Radiative Transfer Equation (RTE) utilising atmospheric 

profile data and the MODTRAN model were compared to validate the technique. The 

modified mono window approach is able to offer more accurate LST than the original 

algorithm for Landsat TM/ETM+ imagery, according to validation. 

 

Eswar et al. (2016) used the DisTrad thermal sharpening model to compare the relative 

performance of five different vegetation indices for thermal sharpening over 

agricultural and natural landscapes in India, namely NDVI, Fraction Vegetation Cover 

(FVC), Normalised Difference Water Index (NDWI), soil adjusted vegetation index, 

and modified soil adjusted vegetation index. The study relied on multi-temporal LST 

data from the Landsat-7 Enhanced Thematic Mapper Plus (ETM+) and MODIS sensors 

collected over two distinct agro-climatic grids in India. It was discovered that NDVI 

and FVC worked better only in wet situations, however, NDWI outperformed other 

indices and delivered correct findings in dry conditions. 

 

Shi and Zhang (2018) used a mono window approach with ground emissivity and 

atmospheric transmittance estimate methods to get the Urban LST. When compared to 

field data, the error was determined to be 0.1°C, indicating that the approach may be 

employed for LST retrieval in hot humid regions. Within 250m and 350m, respectively, 
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the cooling effects of water and vegetation on adjoining urban sites were effective. LST 

can be retrieved from thermal infrared bands of different types of Landsat images (band 

6 of Landsat 5 TM, Landsat 7 ETM+ and band 10 of Landsat 8) based on RTE by 

applying atmospheric correction values from the Atmospheric Correction Parameter 

Calculator online tool (Tran et al 2017). The change in LST patterns can be effectively 

analysed using Getis Ord Gi* statistics. 

 

Numerous approaches and algorithms have been proposed by researchers to derive LST 

from satellite images (Li et al. 2013). Low and medium spatial resolution spaceborne 

remote sensing images are usually used for deriving LST from satellite images (Zhou 

et al. 2014; Liu et al. 2016). Various complex interactions drive the temporal variation 

of LST, and its underlying mechanism can be explained by analyzing the temporal 

patterns of LST at different time scales (Chaudhuri and Mishra 2016; Wiesner et al. 

2018; Zullo et al. 2019). The distribution of LST along the radial and circumferential 

direction in a city has not been adequately explored in previous studies. The mitigation 

and enhancement of LST significantly depend on the land use characteristics of an area 

and the permeability of the soil surface (Deng et al. 2018; Solangi et al. 2019; Tran et 

al. 2017). 

 

2.3 IMPACT OF LAND USE LAND COVER CHANGE ON LAND SURFACE 

TEMPERATURE 

Land Use Land Cover (LULC) is identified as one of the key aspects of environmental 

change in both global and regional level. The multifaceted interactions between human 

and physical environments lead to the process of LULC change (Manandhar et al. 2010; 

Huang et al. 2012). Quantification of the causes and effects of LULC change is very 

crucial in the efficient utilization and management of natural resources. Understanding 

the trends of LULC change will be very helpful in the land use planning and 

environment management of a region (Zhao et al. 2013; Li et al.2018).  

 

With the recent developments in Geographical Information Science (GIS) and remote 

sensing, the researchers can effectively characterize and examine the dynamic changes 
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in LULC (Chaudhuri and Mishra 2016; Tran et al. 2017). The availability of spatio-

temporal consistent satellite images and ingenious image processing techniques has 

improved the efficiency of monitoring these LULC changes. 

 

Urbanization is one of the most significant factors that cause LULC change. It is the 

rise in the population of cities in comparison to the rural population of the region. 

Urbanization is caused by the transformation of natural land surfaces comprising of 

vegetation and pervious surface into built-up and impervious surfaces due to the growth 

in economy and population (Tan et al. 2010; Mathew et al. 2016; Pal and Ziaul 2017). 

The uncontrolled and unplanned urban growth has led to serious issues on climate and 

local environment. (Bhat et al. 2017). The rapid urban growth directly or indirectly 

affects various environmental variables like land cover, temperature, rainfall and so on. 

India is facing a high rate of urbanization due to which most of its metropolitan cities 

are becoming urban jungles. The rapid urbanization in the cities like Mumbai, Delhi, 

Kolkata, Chennai, and Bengaluru has led to serious environmental issues in the 

respective regions.  

 

In addition to LULC, LST is another imperative parameter which has a significant 

impact on the environment due to rapid urbanization. The LST patterns give useful 

information regarding surface physical properties and climate. Assessing the 

distribution of LST can be helpful in understanding various subjects like 

evapotranspiration, climate change and urban climate (Arnfield 2003; Bendib et al. 

2017). Similar to LULC, LST also has dynamic spatial and temporal variations. 

 

The relationship between urban land covers and LST changes is a crucial factor in the 

field of urban climate change (Guo et al. 2015; Li et al. 2017; Morabito et al. 2016; 

Song et al. 2014a). The response of LST to indices such as NDVI, NDWI, Normalized 

Difference Built-up Index (NDBI) and Normalized Difference Bareness Index 

(NDBAI) has been investigated using correlation and regression analysis (Zha et al. 

2003; X. L. Chen et al. 2006; Rinner and Hussain 2011; Zhang et al. 2013; Estoque and 

Murayama 2017). Sun et al. (2012) reported that LST decreased with an increase in 
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vegetative cover and increased with an increase in the density of urban land in 

Guangzhou, China.  

 

A study conducted in Dohuk city in Iraq has proved that NDBI and NDBAI correlate 

positively with high LST while NDVI and NDWI correlate negatively with low LST 

(Ibrahim 2017). Chen and Zhang (2017) noted that NDVI-MNDWI (Modified 

Normalized Difference Water Index) are better indicators of LST in comparison to 

NDBI and NDVI-MNDWI. In the present study, a linear relationship of LST with 

surface area ratio of different land cover types is formulated. 

 

A lot of studies have been carried out to assess the impact of LULC on LST in various 

parts of India. LST has been extensively used as a significant parameter in 

understanding the impacts of LULC change on the environment. The studies on impact 

of urbanization on LST in various cities of India like Chennai (Devadas and Rose 2009), 

Delhi (Ogawa et al. 2012; Babazadeh and Kumar 2015; Grover and Singh 2015), 

Hyderabad (Franco et al. 2015), Mumbai (Grover and Singh 2015), Nagpur (Kotharkar 

and Surawar 2015), and Jaipur (Jalan and Sharma 2014) have been carried out by 

researchers. Most of the cities in India experience a heating effect with the development 

of urban areas, and the LST increases with increase in urban area and a decrease in 

vegetative cover (Chakraborty et al. 2015; Ziaul and Pal 2018).  

 

2.4 STUDIES ON SURFACE URBAN HEAT ISLAND AND SURFACE 

URBAN COOL ISLAND  

One of the major impacts of urbanization is the development of a temperature anomaly 

called the Surface Urban Heat Island (SUHI) or Surface Urban Cool Island (SUCI) 

wherein there is a difference between the temperature of the urban and surrounding 

rural area. UHI is a phenomenon in which the urban area is hotter compared to the 

surrounding rural area while UCI is observed when the urban area is cooler compared 

to the surrounding rural area.   
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Luke Howard introduced the phenomenon of UHI in 1833, and it is mainly caused by 

the land surface manipulations generated by the impervious surfaces (Kolokotroni et 

al. 2006; Voogt and Oke 2003). Numerous studies have been carried out on UHI 

phenomenon which verified its close relationship with LULC and LST (Asgarian et al. 

2015; Bokaie et al. 2016; Bozorgi et al. 2018; He 2018; He et al. 2019; Sabet Sarvestani 

et al. 2011; Santamouris et al. 2017; Stewart and Oke 2012; Zhao et al. 2017). 

 

The thermal environment of Delhi was mapped by Pandey et al. (2009) and it was 

compared with the Aerosol Optical Depth (AOD). During summer season, the regions 

with lower AOD values tend to have higher temperature compared to higher AOD 

values. It was inferred from the study that the distribution of surface temperature during 

daytime depends on the aerosol distribution and a major water body located in the 

region.  

  

During summer season, the buildings will become overheated, causing discomfort to 

the residents. This in turn leads to more air conditioners being installed causing an 

increase in energy use and carbon emissions (Levermore et al. 2018). During the day, 

an inverse or negative SUHI effect has been found over Jaipur, whereas a moderate or 

very weak SUHI effect has been observed over Ahmedabad, and a strong SUHI effect 

has been observed over both cities at night (Mathew et al. 2018). Soil has a faster rate 

of heating and cooling than manmade materials like roads and concrete, as measured 

by in-situ temperature measurements. The efficacy of remote sensing data for analysing 

the surface temperature fluctuations and surface urban heat island studies depends on 

the time of acquisition of the data. 

 

Local Climate Zone (LCZ) classification is a useful tool to precisely determine the 

impact of urban factors, such as sky view factor, height of buildings, building surface 

fraction on the magnitude of UHI (Kotharkar and Bagade 2018; Stewart and Oke 2012).  

Literature on South Asian cities has thoroughly explored specific elements, such as 

urban LULC shifts and their related variations in vegetation cover, utilising various 

techniques to determine their impact on UHI development (Kotharkar et al. 2018). 
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UHI has also been measured using statistical methods and machine learning 

techniques(Rajasekar and Weng 2009). A Gaussian surface model has been used the 

most in these investigations since it can offer not only the intensity of the UHI but also 

its spatial distribution and point of concentration. UHI effects can also be examined 

using the kernel approach as it is effective in characterizing temperature values spatially 

on a continuous surface (Rajasekar and Weng 2009). Chun and Guldmann (2014) used 

two-dimensional and three-dimensional urban datasets as input for spatial statistical 

models to investigate the urban causes of UHI. The findings reveal that open spaces, 

solar radiation, vegetation, water and building roof-top areas, all have a significant 

impact on surface temperatures and that spatial regressions are required to account for 

the impacts of nearby factors.  

 

Li et al. (2018) recently published a study on LST and regionalized ISA, linear 

regression functions were used to estimate UHI intensity. These statistical models 

eliminate the errors caused by defining the urban and rural boundaries or the selection 

of sample pixels, making comparisons of UHI between cities easier. The difficulties in 

the application of remote sensing data and derivatives in UHI modelling were reported 

by Szymanowski and Kryza (2011). The importance of remotely sensed data in 

modelling urban air temperature heat islands has been emphasised in literature (Shi et 

al. 2021). However, such models exhibited low performance in cities regularly 

shrouded by clouds and dry landscapes. Few researchers have quantified the air-surface 

UHI comparison (Gaur et al. 2018) and UHI attribution analysis (Akbari et al. 2016; 

Cai et al. 2018), by employing small numbers of sample pixels in urban and reference 

regions as an alternative to the area-weighted mean value. 

 

In semi-arid regions, a phenomenon of urban cooling effect is experienced due to 

urbanization. The built-up areas in the semi-arid regions experience lesser temperature 

compared to the surrounding non-urbanized areas. This phenomenon is termed the 

urban cool island effect (Frey et al. 2009). Urban cool island effect on the semi-arid 

environment is a very less explored area. Very few researches have been carried out on 

urban cool island effect, its characterization and quantification (Rasul et al. 2015; Rasul 

et al. 2017). By connecting a conceptual boundary-layer model to a land-surface model, 
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Theeuwes et al. (2015) established a broad physical explanation for the urban cool 

island effect. The difference in the early morning mixed-layer depth over the city 

(deeper) and over the rural area causes UCI, according to the study. One of the primary 

elements that define the duration and magnitude of UCI is urban morphology. 

According to Rasul et al. (2017), imminent studies should be directed toward SUHI 

archipelagos since it has a significant effect on temperature, moisture and precipitation 

of the region. 

 

Several researchers have quantified Urban Heat Island (UHI) and Urban Cool Island 

(UCI) in green spaces and water bodies within cities however the studies on UCI across 

a whole urban area are in their infancy and require better apprehensions (Li et al. 2011; 

Balzter et al. 2017). Research in UCI will provide opportunities for urban planners and 

policymakers to implement adaptive management strategies for sustainable cities in an 

uncertain climate future (Fan et al. 2017).  

 

Yang et al. (2017) used a lumped urban air temperature model to investigate the 

phenomena of UCI in a high-rise compact metropolis. A novel concept of urban cool 

island degree hours was used to assess the intensity and duration of UCI. When 

anthropogenic heat is low, a high-rise and high-density city see a large daytime UCI, 

which is owing to increased heat storage capacity and lower solar radiation gain on 

urban surfaces. When there is no anthropogenic heat in a low-rise, low-density city, the 

UCI exists, but it quickly vanishes when there is minimal anthropogenic heat, and the 

UHI phenomena take over.  

 

An urban cool island effect is observed in some parts of Central India during the winter 

season as reported in few studies (Ghosh et al. 2017). Majority of urban areas in India 

have negative SUHI during the daylight during the pre-monsoon summer season, and 

this is linked to low vegetation in non-urban areas during this period, resulting in less 

evapotranspiration (Ghosh et al. 2017). Heat waves in non-urban regions are more 

intense during pre-monsoon summer days due to greater LST leading to positive SUHI. 

These findings indicate the need for Surface Urban Heat Island Intensity (SUHII) to be 
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re-evaluated in India for climate adaptation, heat stress alleviation, and urban 

microclimate study. 

 

2.5 STUDIES ON IMPACT OF URBANIZATION ON BENGALURU 

Sudhira et al. (2007) reported the city profile of Bengaluru with focus on urban settings 

and urban fabric. The challenges in planning for better management of basic services 

in the city were detailed. From 1973 to 2007, an increase of 466 percent paved surface 

has resulted in a 2% rise in LST, validating the occurrence of urban heat island in 

Greater Bengaluru (Ramachandra and Kumar 2009).  

 

LSTs were found to be lower in vegetation and water bodies than in other land cover 

categories. The mean air temperature of the city centre is found to be substantially lower 

than that of the expansion zones due to the presence of water bodies and vegetation 

(Ambinakudige 2011). The temperature of the city centre, on the other hand, has 

fluctuated dramatically among different land cover classifications. 

 

The existing clumped urbanization at the city centre with minimal headroom for 

additional urban densification implies that greater Bengaluru's future development will 

be in the peri-urban environments (Aithal et al. 2013). Urban simulation modelling 

combined with spatial metrics is helpful in capturing and displaying the spatio-temporal 

patterns of urbanization, as well as providing insights into the trajectory of urban 

expansion, for city planning. 

 

Leapfrog development in core regions and ribbon development and cluster-based 

development in the buffer zones was observed in a time series analysis of land use 

change (Aithal et al. 2018). Urban sprawl was concentrated in places with better 

connectivity (Bharath et al. 2018).  
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2.6 APPLICATION OF SUPPORT VECTOR MACHINE ALGORITHM IN 

REMOTE SENSING 

Vapnik (1995) introduced the Support Vector Machine (SVM) approach, which is 

based on statistical learning theory and has lately been employed in various remote 

sensing applications. SVMs are supervised classifiers and scientists have enhanced 

SVMs to function with limited quantity and quality of training samples (Mountrakis et 

al. 2011).  

 

Blanzieri and Melgani (2008) examined how to develop localised SVM techniques 

using a local k-nearest neighbour adaption. Their findings showed significant gains, 

particularly when non-linear kernel functions were used. Tuia and Camps-Valls (2009) 

proposed a regularisation approach for identifying kernel structure using unlabelled 

data to solve the issue of kernel predetermination. Using the Hilbert–Schmidt 

independence criterion, Camps-valls et al. (2010) provided an improved technique for 

testing kernel independence in diverse picture forms. Marconcini et al. (2009) 

investigated the inclusion of geographical information using composite kernels, finding 

significant gains but at a higher cost of computation. 

 

Ghoggali and Melgani (2008) tested the performance of combination of genetic 

algorithm and SVM for remote sensing categorization using a restricted number of 

training data. The experimental findings demonstrated that even with a minimal training 

sample size, it is possible to enhance classification accuracy. For unsupervised change 

detection, Bovolo et al. (2008) used an SVM with a selective Bayesian thresholding 

technique. Dixon and Candade (2008) compared the algorithms: MLC, 

backpropagation neural network, and an SVM-based classifier for medium resolution 

imaging (15–30 m pixel size). A statistical analysis of a Landsat landscape revealed 

evident flaws in the MLC approach, although the findings for neural network and SVM 

classifiers were identical. Kaheil et al. (2008) created a wavelet and SVM-based 

synthetic method to estimate evapotranspiration at the input data's finest spatial 

resolution based on input variables such as MODIS LAI, MODIS emissivity, and 

spectral data from Landsat TM and ASTER.  
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Durbha et al. (2007) adopted a modified support vector regression method which 

involved parameter regularization for the retrieval of leaf area index from multiangle 

imaging spectroradiometer data and the validation of the results with field data offers a 

fairly good agreement. Moser and Serpico( 2009) estimated the land and sea surface 

temperatures using an automated parameter optimization approach for SVM regression. 

The proposed technique was more efficient compared to traditional grid-search based 

optimization methods like cross-validation and hold-out employing To sharpen 

multispectral bands utilising a higher resolution panchromatic band, Zhang and Ma 

(2008) developed a multiscale mapped least squares SVM (LS-SVM). The studies 

employed QuickBird data and included multiscale Gaussian radial basis function 

kernels. The approach was compared to various fusion methods such as curvelet 

transform, discrete wavelet transform, extended fast IHS and atrous wavelet transform 

and it was discovered that the proposed method and atrous wavelet transform performed 

the best. 

 

SVR has been used in a wide variety of remote sensing problems like biomass 

estimations (Gleason and Im 2012), urban land cover determination from imaging 

spectrometer data (Okujeni et al. 2013) and bio-physical parameters from satellite 

reflectance measurements (Verrelst et al. 2012). The maximum night time urban heat 

island was predicted using SVM regression models based on the following variables: 

NDVI, surface albedo, atmospheric aerosol optical depth, relative aerosol optical depth, 

humidity, sunlight hour, and precipitation (Zhou et al. 2011).  

 

The scale dependency of regression algorithm: Partial least square regression, gradient 

boosting machine, and support vector machine for the prediction of LST was analysed 

by Ghosh and Joshi (2014). Gradient boosting machine and SVM performed better for 

sharpening the image compared to partial least square regression. Piri et al. (2015) 

reported the accuracy of the SVR approach in estimating solar radiation using 

meteorological factors: Sunlight hours, maximum temperature, minimum temperature, 

average relative humidity, and daily solar radiation. The results of the statistical 

indicators coefficient of determination (R2) and Root Mean Square Error (RMSE) 
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indicate the superiority of the SVR model over the empirical models based on sunshine 

duration. 

 

Moosavi et al. (2016) reported that PSO-SVR model furnished better results with an 

RMSE of 1.29 and R2 value of 0.93 compared to Particle Swarm Optimization with 

Adaptive Neuro Fuzzy Inference System (PSO-ANFIS) at 100 spatial resolution. 

Mathew et al. (2016) predicted the LST of Chandigarh city using an SVR model. The 

model was developed with input parameters road density, enhanced vegetation index, 

elevation and LST of the previous three years. SVR model performed better compared 

to artificial neural network model for the prediction of LST.  

 

Abu Awad et al. (2017) employed nu-SVR, which involves nonlinear terms and higher-

order interactions, as well as proper regularisation of parameter estimates for modelling 

the short and long-term black carbon exposures across Massachusetts, Rhode Island, 

and New Hampshire. SVR with improved particle swarm optimization (IPSO) method 

performed better in comparison to M5 tree model and multivariate adaptive regression 

model for the prediction of solar radiation as reported by Ghazvinian et al. (2019). 

Combination of sophisticated meta-heuristic optimization methods and SVR should be 

explored since it will improve the accuracy of prediction of solar radiation. 

 

Groundwater potential map was created using SVR and metaheuristic optimization 

methods such as grey wolf optimization and Particle Swarm Optimization (PSO) for 

the Gangneung-si region, based on 13 groundwater-related characteristics (Fadhillah et 

al. 2021). The performance of SVR algorithm improved by the introduction of meta-

heuristic optimization approach for fine tuning its parameters.  PSO is useful for solving 

nonlinear problems since it converges quickly and requires minimal calculations 

(Fadhillah et al. 2021). The statistical calculation of next-day night-time SUHI by 

combining satellite data and in-situ meteorological data of a few selected cities in China 

using SVR was reported Lai et al. (2021). 
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2.7 SUMMARY OF LITERATURE 

A lot of studies have been carried out in the past relating to the effect of urbanization 

on the environment. Urbanization is a continuous process, and its impacts are also 

aggravating day by day. SUHI/SUCI are the two major impacts of urbanization. 

Researchers have quantified the impact of LULC on LST using different approaches in 

an urban heat island, but very few studies have been carried out on urban cool island. 

The research on urban cool island is in its infancy and should be quantified in detail to 

identify the causes and effects of the same. Remote sensing techniques can be used as 

an effective tool in monitoring the various effects of urbanization. 

 

A thorough review of the various algorithms used for retrieval of land surface 

temperature from satellite images was carried out. Many researchers have studied and 

quantified the impact of land use land cover change on the land surface temperature. 

But very few works of literature are available in which a model is formulated to 

establish the relationship between the various land use and land surface temperature. 

Therefore, developing a new model for the region will be vital to understanding the 

spatiotemporal patterns of UHI and help in predicting the impact of land cover on land 

surface temperature in the future. An area of intense research in UHI monitoring is the 

techniques for data analysis and interpretation that integrate the temporal variations. 

The surface temperatures of urban agglomerations and cities with different climate 

conditions and ecosystems can be investigated using remote sensing. Micro and local 

level UHI research based on statistical regression models should be encouraged. 

Recently, artificial intelligence and machine learning algorithms are widely used for 

UHI studies. 

 

SVR produced better results in comparison to multiple linear regression and artificial 

neural network with backpropagation. SVM has great generalisation ability when 

compared to other nonlinear machine learning techniques, such as the artificial neural 

network and is recognised as one of the best learning algorithms for low sample counts. 

The performance of SVR models can be improved by tuning the parameters with 

optimization algorithms. PSO algorithms have better results for tuning SVR parameters 

compared to other optimization algorithms for different applications. Integration of 



 

24 
 

machine learning algorithms and remote sensing data facilitates a comprehensive study 

of surface temperature of a region. 

 

From the literature reviewed it is clear that many studies have been conducted to study 

the effect of urbanization on climate change. Nevertheless, only a few studies have been 

conducted in the Bengaluru region relating to the effect of urbanization on climate 

change using remote sensing techniques. This study mainly focuses on the impact of 

urbanization on the temperature, in particular, using remote sensing data. 

 

2.8 RESEARCH GAPS 

From the above mentioned observations, a detailed study regarding the effect of 

urbanization on temperature is very crucial in climate change studies of a particular 

region. Future predictions will be possible by establishing a relationship between these 

parameters. Hence the proposed study aims at establishing a relationship between land 

surface temperature and major land cover classes in an urban environment. The study 

aims at exploring various remote sensing techniques for quantifying the anomalies in 

the surface temperature 

 

Earlier studies on Bengaluru are mainly focussed on the UHI of the region since it is 

carried out in Greater Bengaluru. This study considers the whole of Bengaluru urban 

district which facilitates the exploration of the phenomenon of UCI. Hot spot analysis 

helps in the identification od statistically significant hot and cold spots which is a 

distinctive finding in the region. Another contribution of the research work being, the 

future prediction of LST exploiting the relationship between land cover types and LST 

through time. 
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CHAPTER 3 

 

STUDY AREA 

 

3.1 INTRODUCTION 

The study area selected is the Bengaluru urban district in Karnataka state, India. 

Bengaluru is popularly known as the 'Garden city of India' and the information 

technology capital of India. It is famous for its cultural heritage and industries 

encompassing Information Technology (IT), aerospace, manufacturing, and other 

sectors. Kempe Gauda, a scion of the Yelahanka dynasty who eventually established 

himself in Magadi, is credited with the creation of modern Bengaluru in 1537 A.D. 

During his governance, four watchtowers were installed at the four cardinal points 

predicting the expansion of Bengaluru in the course of time. Bengaluru has preserved 

it unique cultural linkages keeping up with its tradition, culture and history, despite the 

hype around IT based and other commercial activities. 

 

3.2 PHYSIOGRAPHY AND CLIMATE 

The Bengaluru urban district is geographically located between 77º34'19" E - 12º59'34" 

N and 77º38'13" E - 12º56'38" N, respectively, as shown in Figure 3.1. The Bengaluru 

urban district has a geographical area of 2,196 km2 and is located at an altitude of about 

900 m above mean sea level. It is situated midway between the eastern and western 

coast of the Indian peninsula. The maximum distance between the eastern and western 

tip of the district is approximately 50 kilometers and the northern to southern tip extends 

to about 58 kilometers.  

 

Bengaluru urban district is constituted by four taluks: Bengaluru East, Bengaluru North, 

Bengaluru South and Anekal. Anekal taluk, Bengaluru South and Bengaluru East are 

characterised by an uneven landscape with a combination of hills and valleys. The 

elevation of Bengaluru South ranges from 717 to 973 metres while for Bengaluru East 

taluk it is between 860 to 928 metres.  Bengaluru North is a level plateau with elevation 
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ranging from 839 to 963 metres above mean sea level. A prominent ridge runs between 

north-easterly to south-westerly in the middle of the taluk. The state of Tamil Nadu 

bounds the Bengaluru urban district in the southeast, the Ramanagara district in the 

southwest, and the Bengaluru rural district in the northeast and northwest. 

 

 

Figure 3.1 Location map of the study area 

 

The district receives a mean annual total rainfall of 880 mm. No major rivers are 

flowing in the district except Arkavati and South Pinakini rivers. The rivers are seasonal 

rivers and Arkavati is presently polluted with sewage. A series of tanks with different 

sizes are located in the eastern parts of Bengaluru South taluk and Bengaluru East taluk. 

 

3.2.1 Geomorphology 

Granite and gneisses are the chief rock types present in Bengaluru North taluk. This is 

exposed in the middle of the taluk as a ridge running north-north easterly and south-
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south westerly. The granitic gneisses are crisscrossed by pegmatitic and aplitic veins. 

Basic xenolithic patches are common and banding is prominent (Directorate of Census 

operations 2011). The rocks are characterized by sheet jointing parallel to the exposed 

surface, which is a unique property of Bengaluru gneisses. The longitudinal joints are 

predominantly seen providing an appearance of tilted beds, on weathered surface.  

 

3.2.2 Climate 

The study area experiences a seasonal dry tropical savanna climate. There are four main 

seasons: the summer season from March to May, the southwest monsoon from June to 

September, the retreating monsoon in October and November and the dry season from 

December to February.  

 

3.2.2.1 Rainfall Pattern 

Bengaluru is bestowed with two rainy seasons corresponding to southwest and 

northeast monsoons from June to September and October to November, preceding one 

another but with opposite wind regimes. The rainfall pattern of the study area from 

1901 to 2011 is presented in Figure 3.2. 

 

 

Figure 3.2 Distribution of annual rainfall in the region from 1901 to 2011 
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The pre-monsoon rainfall accounts for 19 to 20 percentage of the annual rainfall, north 

east monsoon contributes 25 to 28 percentage and south west monsoon contributes 52 

to 56 percentage of the annual rainfall. A relatively high variability of rainfall is 

experienced by Anekal taluk. 

 

3.2.2.2 Temperature 

One of the significant aspects of the climate of the district is the agreeable range of 

temperature, from the lowest maximum of 14°C in January to the highest maximum of 

33°C in April. The winter temperature of the district varies from 12°C to 25°C, while 

the summer temperature ranges from 18°C to 38°C. From the analysis of monthly 

temperature and rainfall data from 1901 to 2000, it can be understood that the highest 

value of the maximum and minimum temperature is recorded in April and May months, 

while the mean rainfall is highest during September and October (Figure 3.3).  

 

 

Figure 3.3 Variation of monthly mean temperature and rainfall of Bengaluru 

district based on 1900-2000 data. 

 

3.2.2.3 Wind Pattern 
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March. The transition of the wind regime from easterly to the westerly and vice versa 

take place during the months April and October. 

 

3.2.3 Soil 

Red fine loamy to clay soils and red laterite are the main soil types in Bengaluru urban 

district. The laterite soil is characterized by red and pale-yellow colour and very low 

base exchange capacity. It is easy to cultivate when moist and the crops grown include 

jowar, ragi and groundnut. The red loams are porous and friable with light texture. The 

texture of the soils varies from gravel to sandy loam to clay loam. The clay fractions of 

the red soils are rich in Kaolinitic type of minerals (Directorate of Census operations 

2011).  

 

3.3 URBANIZATION  

Presently, Bengaluru has become one of the swiftly growing cities in the World from a 

tiny village way back in the 12th century. It has been branded as the 'Silicon Valley' of 

India and is one of the leading technological innovation hubs with a high technological 

achievement index of 13 as per the Human Development Report (Sudhira et al., 2007). 

 

3.3.1 Demography 

From 2001 to 2011, Bengaluru urban district recorded a population growth rate of 47.18 

percent. The decadal growth rate increased by 12.10 percent compared to the previous 

growth rate. The decadal growth rate of rural areas is 12.16 percent, and that of urban 

areas is 51.91 percent which is considerably more than the rate registered in rural areas. 

The annual rainfall received also exhibits an increasing trend. The extent of 

urbanization in the study area can be acknowledged by a tremendous increase in 

population in the past few years. Since 1970, there has been a steep increase in the 

region's population (Figure 3.4). Similarly, the plot of annual rainfall exhibits a 

prominent increase after 1980.  
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Figure. 3.4 Distribution of the population in the region from 1901 to 2011 

 

3.3.2 Impact of Urbanization on Climate 

The temperature of Bengaluru has increased by about 2ºC from 1973 to 2007, 

confirming the urban heat island phenomenon (Ramachandra & Kumar, 2009).  

 

 

Figure 3.5 Annual Temperature variation with number of rainy days in the 

Bengaluru region from 1978 to 2016 
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From the analysis of climate variables for the past few decades, it was observed that 

there is an increase in the region's minimum, maximum and average temperature and 

an increase in the number of rainy days was also spotted during the same period (Figure 

3.5). 

 

Over the years there has been a sharp decline in the number of water bodies in the region 

Another main issue of the study area is the frequently occurring flash floods. It poses a 

threat to the life and property of the inhabitants in the area.  Recently, flash floods have 

become very common in the region. Within just few hours of rain most of the low lying 

areas in Bengaluru will be under water. The storm water drains will not be able to take 

the load resulting in water overflowing in several roads. 

 

The increase in precipitation and the rainy days can be attributed to the region's change 

in temperature and land use land cover. According to previous studies, there has been 

a significant change in the land use land cover of the region. Therefore, a detailed study 

on the spatial and temporal variation of LULC and LST and their interrelationship by 

considering the Bengaluru district as a whole is pertinent at this point in time.  
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CHAPTER 4 

 

 

DATA AND METHODS 

 

The study employs cloud-free satellite images to analyse the LST and LULC change 

patterns. This chapter mainly discusses the data sets, detailed methodology and the 

computational tools employed for this study. 

  

4.1 DATA 

The study is mainly focused on the dry season and employs Landsat 5 Thematic Mapper 

(TM), Landsat 8 Operational Land Imager (OLI), and Moderate Resolution Imaging 

Spectroradiometer (MODIS) images. Table 4.1 illustrates the details of the data used in 

the study. The images were acquired at around 10.00 A.M Indian Standard Time. The 

Landsat images were used for LULC mapping and LST retrieval during the daytime, 

while MODIS data were used for LST validation and for acquiring night-time LST. The 

study uses various remote sensing methods to estimate the LST and LULC of the study 

area for the years 1989, 1994, 2001, 2005, 2014 and 2017. The study used toposheets 

from the Survey of India to prepare a base map: 57G8, 57G12, 57G15, 57G16, 57H5, 

57H6, 57H9, 57H10, 57H13 and 57H14. 

 

4.2 COMPUTATIONAL TOOLS 

The study used two complementary computational software tools: ArcGIS10.1© and 

ERDAS Imagine 14©, along with R 4.1.0 and MATLAB 2015a©. 

 

4.2.1 ArcGIS 10.1 

ArcGIS developed by Environmental Systems Research Institute (ESRI) was first 

released in 1999. ArcGIS is a GIS software used to support field workflow, analyse and 

visualize data. The maps were created to facilitate the identification of spatial patterns 

for better planning and decision-making. ArcGIS is developed around a geodatabase in 
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which spatial data is stored using an object-relational database approach.  It provides 

tools to manage and extract information from remotely sensed datasets. The study 

employs ArcGIS version 10.1 to analyse the land cover patterns and land surface 

temperature and to prepare various maps. 

  

Table 4.1 Specifications of the remote sensing data used in the study 

Sensors 

Date of 

Acquisition 

Path 

/Row 

Bands/Product 

used 

Resolution 

(m) Source 

Landsat 5 

TM 
22-02-1989 144/51 

5,4,3,2 30 
earthexplorer.usgs.gov 

6 120*(30) 

Landsat 5 

TM 
20-02-1994 144/51 

5,4,3,2 30 
earthexplorer.usgs.gov 

6 120*(30) 

Landsat 5 

TM 
27-03-2001 144/51 

5,4,3,2 30 
earthexplorer.usgs.gov 

6 120*(30) 

Landsat 5 

TM 
18-02-2005 144/51 

5,4,3,2 30 
earthexplorer.usgs.gov 

6 120*(30) 

Landsat 8 

OLI 
15-03-2014 144/51 

6,5,4,3 30 
earthexplorer.usgs.gov 

10 100*(30) 

Landsat 8 

OLI 
23-03-2017 144/51 

6,5,4,3 30 
earthexplorer.usgs.gov 

10 100*(30) 

Landsat 8 

OLI 
31-03-2020 144/51 

6,5,4,3 

10 

30 

100*(30) 
earthexplorer.usgs.gov 

MODIS 

(MYD11A1) 
18-02-2005 25/7 LST 1000 ladsweb.nascom.nasa.gov 

MODIS 

(MYD11A1) 
15-03-2014 25/7 LST 1000 ladsweb.nascom.nasa.gov 

MODIS 

(MYD11A1) 
23-03-2017 25/7 LST 1000 ladsweb.nascom.nasa.gov 

*Thermal band is acquired at different resolution, but products were resampled to 30m pixels by 

NASA 
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4.2.2 ERDAS IMAGINE 14 

ERDAS IMAGINE is a satellite image processing tool developed for analysing 

geospatial data in both vector and raster formats. The software could explore various 

datasets including optical panchromatic, multispectral, hyperspectral imagery, radar, 

and LiDAR data. ERDAS IMAGINE powered by Intergraph Corporation is a 

comprehensive package supporting multiple workflows including orthorectification, 

terrain creation, editing and analysis. The study uses ERDAS IMAGINE 14 software 

for land cover classification and land surface temperature retrieval from Landsat data. 

 

4.2.3 R 4.1.0 

R tool developed by Ross Ihaka and Robert Gentleman, is an open-source software 

environment for statistical computing and graphics. It includes a well-developed, 

simple and effective programming language for data manipulation and calculations. 

The software's capabilities are extended by the user created packages, including 

statistical techniques, reporting, etc. One of the main advantages of R is the ease of 

installation and user-friendly interface. It has an extensive, intelligible, comprehensive 

collection of intermediate tools and graphical facilities for data analysis. R 4.1.0 was 

employed in the study to analyse the land cover and land surface temperature data based 

on the concentric ring approach and multiple linear regression. 

 

4.2.4 MATLAB 2015a 

MATLAB (MATrix LABoratory) developed by MathWorks is a registered fourth-

generation programming language to analyse data, develop algorithms and create 

models. The main capabilities of the software include data analyses, programming, 

external language interfaces and parallel computing. It can be employed for various 

image processing and machine learning applications. It facilitates graphics for 

visualizing data, matrix manipulations, implementation of algorithms and interfaces to 

Python, Java, C/C++, .NET, SQL, and Microsoft Excel, etc. MATLAB has add-on 

toolboxes that are application specific in advance research activities. The study employs 
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MATLAB R2015a for coding of Hybrid PSO-SVR algorithm. LIBSVM toolbox was 

used for coding the model. 

 

4.3 OVERALL METHODOLOGY 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.1 Overall methodology of the research work 
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The overall methodology of the study is described in Figure 4.1. The first step includes 

data collection. The data required comprises satellite images and various ground truth 

data. The Survey of India (SoI) toposheet was used to delineate the study area. Land 

Surface Temperature was retrieved from Landsat images by employing a radiative 

transfer equation. The land cover classification was conducted using the Maximum 

likelihood algorithm. The spatio-temporal land cover patterns were analysed using 

Intensity analysis, while the spatio-temporal variation of LST is quantized by 

employing hot spot analysis. 

 

Land cover and LST interaction were explored using the concentric ring approach. 

Linear and non-linear relationship between LST and surface area ratios was analysed 

for the years 1989, 2001, 2005 and 2017 by employing multiple linear regression and 

Hybrid PSO-SVR model respectively. Multiple linear regression and Hybrid PSO-SVR 

model was adopted to quantify the interrelationship between urban surface 

characteristics and LST, the future LST was predicted using Hybrid PSO-SVR model. 

Further, the temporal patterns of urban heat anomaly in the study area were 

investigated. 

 

4.4 ALGORITHMS 

This section explores the significant algorithms employed in this study. This research 

work uses multiple linear regression, support vector regression, and particle swarm 

optimization for linear and non-linear analysis. 

 

4.4.1 Multiple Linear Regression 

In simple linear regression, the relationship between two variables is modelled where, 

x is the predictor or independent variable and y is the response or dependent variable. 

The response y is usually controlled by more than one independent variable. A linear 

model represents the relationship between a continuous random variable y and different 

predictors, which has the form: 

� =  �� + ���� + ���� + ⋯ … + ���� + �                       (4.1) 
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Where β0, β1, ………., βk are the regression coefficients, e describes the random 

variation of y not defined by x variables, which may be due to the effect of other 

variables on y which are not observed or not known (Vogt and Johnson, 2015). 

 

Regression models can be used for various purposes such as prediction, data 

description, parameter estimation, variable screening and control of the output.  

 

The model for ith observation is given by: 

                      �� =  �� +  ����� +  ����� + ⋯ … + ����� +  ��                                        (4.2) 

Assumptions for ei or yi is as follows: 

For i = 1, 2, ……n 

(i) E(ei) = 0 or, equivalently, E(yi) = �� +  ����� +  ����� + ⋯ … +  ����� 

(ii) var(ei) = σ2 or, equivalently, var(yi) = σ2 

(iii) cov(ei,ej) = 0 for all i ≠ j or, equivalently,  cov(yi,yj) = 0 

 

 Assumption 1 specifies that all relevant independent variables ‘x’ are included 

in the model and is linear.  

 Assumption 2 states that the response variance ‘y’ is constant and does not 

depend on the values of predictor variables ‘x’.  

 Assumption 3 exerts that the values of the dependent variable ‘y’ are 

uncorrelated with each other.  

 

The model eq. (4.2) is framed based on these assumptions. Regression coefficients can 

be determined by employing the least-squares approach. Least-squares method is based 

on the principle that the sum of squares of deviations is minimum. 

 

4.4.2 Support Vector Regression 

Support Vector Machines (SVM) proposed by (Vapnik, 1995) is a popular machine 

learning algorithm for identifying patterns and evaluating data that can be used for 

classification, prediction and regression analysis. It is one of the popular techniques for 

analysing sophisticated patterns of data (Rajabi-Kiasari and Hasanlou, 2020). SVM is 
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a non-probabilistic binary classifier, separates the data using linear boundaries. The 

SVM concept fits a hyperplane to a set of data points such that the distance of the closest 

points to the hyperplane is maximum. The closest points are called the support vectors 

and the distance of the support vectors from the hyperplane is termed as margin. The 

basic assumption is that the positive and negative points are linearly separable by a 

linear decision surface. Non-linear classification and regression are implemented by 

mapping the input features into higher dimensional feature space using the kernel trick 

(Mathew et al., 2019). Support Vector Classification (SVC) and Support Vector 

Regression (SVR) are two subclasses of SVM.    

 

Vapnik (1995) introduced SVR with a few minor differences in the principle of SVM 

classification. The most common type of SVR model that uses ε – insensitive loss 

function to solve linear and non-linear regression problems in higher dimensional 

feature space called as ε-SVR. 

 

Consider a training dataset: 

                    � = {(��, ��)|�� ∈ ��, �� ∈ {−1,1}}���
�                                         (4.3) 

Where xi is the input value with n as the dimension of input space and yi is the output 

value.  

SVR method is applied by defining a linear regression function 

                          � = �(�) = ���(�) + �                                                          (4.4) 

Where f(x) represents the forecasted value. Φ(x) is the non-linear function in terms of 

input variable x. Hyperplane bias parameter and weight factor are given by b and w 

respectively. 

 

These coefficients can be estimated by solving the following minimization problem. 

                      ���( �(�)) =
�

�
||�||� + �.

�

�
∑ |�� − �(�)|�

�
���                             (4.5) 

 

      |�� − �(�)|� = �
0 �� |�� − �(�)�� − �(�)| ≤ �

|�� − �(�)| − � ��ℎ������
�                (4.6) 
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Where, ε is the insensitive loss function. The loss function will be zero if the predicted 

data lie within the tube of radius ε (Figure 4.2). Slack variable ξ, ξ* are defined as the 

deviation on both sides of the decision surface (Figure 4.3). C is the regularization 

parameter defining the trade-off between model flatness and empirical risk.  

 

 

 

 

 

 

 

 

 

 

 

Figure 4.2 Solution of SVR problem in graphical form (Source: Smola and 

Schölkopf, 2004) 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.3 The tube of radius ε defined by SVR algorithm within which the 

forecasted value must lie (Source: Panahi et al., (2021)). 
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Equation 4.5 can be rewritten as: 

                                     Min �(�, �, �∗) = |�|� + �(∑ (�
��� � + �∗

�
)                               (4.7) 

  

With constraints, 

                                      ��(��) + �� − �� ≤ �� + �∗
�
             for i=1,2,3 N              (4.8) 

                                       �� − ��(��) − �� ≤ �� + �∗
�
            for i=1,2,3 N              (4.9) 

                                                    ��, �∗
�

≥ 0                               for i=1,2,3 N            (4.10) 

 

The Primal Lagrangian equation can solve the constrained optimization problem. The 

SVR function can be represented in terms of Lagrangian multipliers αi and αi
*

 and kernel 

function k(xi,xj) = (Φ(xi), Φ(xj)) (Smola and Schölkopf, 2004) as: 

 

                           �(�) = ∑ (�� − ��
∗)�(��, ��) + ��

���                                                        (4.11) 

 

The kernel function transforms the input dataset into feature space (higher 

dimensionality space) through non-linear transformation. In order to achieve maximum 

accuracy, precise estimation of C, ε, type of kernel function and optimal value for the 

kernel function parameter is necessary (Panahi et al., 2021) 

 

Researchers have proposed different kernel functions (Pillonetto et al., 2014) and the 

most commonly used kernels are the polynomial functions and the Radial Bias Function 

(RBF) of the Gaussian kernel function. The kernel function to be employed depends on 

the problem and dataset, but RBF performs efficiently for a wide range of datasets.  

 

The RBF function is given by: 

                           �(�, ��) = exp (−�|� − ��|
�)                                                   (4.12) 

Where, γ is the bandwidth of RBF. 

 

The combination of C, ε and kernel function parameter γ determines the optimal 

generalization performance of SVR. Therefore, an optimization algorithm capable of 
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identifying this optimum combination of hyperparameters of SVR will result in a robust 

model. 

 

4.4.3 Particle Swarm Optimization 

Particle Swarm Optimization (PSO), a nature inspired algorithm developed by 

(Kennedy & Eberhart, 1995) can be used for optimizing diverse engineering problems. 

PSO is a popular population-based optimization algorithm motivated by animal’s social 

behaviour, such as schooling fish and flocking birds. Each particle termed as a 

candidate solution which moves in a trajectory defined by its own best position and 

velocity in the parameter space. Particles shift their position in the multidimensional 

search space until a global optimum is achieved, wherein cognitive and social learning 

forms the basis of the search experience. Cognitive learning involves focusing on each 

individual learning experience and exclusion of neighbour’s experience, while social 

learning particle depends on its neighbors for guidance and ignores its own experience. 

The combination of these two models determines the change in position of particles by 

balancing the exploitation-exploration trade-off (Akande et al., 2017). 

 

PSO begins with a randomly generated swarm of particles in a search space with its 

position and velocity constantly changing. X ���⃗
Pbest

, stored in the particle’s memory is the 

best position the particle occupies in the search space. X ���⃗
Gbest 

is the best position 

(minimum error) attainted by all the particles in the search process. Each particle shifts 

towards its best position compared with the group's best position and move towards that 

position, finally converging to a single point (Panahi et al., 2021). 

 

In the PSO method a particle in D-dimensional search space constitutes two vectors, ith 

particle position (Xi ����⃗ ={Xi1,Xi2,Xi3,…… XiD}) and particle velocity (Vi ����⃗ ={Vi1,Vi2,Vi3,…… 

ViD}).  

The particles in the swarm change their position and velocity based on the following 

functions: 

 ��
��⃗ (� + 1) = ���

��⃗ (�) + ���� × [�⃗������
− �⃗�(�)] + ���� × [�⃗�����

− �⃗�(�)]             (4.13) 
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                          �⃗�(� + 1) = �⃗�(�) + ��
��⃗ (� + 1)                                                                     (4.14) 

 

Where, Xi ����⃗ (t+1) and Vi ����⃗ (t +1) are the ith particle position and velocity at (t+1) iteration 

respectively. The balance between global exploration and local exploitation is indicated 

by the optimal value of inertia weight, w. The optimal solution can be obtained with 

fewer iterations if the value of w is suitably selected. However, if the value of w is 

greater than one, then there is an increase in the particle velocity leading to a wider 

search space and unstable algorithm. c1 and c2 are the acceleration constant and learning 

factor respectively. The experiences of the individual particle are reflected by a 

cognitive parameter (c1), while the experiences of all particles is indicated by social 

parameter (c2). The values of these parameters have a notable impact on the movement 

of particles in each iteration, the optimal value of which aids convergence, avoids early 

convergence at local optima (Sheng et al., 2015). gbest refers to the fittest position of the 

entire swarm and p
best

 represents the best position ith particle has ever reached in the 

tth iteration. r1 and r2 are random vectors used to diversify the population with values 

ranging from 0 to 1 (Campana et al., 2013). 

 

Eq. (4.13) can be divided into three parts: current velocity of the particles, cognitive 

component, which indicates the individual particle’s behavior and social component 

which represents a collaboration among particles (Kennedy & Eberhart, 1995). If the 

first part is excluded, the algorithm searches only in the neighborhood of the best 

particle and does not explore the rest of the search space. At the same time, the 

exclusion of the second and third parts will result in a blind global search. To achieve 

the optimal results, balance between local and global search must be maintained by 

employing all three parts of the algorithm. The algorithm stops when no significant 

advancement occurs in the fitness function or when a specified number of iterations 

have conceded. Compared to other metaheuristic algorithms like genetic algorithms, 

the implementation of PSO algorithm is more straightforward, includes fewer 

calculations and operations, with higher convergence rates (Shi & Eberhart,1998). 
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CHAPTER 5 

 

SPATIO-TEMPORAL PATTERNS OF LAND COVER AND LST 

 

5.1 INTRODUCTION 

The present study aims to analyse the spatial and temporal distribution of LC and LST 

for the Bengaluru urban district in the urban cool island effect context. Assessing the 

spatial and temporal distribution of LST and LULC in the region is the need of the hour. 

Bengaluru is one of the fast-growing metropolitan cities of India with a semi-arid 

tropical climate. This study focuses on the characterization of UCI based on hot spot 

analysis, which is one of a kind in the study area. The analysis was performed from 

1989 to 2017. The main objectives of this section are to: quantify the land cover change 

patterns and identify the driving factors, explore the spatio-temporal variation of LST, 

and assess the impact of LC change on LST using hot spot analysis for the period 1989-

2017.  

 

5.2 METHODOLOGY 

The study uses various remote sensing methods to estimate the LST and LC of the study 

area for the years 1989, 1994, 2001, 2005, 2014 and 2017. The methodology of this 

chapter is described in Figure 5.1. Survey of India (SoI) toposheets were used to 

delineate the study area. The study area delineated from the Landsat images was used 

for land cover mapping and LST retrieval. The land cover pattern of the region during 

the period of study was analysed using intensity analysis. The spatio-temporal pattern 

of LST in the study area was explored based on hot spot analysis. 
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Figure 5.1 Flowchart of methodology 

 

5.2.1 Land Use Land Cover Mapping 

Land cover refers to the sort of features on the earth's surface and land use refers to the 

human activity or economic purpose that a piece of land serves. Land use and land 

cover information play a vital role in land planning and management activities. Land 

cover mapping is achieved by classifying the pixel in an image through different image 

classification techniques. Normally, multispectral data are used for classification. The 

numerical basis for categorization is the spectral pattern existing within the data for 

each pixel. i.e., various feature types express different combinations of digital numbers 

based on their inherent spectrum reflectance and radiometric characteristics. For each 

pixel, the term pattern indicates the radiance measurements recorded in different 

wavelength bands. The classification algorithms known as spectral pattern recognition 

Supervised Classification 

1989 LC Map  2001 LC Map 2017 LC Map 
Accuracy 

Assessment 

LST Map 

Thermal band SoI Toposheet 

Landsat 

Hot spot 

analysis 

Study area 

delineation 

Intensity Analysis 
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uses this pixel-by-pixel spectral information as the basis for automated land cover 

classification (Lillesand & Chipman, 2012).  

 

The land cover classification is carried out based on supervised classification technique 

using Maximum likelihood algorithm. In supervised classification, the image analyst 

monitors the pixel categorization process by providing numerical descriptors of the 

various land cover types to the computer algorithm. Training areas include 

representative sample sites of known land cover types that are used to compose a 

numerical interpretation key that characterizes the spatial attributes for each feature 

type of interest. The supervised classification includes a training phase followed by a 

classification phase. Maximum likelihood classifier is based on the assumption that the 

data points in the training set is normally distributed. An unknown pixel is classified 

based on the probability density function by evaluating the probability of the pixel value 

fitting to each category. Maximum likelihood classifier exhibits good performance over 

a range of land cover types, conditions and satellite systems. It can readily handle 

covarying data which is very common in satellite images (Bolstad and Lillesand 1991). 

 

Land Cover map of the region was prepared for the years 1989,1994, 2001, 2005, 2014 

and 2017. It was prepared based on supervised classification by employing the 

maximum likelihood algorithm. Four broad Land Cover (LC) classes were identified: 

vegetation, water, barren and urban. The urban class includes commercial and industrial 

land, residential area, and impervious surface. The area of each land cover class was 

calculated for comparison. 

 

5.2.2 Accuracy assessment 

An unbiased representation of the land cover of a region can be proved by the accuracy 

of the Land Use Land Cover (LULC) map. The accuracy of the LULC map is usually 

measured in terms of a confusion matrix. The rows and columns of the confusion matrix 

consist of sample points (pixels) allotted to a particular category relative to the actual 

category obtained from the ground (Congalton, 1991). The rows usually indicate the 

classified data from satellite images and the columns represent the reference data. The 

map's overall accuracy and each class's accuracy are obtained from the confusion 
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matrix. The overall accuracy is obtained by dividing the total correct pixels by the total 

number of pixels. The individual accuracy is measured using the user's accuracy (error 

of commission), based on classified data and the producer's accuracy (error of 

omission), based on reference data (Smits et al., 1999). 

 

Kappa coefficient is another multivariate technique commonly used in accuracy 

assessment (Cohen, 1960) of classified image. It assesses whether the confusion matrix 

is significantly different from a random result. The Kappa analysis can be used to 

estimate if a classifier result is better than the other by comparing the two matrices 

(Smits et al., 1999). The Kappa coefficient (K) is given by equation 5.1(Congalton, 

1991). 

 

Where r is the number of rows in the matrix, xii is the number of observations in row i 

and column i, xi+ and x+i are the marginal totals of row i and column i respectively and 

N is the total number of observations. The value of K ranges from 0 to 1 where 1 

represents the complete agreement between the classified and reference data (Pal and 

Ziaul, 2017). 

 

This study used 230 ground-truth points from Google Earth and the field using Global 

Positioning System (GPS). The overall accuracy, individual accuracies and Kappa 

coefficient were determined. An overall accuracy higher than 85% indicates the best 

agreement between the classified and the ground-truth data (Foody, 2002). 

 

5.2.3 Intensity Analysis 

Intensity analysis was carried out to analyse the pattern of LC change. Based on the 

preliminary studies conducted in the study area, it is observed that major private sector 

companies were established around the year 2000, which led to the urban growth of 

� =
� ∑ �ii

�
��� − ∑ (���*x��)

�
���

�� − ∑ (���*x��)
�
���

 

 

(5.1) 
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Bengaluru. Therefore, the duration of analysis was divided into two periods: period -1 

from 1989 to 2001 and period-2 from 2001 to 2017 based on the availability of cloud-

free satellite data. The intensity analysis was performed for these two periods. 

  

The extent and rate of LC change for the periods in the entire area and in each category 

are examined using Intensity Analysis (Aldwaik and Pontius, 2012). The intensity 

analysis can be broken down into three levels: interval, category, and transition (Table 

5.1). At the interval level, the variation in the rate of LC change in the study area was 

studied by estimating the annual change intensity of each period. The intensity analysis 

is based on the assumption that the annual changes are distributed uniformly across the 

entire period and it is called uniform intensity. 

 

The annual change rates obtained are compared with the uniform intensity value. The 

results from the intensity analysis determined which period experienced a faster rate of 

LC change compared to the other. In the category level analysis, the intensity of gross 

gains and gross losses in each LC class were estimated for both periods. The intensity 

of gain/loss obtained for each class of LC was then compared with the uniform 

intensity. At the category level analysis, uniform intensity is the annual change that 

would occur if the variation within each interval were scattered uniformly across the 

entire spatial extent. Thus, the dormant and active land use classes and the constancy 

of their pattern of change over both the periods were assessed using category level 

analysis. At the transition level, the transition rate from one LC class to another was 

analysed for both periods. The observed transitions were compared with the uniform 

transition intensities to and from land use classes to examine which LC classes were 

avoided or targeted in a given period (Chaudhuri and Mishra, 2016).  
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Table 5.1. Equations for intensity analysis (Aldwaik and Pontius, 2012) 

St= 100% ×({ ∑ [ ( ∑ Ctij) - Ctjj ] } / [ ∑ ( ∑ Ctij) ] ) /
J
i=1

J
j=1

�
i=1

�
j=1  (Yt+1 - Yt) (5.2) 

U = 100% ×( ∑ { ∑ [ ( ∑ Ctij) - Ctjj ] } / [ ∑ ( ∑ Ctij) ] ) /
J
i=1 (Y

T
-Y1)J

j=1
J
i=1

J
j=1

T-1
t=1   (5.3) 

Gtj=100% ×{ [ ( ∑ Ctij )
J
i=1 -Ctjj ] / (Yt+1-Yt) } / ∑ Ctij

J
i=1   (5.4) 

Lti=100% ×{ [ ( ∑ Ctij )
J
j=1 -Ctii ] / (Yt+1-Yt) } / ∑ Ctij

J
j=1   (5.5) 

Rtin= 100% × [Ctin / (Yt+1-Yt) ] / ∑ Ctij
J
j=1   (5.6) 

Wtn= 100% × { [ ( ∑ Ctin ) -J
i=1 Ctnn] / (Yt+1-Yt) } / ∑ [ ( ∑ Ctij) - Ctnj]

J
i=1

J
j=1   (5.7) 

Qtmj= 100% × [Ctmj / (Yt+1-Yt) ] / ∑ Ctij
J
j=1   (5.8) 

Vtm= 100% × { [ ( ∑ Ctmj ) -
J
i=1 Ctmm] / (Yt+1-Yt) } / ∑ [ ( ∑ Ctij) - Ctim]J

i=1
J
j=1   (5.9) 

Where J = number of classes; i=index of a class at the initial time point for a particular 

time interval; j = index for a class at the final time point; m = index for the losing 

class in the transition of interest; n = index for the gaining class in the transition of 

interest; T = number of time points; t = index for the initial time point of interval (Yt, 

Yt+1), where t ranges from 1 to T-1; Yt = year at time point t; Ctij = number of pixels 

that transition from class i at time Yt to class j at time Yt+1 ; St = annual intensity of 

change for time interval (Yt, Yt+1); U = value of uniform line for time intensity 

analysis; Gtj = annual intensity of gross gain of class j for time interval (Yt, Yt+1); Lti 

= annual intensity of gross loss of class i for time interval (Yt, Yt+1); Rtin = annual 

intensity of transition from class i to class n during the time interval (Yt, Yt+1) where 

i ≠ n;Wtn = value of uniform intensity of transition to category n from all non-n classes 

at time Yt during the time interval (Yt, Yt+1); Qtmj = annual intensity of transition from 

class m to class j during the time interval (Yt, Yt+1) where j ≠ m; Vtm = value of uniform 

intensity of transition from class m to all non-m classes at time Yt+1 during the time 

interval (Yt, Yt+1). 

 

 

At first, a cross-tabulation matrix is prepared for both periods. Table 5.2 & 5.3 

demonstrates the cross-tabulation matrix for the period -1 (1989-2001) and period-2 

(2001-2017) respectively. The first matrix is obtained by overlaying LC maps of 1989 
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and 2001, while the second matrix is obtained by overlaying maps of 2001 and 2017. 

The values in the matrices are the area of the corresponding land cover class in square 

kilometers. The total column in right of the matrix is the area of each class in the initial 

year of period, while the total row is the area of each class in the subsequent year.  The 

column in the far right gives gross losses in each class during the period, while the row 

in the bottom gives gross gains during the period.  

 

Table 5.2. Land transition matrix of the study area for period-1(1989-2001) in sq. 
km 

  
Category 

  2001     
Total 

Gross 

Loss   Vegetation Water Urban Barren 

  Vegetation 417.31 9.87 120.16 281.09 828.43 411.12 

  Water 24.62 17.37 7.23 8.59 57.82 40.44 

1989 Urban 10.38 0.51 75.44 9.64 95.97 20.53 

  Barren 191.66 1.31 212.16 813.61 1218.74 405.13 

  Total 643.97 29.06 414.98 1112.94     

  Gross gain 226.66 11.69 339.54 299.33     

 

At interval level analysis, the LC change experienced during both periods are analyzed 

and the period in which the land transition is faster is identified. At the category level, 

the four categories, namely vegetation, water, urban and barren, were examined. The 

active and dormant categories were determined. At the transition level, the analysis was 

carried out in two sub-levels: firstly, the transition rate from urban to other classes and 

secondly, the transition rate from vegetation to other classes was determined in both 

periods. The LC class which is intensively avoided or targeted is identified in this level 

of analysis.  
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Table 5.3. Land transition matrix of the study area for period-2 (2001-2017) in 
sq.km 

  
Category 

  2017     
Total 

Gross 

Loss   Vegetation Water Urban Barren 

  Vegetation 203.06 11.44 231.57 190.53 636.60 433.54 

  Water 8.57 9.34 5.45 5.41 28.77 19.44 

2001 Urban 48.32 0.58 267.86 97.53 414.29 146.43 

  Barren 87.21 0.82 446.47 574.73 1109.22 534.49 

  Total 347.16 22.18 951.35 868.20     

  Gross gain 144.10 12.84 683.50 293.47     

 

5.2.4 LST Retrieval 

Land Surface Temperature of the study area was retrieved from the thermal infrared 

band of Landsat images. The approach used in this study for LST retrieval is a simple 

single-channel algorithm that can be employed for coarse resolution images. The 

method incorporates atmospheric profile values and emissivity obtained from NDVI, 

thereby improving the accuracy of the extraction. Since the period considered for the 

study is from 1989 to 2017 and the dataset used is Landsat data, an LST extraction 

method that can be applied to sensors with single thermal band data was adapted for 

the study.   

 

The conversion of pixel value of the Landsat images to LST comprises of the following 

steps. (Landsat 7, 2011; Landsat 8, 2015) 

(1) Conversion of pixel values to Spectral Radiance (Landsat 5 TM) 

 

�� = �rescaled.QCal + �rescaled  (5.10) 

In the case of Landsat 8, 

�� = ��.QCal + ��  (5.11) 

Where, Lλ – spectral at-sensor radiance in watts/(m2*ster*µm); Grescaled - rescaled gain; 

Brescaled - rescaled bias; QCal - quantized calibrated pixel value; ML- radiance 
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multiplicative scaling factor for the band; ∆L - radiance additive scaling factor for the 

band 

 

For 1989, the spectral radiance is directly converted to LST in Kelvin (due to the 

absence of atmospheric corrections values), while for the years 2001, 2005 and 2017, 

atmospheric corrections are applied to the spectral radiance obtained. NDVI threshold 

method introduced by Valor and Caselles (1996) was employed to estimate ground 

surface emissivity. The method uses a green coverage ratio and NDVI to assess surface 

emissivity. 

 

The green coverage ratio (Pv) of each pixel was estimated using the following eq. (5.12) 

proposed by (Shi and Zhang, 2018) 

Where NDVImax is the maximum value of NDVI, which corresponds to thick vegetation 

and NDVImin is the minimum value of NDVI corresponding to the soil. 

 

The ground emissivity (ε) of each pixel for the urban land surface was assessed using 

eq. (5.13): 

In the case of Landsat ETM+ and Landsat 8 images, atmospheric corrections are applied 

to the spectral radiance obtained, while for Landsat 5 TM the spectral radiance is 

directly converted to LST in Kelvin (due to the absence of atmospheric corrections 

values). 

 

(2) Application of atmospheric corrections values to spectral radiance for Landsat 7 

ETM+ and Landsat 8 images (McCarville et al., 2011, Tran et al., 2017) 

 

�� =
NDVI - NDVImin

NDVImax- NDVImin
 

(5.12) 

� = 0.9589 + 0.086P� − 0.0671P�
�  (5.13) 
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�� = ��-L� − �(1 − �)��) / (� ⋅ �)  (5.14) 

Where LT – surface leaving radiance; Lu - upwelling radiance; Ld - downwelling 

radiance; � - atmospheric transmission; � - surface emissivity 

The values of Lu, Ld  and � , were evaluated using the Atmospheric Correction Parameter 

Calculator online tool (http://atmcorr.gsfc.nasa.gov; viewed on January 2018).  

  

(3) Conversion of Spectral Radiance to LST 

 

� = ��/ [ln (��/L� + 1)]  (5.15) 

Where LT – surface leaving radiance in watts/(m2*ster*µm) (For Landsat 5 TM image, 

LT = Lλ); K1, K2 - calibration constants of Landsat images (K1 in watts/(m2*ster*µm) 

and K2 in Kelvin); T- the surface temperature in Kelvin 

 

The LST maps obtained were validated using MODIS LST data. One hundred random 

sample points were selected from extracted LST maps and MODIS data for each year 

and a scatterplot was created to determine the coefficient of correlation (Bendib et al., 

2017). The value of the correlation coefficient indicates the accuracy of the prepared 

LST map. 

 

5.2.5 Hot Spot Analysis 

The spatial correlation of LST in the study area was examined using an optimized hot 

spot analysis tool (Getis-Ord Gi*) in the ArcGIS software. The optimized hot spot 

analysis tool interrogates the data to obtain the settings that will yield optimal hot spot 

results. The presence of hot spots and cold spots over the entire area was characterized 

by comparing each feature (LST value) with its neighboring features (Ord & Getis, 

1995). Comparing the value of a given feature with its neighboring features is essential 

in characterizing the spatial relationship of features (Nelson and Boots, 2008). Hot spots 

are regions where the maximum value of the feature is clustered, while cold spots are 

regions where the minimum value of the feature is clustered. Other features should 

bound a feature with a high value with high value to become a statistically significant 
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hot spot. This technique can effectively be used to quantify and characterize spatial 

autocorrelation of remotely sensed imagery. The spatial dependence for each pixel is 

measured, and the relative magnitude of the digital numbers in the pixel's neighborhood 

is indicated. The Getis-Ord Gi*local statistics is calculated using (ESRI, 2017) eq. 

(5.16).  

 

Where, xj – attribute value if the feature; wij – spatial weight between feature i and j; n 

– total number of features and 

and 

 

The Gi* statistic value obtained for each feature in the dataset is a z-score. Clustering 

high values result in higher positive z-scores(hotspot), and clustering of smaller values 

results in smaller negative z-scores (cold spot). The statistical significance of clustering 

for a specified distance is indicated by z-score value (99% significant: >2.58 or <-2.58; 

95% significant: >1.96 or <-1.96; 90% significant: >1.65 or <-1.65). To be statistically 

significant, at a significance level of 0.01(99%), a z-score would have to be less than -

2.56 or greater than 2.56. Seven categories were identified from the statistical results: 

very cold spot, cold spot, cool spot, not statistically significant, warm spot, hot spot, 

and very hot spot. The LST pattern was linked with the change in LC to assess the 

impact of LC change on LST. This methodology gives a better insight into the impact 

��
∗ =

∑ �i,j��
�
��� −̄�� ∑ �i,j
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���
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of LC change rather than concentrating only on certain high and low LST values. The 

hot spot maps were created for 1989, 2001 and 2017. 

 

5.2.6 Pearson’s Correlation Coefficient 

Pearson's Correlation coefficient is introduced in this study to establish the relationship 

between LST and LC classes. It measures the degree of linear correlation between two 

variables, determined by the value of r (Zhang et al., 2019). It is a dimensionless 

measure, and the value ranges from -1 to +1, where -1 indicates the variables have a 

perfect negative correlation, +1 indicates the variables have a perfect positive 

correlation, whereas zero indicates there is no linear relationship between the two 

variables. Pearson's correlation coefficient r between two variables X and Y is given by 

eq. (5.19) (Asuero et al., 2006). 

 

Where X and Y are the mean of the variables X and Y respectively; n is the sample size. 

  

5.3 RESULTS 

Based on the analysis, the LC and LST maps were prepared for 1989, 1991, 2001,2005, 

2014 and 2017. The spatial and temporal patterns of LC and LST were analysed using 

intensity analysis and hot spot analysis respectively. The results prove that there is a 

significant change in land cover and LST of the region over the years. 

 

5.3.1 Land Cover Classification 

The two main classes observed from LC classification are urban and barren land. Water 

constitutes only a small portion of the study area. The accuracy of the land use map 

obtained was determined by comparing the ground-truth measurements with the 

classified data. Ground control points from each land cover class was collected from 

the field and used for accuracy assessment. The overall accuracy of the LC maps 

obtained from different years (1994, 2001, 2005, 2014 and 2017) ranges from 84% to 

� =
∑ (�� − �� )(�� − �� )�

���

�∑ (��-X� )��
��� �∑ (��-Y� )��

���

 
 

(5.19) 
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91%. The Kappa coefficient ranges from 0.85 to 0.91. In recent years, the LC map's 

overall accuracy has been better than in the earlier years since the spatial resolution of 

the recent images was improved using the pan-sharpening technique.  The LC maps of 

the study are shown in figure 5.2. The values of overall accuracy and Kappa coefficient 

suggest that the classified map and the reference data have good agreement with one 

another. The LC change from 1989 to 2017 is analysed through Intensity Analysis. For 

the past 28 years, the urban area has increased by about 40%, while the other land cover 

classes like vegetation, water and barren have decreased. The urban area has increased 

from 4% to 43%, vegetation has considerably decreased from 38% to 16% and barren 

land has decreased from 55% to 40% of the total area from 1989 to 2017. This change 

was mainly due to the increase in information technology establishments which in turn 

accelerate real estate and infrastructural projects at a faster rate to cater to housing and 

other services. The two intervals considered for analysis are 1989 - 2001 and 2001 - 

2017.  
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Figure 5.2. LC map of the study area for the years (a)1989 (b) 1994 (c) 2001 (d) 2005 (e) 2014 (f) 2017. 
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5.3.2 Intensity Analysis of Land Cover Change 

Figure 5.3 illustrates the time interval analysis for the two periods. The bars that extend 

to the right side display indicate  intensity of an annual area of change within each 

period The bars to the left indicate the gross area of total changes in each period . The 

left-hand side of the figure shows that the change in area in the region during  period-2  

(2001-2017) is more and the reason for it being that the duration of  period -1 is larger 

than the duration of period - 2. Analyzing the right-hand side of the figure, it is observed 

that the annual change in area is more prominent in 1989-2001. This is obtained from 

the value of uniform intensity. The uniform line is the vertical line drawn along the 

right side of the figure. The bars that extend beyond the uniform line indicate that the 

change is faster in that period. In this case, the annual change in the area for period-1 

from 1989 to 2001 is faster, while slower in period-2 from 2001 to 2017. This indicates 

that the LC change is faster in 1989-2001 while it is slower in 2001-2017. After 

analysing each interval's rate of LC change, category level analysis for each period was 

carried out. This is because many multinational IT companies started operating from 

1989 to 2001. 

 

Figures 5.4 & 5.5 illustrate the category level analysis for 1989-2001 and 2001-2017 

respectively. The bars that spread to the right side indicate the intensity of annual gains 

and losses within each category and that to the left side display the gross annual area of 

gains and losses in the study area. From the left side of Figure 5.4, it is clear that the 

urban area has the most significant gain during the period 1 while vegetation has the 

largest loss. In the case of Figure 5.5, the most significant gain is for the urban area, but 

the most considerable loss is shifted to barren land. Hence the behavior of urban area 

is similar in both the periods. The active and dormant classes could be identified by the 

uniform line drawn in the right side of the figure. For the period 1989-2001, the urban, 

vegetation and water classes are the active land use classes, while barren land is 

dormant during the period. Among the active land use classes, the urban area has 

experienced significant gain while vegetation and water experienced a significant loss. 

Similar behavior is observed for the period-2 (2001-2017), where the urban, vegetation 

and water are the active classes, and barren land is the dormant class. The study region 

exhibits similar behaviour for the category level analysis in both periods.  
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Figure 5.3. Time intensity analysis for two periods: 1989-2001 and 2001-2017. 
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Figure 5.4. Category intensity analysis for the period-1, 1989-2001 
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Figure 5.5. Category intensity analysis for the period-2, 2001-2017. 
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Figure 5.6 shows the transition intensity analysis to urban for period-1 (1989-2001). 

Figure 5.7 shows the transition intensity analysis to urban for period-2 (2001-2017). 

The bars that spread to the left imply a gross annual area of transitions to urban, and the 

bars to the right imply the intensity of annual transitions to urban within each non-urban 

category. The transition to urban from other non-urban classes is analysed. From the 

left side of Figure 5.6, it is observed that the major transition to the urban area has 

occurred from the barren land. The area of transition from barren to urban is more 

compared to the other two classes. Similar behavior is observed for the period-2, 

provided the transition from barren to urban is stationary. The uniform line on the right 

side of the figure determines whether the transition should be avoided or targeted. Since 

the barren land extends beyond the uniform line, it should be targeted. The transition 

from barren to urban land is prominent compared to the other non-urban classes. The 

transition from water and vegetation can be avoided, and the transition from barren land 

to urban should be focused. Figure 5.7 also exhibits a similar behavior where the major 

transition to the urban area has occurred from barren land. Thus, the transition from 

barren to urban is stationary according to the intensity analysis.  

 

The transition intensity analysis from vegetation for 1989-2001 and 2001-2017 are 

shown in Figure 5.8 and Figure 5.9 respectively. The left side portion of the figure 

indicates the gross annual area of transitions from vegetation and the right side indicates 

the intensity of annual transitions from vegetation within each non-vegetation category. 

From the left side of Figure 5.8, it can be observed that the area of transition from 

vegetation to barren is high compared to urban and water. In the period shown in Figure 

5.9, the most significant transition from vegetation to barren was noticed, while the 

transition from vegetation to urban is decreased and that of water has increased 

compared to period-1. The vertical uniform line to the right side of the figure determines 

whether the transition is targeted or avoided. In both periods, the transition intensity 

from vegetation to urban and water is high. These two transitions are targeted while the 

transition intensity to urban in period-2 is less compared to the previous period.  
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Figure 5.6. Transition intensity analysis to urban for 1989 -2001 
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Figure 5.7. Transition intensity analysis to urban for 2001-2017 
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Figure 5.8 Transition intensity analysis from vegetation for 1989-2001 
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Figure 5.9 Transition intensity analysis from vegetation for 2001-2017. 
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Concisely, it revealed that the major change in land use occurred from 1989 to 2001 as 

compared to 2001 to 2017 considered. There is a major increase in the urban area in 

both periods. The vegetation and water have undergone a significant loss in both 

periods with vegetation experiencing a higher loss in period-2 compared to period-1. In 

both periods, it is seen that the transition from barren to urban is intensely targeted and 

the transition from vegetation to water is also moderately targeted.   

 

5.3.3 Spatio-temporal variation of LST  

The LST patterns of the study area for the years 1989, 1994, 2001, 2005, 2014 and 2017 

are shown in Figure 5.10. The LST obtained was validated using MODIS derived LST. 

The MODIS data used is MYD11A1 with a spatial resolution of 1 km. The spatial 

resolution of the LST retrieved from Landsat images was aggregated to 1 km for 

comparison. A significant positive correlation between the LST estimated from Landsat 

data and MODIS derived LST was obtained from the scatter plot with 100 random 

sample points. Correlation coefficients in the range of 0.70 to 0.74 were obtained for 

different years. This shows the accuracy and reliability of the method used for LST 

retrieval. There was a substantial increase in the LST of the region from 1989 to 2017. 

It can be observed that the region's maximum, minimum and mean LST have increased 

from 1989 to 2017.  
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Figure 5.10. LST Map of the study area for the years (a)1989 (b) 1994 (c) 2001 (d) 2005 (e) 2014 (f) 2017. 



70 
 

 

Figure 5.11 The variation of LST in the study area 

 

The variation of LST in the study area for 1989, 2001 and 2017 were plotted in Figure 

5.11, examined to understand the change in LST patterns. In the year 1989, 53% of the 

study area was under LST range from 32◦C to 38◦C and 45% experiences LST range 

from 26◦C to 32◦C. In the year 2001, 72% of the study area experience an LST of 38◦C 

to 44◦C and 16% experiences LST of 32◦C to 38◦C. For the year 2017, 68% of the study 

area experience an LST of 38◦C to 44◦C and 27% experiences LST of 32◦C to 38◦C. 

Thus, it is evident that there is a clear shift in the range of LST from 1989 to 2017. In 

the year 1989, only a small percentage of the study area experienced LST of 38◦C to 

44◦C whereas, in 2017, 68% of the area falls into this category. Over the years from 

1989 to 2017, the mean LST has increased by about 7◦C.  

 

On analysing the pattern of LST for a particular year, it is observed that the lowest 

values of LST were traced towards the centre portion of the study area while the higher 

values were observed along the periphery of the study area. The centre part of the study 

area is cooler than the surrounding area. This was mainly due to large biological and 

recreational parks of more than 300 acres with many trees, lawns and water bodies in 

the study area as observed in LC map. 
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Apart from this, the LST derived from the satellite images was compared with the air 

temperature of the region. The maximum, minimum and mean values of LST and the 

air temperature was compared for the different years (Figure 5.12). A comparatively 

higher correlation was obtained for maximum temperature with a correlation coefficient 

of greater than 0.81, while 0.80 was obtained for minimum temperature. The reason is 

that the minimum air temperature is usually measured during the night, while the 

minimum LST is the minimum temperature observed at the time of acquisition of the 

satellite image.  

 

 

Figure 5.12 Comparison of LST and Air temperature for the study area 

 

5.3.4 LST and LC relationship 

The mean LST of each land use type is estimated for the years 1989,1994, 2001, 2005, 

2014 and 2017. Table 5.4 demonstrates the change in the distribution of LST for 

different classes for the years 1989, 2001 and 2017. There is a sizeable increase in the 

mean LST for each land use type. From 1989 to 2017, the mean LST of vegetation and 

water increased by about 7◦C and 6◦C respectively. The LST of urban and barren land 
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increased by 8◦C. Meanwhile, there is an increase in the urban land and a considerable 

decrease in the area of vegetation, water, and barren land. The change in LST occurred 

mainly during the period from 1989 to 2001. This was justified through the intensity 

analysis that the change is faster during this period (1989-2001).  

 

The highest increase in LST is observed for built-up and barren land. The vegetation 

class in the study area mostly consist of urban vegetation, i.e., residential lawns, trees, 

shrubs and grasses along the paved surfaces. Due to this, some pixels (spatial resolution 

of 30m) will have a mixed land cover type. In the supervised classification with a 

maximum likelihood algorithm, a mixed pixel is classified into a particular class based 

on the proportion of the class. Hence, vegetation class exhibits a relatively equal 

increase in LST with urban in the study. Even though, there is an increase in LST of 

the region, the lower LST values are observed towards centre of an urban area. The 

higher LST values were observed along the periphery of city where barren land is 

accumulated. This might be due to the presence of several parks and water tanks 

situated in the area.  

 

Table 5.4. Mean LST and land cover area of the study region 

Land 

cover 

types 

1989 2001 2017 

Change 

during 

2001-1989 

Change 

during 

2017-2001 

Mean 

LST 

(ºC) 

Area 

(Sq.km) 

Mean 

LST 

(ºC) 

Area 

(Sq.km) 

Mean 

LST 

(ºC) 

Area 

(Sq.km) 

LST 

(ºC) 

% of 

area 

LST 

(ºC) 

% of 

area 

Vegetation 29.74 829.54 37.00 644.83 36.93 347.16 7.26 8.38 0.07 13.4 

Water 24.90 57.89 29.07 29.1 31.06 22.18 4.17 1.31 1.99 0.31 

Barren 31.58 1220.4 41.23 1114.4 40.06 862.3 9.65 4.81 1.17 10.91 

Urban 29.43 96.09 39.18 415.53 37.94 951.71 9.75 14.49 1.24 24.62 

 

There exists a prominent impact of LC change on the LST of the study region. The 

results show that urban area has increased by approximately 40%, with an LST of 8◦C 
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from 1989 to 2017. Overall, the study shows a positive correlation between urban land 

and LST over the area. However, the increase in LST can be attributed to the rise in the 

impervious area of the region with modern building and construction materials at large 

and usage of HVAC, vehicular pollution etc. on a lighter scale which could be 

investigated separately. 

  

The LST for the different LC classes for the period of interest was compared using the 

Pearson correlation coefficient. Figure 5.13 presents the mean LST experienced by the 

four land cover classes for the years 1989, 1994, 2001, 2005, 2014 and 2017. The 

correlation coefficient obtained for the classes: vegetation, water, barren and urban is 

0.77, 0.88, 0.76 and 0.74 respectively. A relatively high value of correlation coefficient 

(greater than 0.6) indicates that there is a linear relationship between the LST of the 

different LC classes with time. There is a gradually increasing trend noticed in the mean 

LST of the LC classes. One of the limitations of this study is that only six images were 

used for determining the correlation coefficient due to which an exact picture cannot be 

established.  

 

 

Figure 5.13. Variation of mean LST for different land cover classes 
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5.3.5 Impact of LC on LST  

Hot spot identification using Getis-Ord Gi* statistics is widely used in various research 

areas like natural disaster estimation (Harris et al., 2017), crime analysis (Craglia et al., 

2000), road accident evaluation (Prasannakumar et al., 2011) and heat vulnerability 

assessment (Wolf & McGregor, 2013). This study examined the impact of LC change 

on LST using this method. The hot spot map of Bengaluru was created for three 

different dates (Figure 5.14). This provides a better understanding of the LST 

distribution in the area. Identifying hot and cold spots by this method does not depend 

on a single high or low LST value and hence provides a better picture of the hot and 

cold regions.  

 

 

Figure 5.14. Hot spot map of the study area for the years (a) 1989 (b) 2001 

 (c) 2017 
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The cold spots are mainly clustered in and around the water bodies, and the hot spots 

are clustered in the barren land. Over time, some "insignificant" regions have become 

cold spots by the transformation of certain parks and water tanks in the centre part of 

the study area into cold spots. On the whole, hot spot regions are more than cold spot 

regions. Approximately 24% of the study area is warmer while 14% is cooler 

throughout the study period (28 years). The hottest land cover type is barren, and the 

coldest land cover type is water.  

 

During the study period, hot spot regions tend to decrease (39.56% in 1989 to 35.04% 

in 2017) while cold spot regions tend to increase (14.36% in 1989 to 22.89% in 2017). 

In the years 1989 and 2001, waterbody contributed for more than 50% of the cold spots, 

while in 2017, the cold spots are mainly observed in the urban area. Over 28 years, a 

localization of cold spots has been observed in the central part of Bengaluru city, where 

the major land use type is urban. At the same time, hot spots are observed in the 

peripheral regions of Bengaluru, where the major land use type is barren land. As urban 

expansion occurs, the cold spots are clustered in the urban area. Hence it can be inferred 

that in recent years, urban area has become cooler than the surrounding rural area 

confirming the existence of an urban cool island in Bengaluru. Urban cool islands are 

regions where the urban area is cooler than the surrounding rural area. 

 

5.4 DISCUSSION 

The proposed research deals with LC change and its impact on surface heating patterns 

for the metropolitan city of Bengaluru. Monitoring and predicting LC change and its 

impact on the environment is a topic of growing interest in the present scenario. 

 

The main objective of this study was to assess the spatio-temporal patterns of LC and 

LST and explore the impact of LC on LST from 1989 to 2017. Intensity analysis was 

employed to analyse the variations of LC and its driving forces, and the patterns of LST 

was investigated by employing hot spot analysis. This research can be replicated for 

other cities experiencing a significant change in land cover due to urbanization over the 

years. 
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The results show that Bengaluru experienced a significant increase in the urban area 

from 1989 to 2017. From 1989 to 2000, the land use change rate is faster than in 2001 

to 2017 and the transition exhibited is barren to urban. For 28 years from 1989-2017, 

mean LST has increased by about 6ºC and the urban area's mean LST has increased by 

almost 8ºC. Another significant observation from the study is that the cold spots have 

increased, and it is mainly clustered in the urban area. 

 

The findings of this research can be attributed to urbanization experienced in the study 

area during the past years. Numerous public and private sector companies were 

established after 1990 which led to the migration of people from different parts of the 

country to Bengaluru. The urban growth that started in the 1990s is still advancing in 

the region with the drastic increase in population and urban area. Due to urbanization, 

the impervious area has increased, leading to the area's surface heating effect. The 

daytime urban cool effect can be ascribed to different factors. Bengaluru urban district 

constitutes several parks like Cubbon Park, Lalbagh botanical garden being the two 

major spots and has several water tanks and lakes which affect the LST of the region. 

The daytime LST pattern of the area is due to the intense heat waves produced in the 

non-urban area during the summer season. In the summer season, the 

evapotranspiration in the city's outskirts will be much less due to low vegetation. At the 

same time, the evapotranspiration in the urban areas will be high due to the human 

population, planted trees and gardens leading to a cooling effect in the urban area 

compared to the surrounding (Ghosh et al., 2017). 

 

The urban growth and surface warming effect of Bengaluru obtained from this study is 

in agreement with the previous studies (Ramachandra & Kumar, 2009; Ramachandra 

et al., 2013) reported in the region. However, the urban cool effect in Bengaluru is not 

reported in any of the previous literature as most of the studies focused on the Greater 

Bengaluru urban core. Studies carried out in other major Indian cities mainly focused 

on the urban heating patterns and their adverse effects on the human community by 

employing different methodologies. Grover and Singh (2015) reported that the urban 

heating effect in Delhi is observed to be less prominent due to the mixed land use type 

and vegetation cover. The LST pattern exhibits a negative correlation with vegetation 
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and a positive correlation with built-up in Indian cities: Chennai (Farris & Reddy, 2010) 

and Nagpur (Kotharkar & Surawar, 2015) while the temperature profile experiences a 

dip in areas with water bodies, lakes and parks as reported in Hyderabad (Franco et al., 

2015).  

 

5.5 CONCLUSION 

The study presents a comprehensive approach for analysing the spatio-temporal 

variation of LC and LST and the impacts of LC change on the environment. The LC 

change pattern is analysed using intensity analysis and the impact of LC on LST is 

quantified using hot spot analysis. Significant changes in the LC and LST pattern have 

been observed in the study area from 1989 to 2017. The LC change from 1989 to 2001 

is faster than the period from 2001 to 2017. The major change witnessed by the study 

area during this period is the increase in urban, which is due to the transition from 

vegetation and barren to urban. The vegetative cover in the area is extensively affected 

during this transition. The growth of the urban region has been from centre to outwards. 

The LST pattern of the region has also changed during the study period. The mean LST 

of the study area has increased by 6◦C during the period from 1989 to 2017. Over the 

years, there has been a shift in the range of maximum LST (experienced by more than 

50% of area).  

 

This change in LST can be attributed to the increased urban area of the region by the 

addition of a greater number of information technology companies. The impervious 

area has increased drastically from 1989 to 2017. In the past thirty years, the study area 

has undergone significant urban land use changes, one of the main reasons for this being 

the Information technology revolution in the region. Bengaluru has witnessed a 

tremendous increase in job opportunities in Information Technology, aerospace, 

manufacturing, and other sectors. This has led to the migration of a large population 

from different parts of the country to Bengaluru. There has been a significant increase 

in the number of buildings, houses, roads, metros, and other infrastructures, thereby 

widening the urban area. 
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It was found that examining LST patterns at different time frames can be effectively 

performed using hot spot analysis by Getis-Ord Gi* statistics. The identification of hot 

spot and cold spot by this method does not depend on a single high or low LST value 

and hence provides a better picture of the hot and cold regions. Overall, hot spot regions 

(approximately 24%) are more than cold spot regions (approximately 14%). the 

analysis results during the study period showed that hot spots tend to decrease (39.56% 

in 1989 to 35.04% in 2017) while the cold spots tend to increase (14.36% in 1989 to 

22.89% in 2017). As the urban expansion occurs, the cold spots have increased, and it 

is mainly clustered in the urban area. It confirms the presence of an urban cool island 

in Bengaluru urban district, where the surrounding rural area is warmer than the urban 

centre. 
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CHAPTER 6 

 

MODELLING LST AND LAND COVER INTERACTION 

 

6.1 INTRODUCTION 

This chapter provides a detailed understanding of the distribution of LST in the study 

area and how the land cover correlates with LST in an urban cool environment. The 

aim is to characterize the study area's urban growth and LST patterns and explore the 

land cover and LST interaction in the context of UCI effect using the concentric ring 

approach. This is achieved by modelling the urban land density and LST as a function 

of distance from the urban centre. Further, the relationship between land cover types 

such as urban, vegetation, water and LST is determined for different years emphasizing 

the impact of land cover change on the daytime and night-time surface heating. 

 

6.2 METHODOLOGY 

The LST and land cover types of Bengaluru for the years 1989, 2001, 2005 and 2017 

were estimated using various remote sensing methods. LST and surface area ratio of 

the land cover types were analysed using concentric ring-based approach. Figure 6.1 

describes the overall methodology of this section. 

 

6.2.1 Land Density Estimation 

The urban land use type comprises commercial, industrial land, residential area, and 

impervious surfaces. The main urban area of a city is divided into three regions, urban 

core or urban centre, the suburban regions and the outskirts. In this study, the boundary 

was fixed based on the administrative border of the Bengaluru urban district. A city's 

spatial extent was defined based on the concentric ring approach, a standardized 

approach for urban growth studies (Jiao, 2015).
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Figure 6.1 Data and methodology flowchart for LST modelling  
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The study area was divided into concentric rings of width 500 m, and the Urban Density 

(UD) of each ring was estimated. UD was determined based on the land cover map 

prepared from Landsat imagery. The urban land density was calculated by dividing the 

urban area in each ring by the total land area in the corresponding ring.  

 

The procedure was implemented for the years 1989, 2001, 2005 and 2017. Similarly, 

the surface area ratio of the other three land cover classes corresponding to each ring 

referred to as Vegetation Density (VD), Water Density (WD) and Barren Density (BD) 

was estimated for the years 1989, 2001, 2005 and 2017. In the study area, the urban 

area exhibited a monocentric expansion from 1989 to 2017, as evidenced in Figure 6.2. 

  

Based on the land cover map, the urban area of Bengaluru in the years 1989, 2001 and 

2017 was superimposed with the concentric ring to obtain Figure 6.2. The urban area 

has grown spatially from centre to outwards. An integral part of the core city area, 

namely the Corporation circle, was selected as the centre point of the concentric rings. 

Urban features constitute 50% of the area of the centre ring from the year 1989.  
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Figure 6.2 Concentric ring-based partitioning of Bengaluru illustrates the urban 

area in 1989, 2001 and 2017. 
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6.2.2 Inverse S-shape Function 

The spatial variation of urban land density with distance from the urban centre can be 

demonstrated by a modified sigmoid function providing an inverse S-shape curve given 

by equation 6.1 (Jiao, 2015).  

 

c

e 1)
D

2r
α(1

cm
f(r) 




  

(6.1) 

Where f is the modified sigmoid function, r is the distance from the urban centre, m and 

c are asymptotes of function f, which provides the information related to the UD in the 

outskirts of the city. When there is a rise in the value of c, it means urban development 

has occurred in the outskirts or urban fringes. α is a constant controlling the slope of 

the density function, and D determines the radius of the main urban area, an increase in 

the value of D suggests the urban area's expansion.  

 

Figure 6.3. Illustration of different zones of urban area from the urban centre 

(Source: (Jiao, 2015)). 

 

The results of the urban density function are reliable for cities that experience 

monocentric urban expansion. A city's urban growth pattern over time can be 

apprehended by the parameterization of the function. The decreasing rate of urban land 

density can be explained using the first derivation of the urban land density function 
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(Figure 6.3). The urban land density first increases to reach a maximum value and then 

decreases towards the periphery. 

 

The condition in which UD is higher in the city core and comparatively significantly 

less in the surrounding is termed as the compactness of a city. Equation 6.2 can be used 

to determine the compactness of a city. Compact cities have a steep slope for the urban 

density function, while sprawling cities have comparatively less steep curves (Bonafoni 

and Keeratikasikorn, 2018). The slope of the function in the intermediate urban zone 

between urban core and urban fringe is defined by the parameter kS as given in equation 

6.2. When the city experiences expansive urban growth, kS (1/km) value decreases. 

1.316957D

α c)0.57735(1
kS


  (6.2) 

 

6.2.3 Model Parameter Estimation 

A non-linear least square fitting method was used to fit the function to the data sets  by 

an iterative process of determining and refining the values of constants m, c, α and D. 

This non-linear model is employed to fit the inverse S-shape function to the UD and 

normalized LST values. 

 

The accuracy of the fitted model was evaluated using four different metrics: Coefficient 

of determination (R2), Correlation Coefficient (CC), Root Mean Square Error (RMSE) 

and Mean Absolute Error (MAE). 

 

6.2.4 Normalized LST 

The concentric ring approach is employed to determine the mean LST at different 

distances from the city centre. The LST is normalized using maximum and minimum 

values to compare the images of different years. The LST for each pixel is scaled to 

obtain the normalized LST (LSTn) given by equation 6.3. 

 

minmax

min

LST-LST

LSTLST
LSTn


  (6.3) 
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Where LST- is the land surface temperature value of each pixel, LSTmax and LSTmin are 

the maximum and minimum values of LST for a particular satellite image. LSTn is an 

index with a value ranging from 0 to 1 (similar to UD). It is a generalized measure of 

surface temperature, estimated to reduce the effect of atmospheric conditions while 

using multi-year images (Bonafoni & Keeratikasikorn, 2018).  

 

In the present study, daytime LST is calculated from Landsat images, and 

corresponding night-time LST is obtained from MODIS data. Daytime LST maps are 

prepared for the years 1989, 2001, 2005, and 2017, and night-time LST maps of 2005 

and 2017 (depending on the data availability) are used. The mean value of LSTn is 

estimated for each concentric ring (500 m wide), plotted as a function of distance from 

the urban centre. The inverse S-shape function is fitted to mean LSTn data to analyse 

LST variation with distance from the urban centre. 

 

6.2.5 Multiple Linear Regression 

Multiple linear regression is applied to establish the relationship between LST and land 

cover types. LST, UD, VD and WD were employed to develop linear regression models 

of the study area for the years 1989, 2001, 2005 and 2017. These models could be 

employed to predict LST patterns with rapid urban expansion in the future. 

 

UD and mean normalized LST are calculated for each concentric ring for 1989, 2001, 

2005 and 2017. The variation of UD and mean LSTn with distance from the city centre 

is modelled, and the parameters are estimated to understand the behavior of urban 

growth and LST pattern over the years. The correlation between LST and different land 

cover types is reported by developing linear equations for day and night for the study 

period. 

 

6.2.6 Establishment of proposed Hybrid PSO-SVR Model 

In this study, the parameters of the SVR model C, ε and γ are tuned by PSO algorithm. 

This study uses an RBF kernel with only one parameter (γ). The flowchart shown in 

figure 6.4 illustrates the entire process of the proposed model.  
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Figure 6.4. Flowchart of the establishment of Hybrid PSO-SVR Model 

 

In the beginning, the lower and upper limits of the two SVR parameters C and γ are 

specified while the value of ε is kept constant. The randomly generated value of C and 

γ and the value of ε is given as the initial input to SVR model. Then fitness of the model 

in terms of Mean Squared Error (MSE) is estimated for identifying suitable parameters 

of SVR. The pbest value and the fitness evaluation of the particle are then compared. 

pbest value is set to current value if it is better than pbest and the location of pbest in the 
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dimensional space will be assigned to the current value. Then the current value is 

compared with the gbest value and if it is better, gbest is changed to the current value. The 

new position and velocity of the particle are estimated based on the equations 4.13 and 

4.14 respectively. The MSE value is repetitively calculated until a specified number of 

iterations is passed. The critical parameters of SVR and PSO algorithm is specified in 

table 6.1. 

The SVR model intents to develop a relationship of the form. 

Q = f(p) 

Where p is the input vector comprising of variables p1, p2, p3 and p4 and Q is the output 

vector. In this case the input variables are UD, VD, WD and BD while the output 

variable is LST. The proposed model is developed for the years 1989, 2001, 2005 and 

2017 to evaluate the interaction between LST and land cover ratios. The dataset for 

each year is divided into two sets: 70% for training the model and 30% for testing. 

 

Table 6.1 PSO and SVR parameter values 

Method Parameters 
Assigned 

values  

PSO 

Cognitive Parameter 1.5 

Social Parameter 1.7 

Number of Iterations 100 

Inertia weight(w) 0.6 

Swarm size 30 

SVR 

Regularization parameter 

(C) 
0.1 - 20 

Parameter of kernel 

function(γ) 
0.01 - 10 

Insensitivity(ε) 0.1 
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6.3 RESULTS AND DISCUSSION 

The distribution of the surface area ratio of the land cover types for the years 1989, 

2001, 2005 and 2017 is presented with respect to the distance from the centre of the 

city (Tables provided in Appendix). From 1989 to 2017 urban area has increased 

tremendously while vegetation, water and barren land have decreased.  

 

6.3.1 Urban land density modelling 

The urban land density for the years 1989, 2001, 2005 and 2017 was estimated based 

on a concentric ring approach. Figure 6.5 illustrates the variation of urban land density 

from the centre of the city to outwards. Urban land density was estimated using land 

cover map prepared from Landsat imagery, and it tends to decrease from the centre to 

outwards. The UD has increased with years, especially in the outskirts and intermediate 

urban areas, with an intense sprawl in the hinterland for the year 2017.  

 

Figure 6.5. Urban land density from city centre for the years 1989, 2001, 2005, 

2017. 

 

In the year 1989, the UD has higher values in the first 5 km from the centre while in the 

other three years the higher values are observed within 9 km from the centre. The urban 

density curve exhibits a significant progressive shift from the year 2001. The initial 

major dip in the curve could be attributed to the presence of an urban recreational park 

called Cubbon Park near the centre. The city core encompasses numerous green spaces 
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and lakes which explains the recurrent inundations in the curves. In the years 2001, 

2005 and 2017, the urban core does not exhibit significant change while the UD in the 

suburban regions has increased during the years.  

 

The variation of UD with distance from the city centre can be best represented using an 

inverse S-shape function. Figure 6.6 illustrates the fitting of urban land density function 

on the land density data estimated during the study period. The fitting parameters m, c, 

α and D are estimated for the corresponding datasets. The reliability of the model 

function can be ascertained by using the values of the different metrics such as R2, CC, 

RMSE, MAE. Table 6.2 illustrates the accuracy metrics for the fitted model. The higher 

value of R2 and CC and lower values of RMSE and MAE prove the fitting of the model 

in the urban land density data. 
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(d) 

Figure 6.6. Fitting of urban land density function to the land density data for the 

years (a) 1989 (b) 2001 (c) 2005 (d) 2017. 

 

 

Table 6.2. Model evaluation metrics for urban land density 

 1989 2001 2005 2017 

R2 0.926 0.888 0.913 0.861 

CC 0.9911 0.9892 0.9880 0.9582 

RMSE 0.0039 0.0051 0.0059 0.0056 

MAE 0.0189 0.0258 0.0307 0.0261 

 

The parameter c has increased during the period from 1989 to 2017 with a significant 

increase in the year 2017, indicating the growth of urban area in the outskirts during 

period-2. The radius of main urban land has increased over the study period, which is 

indicated by increase in value of D over the years. The value of constant α reports the 

slope of urban density function. The increasing value of α suggests the expansive 

growth of urban core during the study period. The radius of the urban core was less 

than 5 km in 1989 and has grown up to 14 km in 2017. 
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The predicted curve for 1989 is very steep, suggesting the city's compactness during 

that period, while in 2017 it is less steep, signifying the urban area's sprawling. The 

overall density of the urban land can be illustrated by the slope of the urban density 

function (Bonafoni & Keeratikasikorn, 2018). The slope of the function is determined 

using the parameter kS. The value of kS shows a decreasing trend from 1989 to 2017, 

indicating an increase in suburban growth (Table 6.3). The urban area was initially 

concentrated in the city, and later it expanded to the outskirts. Since the year 2001, UD 

in suburban and urban fringe has expanded and is still growing as indicated by the curve 

of 2017.  

 

Table 6.3. Slope of the modified sigmoid function for urban land density 

 
1989 2001 2005 2017 

kS 0.232 0.178 0.120 0.137 

 

There was a significant leap in the urban area from 1989 to 2001, which continued until 

2017. The urban core area has increased, and a rapid urbanization has occurred in the 

outskirts. In comparison to 1989, there has been a significant increase in UD in the 

outskirts (beyond 15 km from the city centre) in recent years. For the year 2005, some 

barren land pixels are misclassified as urban; hence it gives a slightly higher UD value 

in the urban core. The urban area has grown spatially following a monocentric growth 

pattern. Over the years, the urban density curve has become less steep, especially in 

suburban regions, signifying the increase in urban areas. The positive drift in UD after 

2000 is due to the numerous construction activities in the area during that period. 

Numerous information technology parks and public sector industries were established 

in Bengaluru during that period. This has led to the enormous growth of Bengaluru both 

in terms of population and urban area. 

 

6.3.2 Normalized LST modelling 

The mean normalized LST with distance from the city centre is assessed based on the 

concentric ring approach for day and night-time. The variation of mean normalized LST 

with distance for different years during day and night-time is illustrated in Figure 6.7. 
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During the daytime, the mean LSTn values increase from the urban centre to outwards, 

while at night it is reversed. The urban centre is cooler than the outskirts during the 

daytime and hotter at night. Even though the trend of mean LSTn is different during day 

and night-time, the shape of the curve is similar.  

 

(a) 

 

(b) 

Figure 6.7. Mean normalized LST with distance from the city centre (a) Daytime 

for the years 1989, 2001, 2005, 2017 (b) Night-time for the years 2005 and 2017 
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During the daytime, the range of LSTn values is from 0.35 to 0.65. During the study 

period from 1989 to 2017, LSTn curve has become steeper, and the minimum LSTn value 

observed in the urban centre has decreased over the years. Daytime LSTn observed in 

the inner and suburban areas shows a significant decreasing trend over the years. The 

lower LSTn values are concentrated at a distance of less than 6km from the urban centre 

during the daytime, signifying the presence of an urban cool island or urban sinks. It is 

a condition in which the urban area is cooler than the surrounding peri-urban or rural 

area. Over the years, an urban cooling expansion beyond the urban core is observed 

during the daytime. The distance beyond which higher LSTn values are observed is 

increasing over the time period and is about 15 km in recent years. 

 

The LST patterns can be explained with respect to the land cover surface ratios in the 

study area (Tables provided in Appendix). The dip in LST is observed in rings where 

the land area constitutes more vegetation and water bodies than urban land. The study 

area comprises many urban parks and water tanks which help in lowering LST in the 

city core. Ring 1 & 2 exhibits a drop in LST due to the presence of Cubbon Park, one 

of the largest urban vegetation in the study area. Two main urban features spotted in 

rings 3 and 4 are Race Course and M Chinnaswamy stadium. Another major urban park 

in the region called Lalbagh Botanical Garden and lake which are positioned in ring 5 

and 6. Several lakes and tanks such as Ulsoor lake, Madiwala lake, and Bellandur lake 

are situated within the 10 km radius of the city centre. Beyond urban core, undulations 

in LST pattern for the years 1989 and 2001 are smoothened in the later years due to the 

conversion of a large extent of barren land to urban.  

 

Alternately, night-time LST exhibits different behavior, and the LSTn value ranges from 

0.2 to 1. The mean LSTn curve of 2005 is steeper than that of 2017, suggesting that 

urban heat expansion has occurred over the years. Night-time LSTn values in the urban 

core do not change significantly, while in the suburban area and urban fringes the value 

has increased.  
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Table 6.4 Model evaluation metrics for normalized LST 

 Daytime Night-time 

1989 2001 2005 2017 2005 2017 

R2 0.972 0.907 0.913 0.952 0.97 0.971 

CC 0.9798 0.9613 0.9828 0.9931 0.9974 0.9968 

RMSE 0.0013 0.0017 0.0015 0.0013 0.0028 0.0026 

MAE 0.0071 0.0089 0.0083 0.0068 0.0135 0.0142 

 

The higher LSTn values are concentrated in the urban centre at a radius of less than 6 

km, confirming the presence of an urban heat island effect during night-time. During 

the night-time, the urban area is hotter than the surrounding peri-urban or rural area. In 

the years 2005 and 2015, the lower night-time LSTn values are observed beyond 15 km. 

 

The normalized LST values show that the variation of normalized LST with distance 

from the urban centre follows an inverse S-shape function. Figure 6.8 and 6.9 illustrate 

the fitting of the inverse S-shape function to the normalized LST during daytime and 

night-time respectively. The model parameters m, c, α, D and the coefficient of 

determination R2 are estimated for the corresponding LSTn values. The R2, CC, RMSE 

and MAE values estimated for the corresponding images are described in Table 6.4. The 

reliability of the model function can be ascertained by high R2 and CC values.  
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(c) 

 

(d) 

Figure 6.8. Fitting of the function for the mean LSTn values of day time from 

urban centre: (a) 22 February 1989 (b) 27 March 2001 (c) 18 February 2005 (d) 

23 March 2017 
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(a) 

 

(b) 

Figure 6.9. Fitting of the function for the mean LSTn values of the night-time 

from urban centre: (a) 18 February 2005 (b) 23 March 2017 

 

Considering the daytime data, the decrease in the value of c indicates that the LST has 
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increased over the study period, which is indicated by the increase in the value of D 

over the years. The constant α reports the slope of the function, α is negative since there 

is an increasing trend of LST from centre to outwards. The rise in the value of α 

indicates an expansive growth of the urban cool effect during the study period. The 

night-time LST also exhibits similar behaviour with the reverse trend in LST. The 

night-time LST of suburban and urban fringes has increased as proved by a rise in the 

value of c over the years.  

 

Table 6.5 Slope of the modified sigmoid function for normalized LST 

  1989 2001 2005 2017 

kS 0.068 0.124 0.093 0.057 

 

The kS parameter values in Table 6.5 indicate that the heat sink effect during the 

daytime has expanded over the years, which is proved by a less steep curve in 2017. 

The sprawling of the cooling trend coincides inversely with the suburban growth trend 

shown in Table 6.3.  

 

The mean LSTn for day and night-time was successfully modelled using inverse S-shape 

function. As urban expansion occurs, the study area experiences an expansive cooling 

effect or urban heat sinks during daytime. While at night-time, an expansive heating 

effect is experienced in accordance with the growth in UD in the suburban area and 

outskirts. Therefore, during the daytime, the study area experiences an urban cool 

island, and during night-time it exhibits an urban heat island. The presence of 

statistically significant cold spots in the city centre and hot spots in the periphery during 

daytime was reported in the previous chapter. 

 

The daytime urban heat sinks or cool effect can be attributed to different factors. The 

Bengaluru urban district comprises several recreational and ecological parks, out of 

which Lalbagh Botanical Garden and Cubbon Park are the two main spots. The 

presence of these urban parks and water tanks helps in reducing the LST of the city 

core. During summer, the city's outskirts will be mostly dry, absorbing more heat than 

urban areas. Since it is primarily barren, evaporation and transpiration will be less 
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leading to lower LST in the urban area compared to the surrounding during daytime 

(Rasul et al., 2015). 

 

The night-time heating can be attributed to the anthropogenic heat released from the 

impervious surfaces such as concrete road pavements, building glass, concrete roofs 

etc. In the suburban regions, night-time LST of 2017 is higher compared to 2005, 

coinciding with the growth of UD in the region during recent years. 

 

6.3.3 Relationship between urban density and normalized LST 

A scatterplot is prepared with urban land density and mean normalized LST for the 

different years during daytime and night time as shown in Figure 6.10 and 6.11 

respectively. Third-degree polynomial function is fitted to the dataset and the 

coefficient of determination is computed.  

 

      

     

Figure 6.10. The plot of urban land density with normalized daytime LST 

computed for each concentric ring: 1989, 2001, 2005, 2017 

 



 

101 
 

     

Figure 6.11 Plot of urban land density with normalized night-time LST 

computed for each concentric ring: 2005 and 2017 

 

The r2 values and the polynomial functions are given in figures 6.10 and 6.11. The urban 

land density and mean normalized LST computed in each concentric ring exhibit an 

accurate relationship which is proved by the high r2 values. The relation between the 

urban density and the heat waves established can be used as scientific support for the 

formulation of urban planning policies 

 

Concisely, in Bengaluru, the daytime LST during the summer season and urban density 

have a negative correlation implying that the urban area is cooler than the surrounding 

peri-urban area. The night-time LST and urban density have a positive correlation 

suggesting the presence of an urban heat island at night in the summer season. 

Therefore, it can be concluded that urban density is not the only factor determining the 

LST of the study area. The daytime LST pattern of the area is due to the intense heat 

waves produced in the non-urban area during the summer season. In the summer season, 

the evapotranspiration in the city's outskirts will be much less due to low vegetation. At 

the same time, the evapotranspiration in the urban areas will be high due to human 

population and the planted trees and gardens leading to a cooling effect in the urban 

area compared to the surrounding (Shastri et al.,2017). 

 

6.3.4 Relationship between LST and surface area ratio 

The relationship between LST, VD, WD and UD was obtained using multiple linear 

regression. The multiple regression equations developed for the study area for different 

years is presented in equation 6.4 – 6.7, as follows: 
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(a) Daytime 

For the years 2017: LSTn = 0.94 - 0.51UD - 1.04VD - 0 .48WD  (6.4) 

2005: LSTn = 0.73 - 0.33UD - 0.33VD - 0 .06WD  (6.5) 

2001: LSTn = 0.79 - 0.23UD - 0.42VD - 0 .05WD  (6.6) 

1989: LSTn = 0.61 - 0.24UD - 0.03VD - 0 .36WD  (6.7) 

 

(b) Night-Time 

For the years 2017: LSTn = 1.57UD + 2.79VD + 1.13WD - 0.75  (6.8) 

2005: LSTn = 1.43UD + 1.20VD + 0.003WD - 0.46  (6.9) 

 

The regression models explaining the relationship between UD, VD, WD and LST 

during day and night are shown in equations 6.4 to 6.7 and 6.8 to 6.9, respectively. 

Coefficient of determination (R2) value of approximately 0.94 was obtained for all the 

regression models. The scatterplot of predicted and observed LSTn indicates the 

accuracy of the models (Figure 6.12 & 6.13). The regression models obtained explain 

the best relationship between LST and land cover types.  
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Figure 6.12. Comparison of observed and predicted normalized LST for the 

daytime 

 

 

Figure 6.13. Comparison of observed and predicted normalized LST for the 

night-time 

 

All the parameters of the model exhibit a statistically significant relationship with LST. 

For the years 2017, 2005 and 2001, the parameters UD and VD exhibit high statistical 
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significance with a p-value < 0.001 while for the year 1989, UD and WD have a p-value 

< 0.001. The model suggests a negative correlation exists between LST and VD, WD 

and UD during the daytime. In the study area, urban land, vegetation and water bodies 

cause a reduction in LST during the daytime. Many previous studies have reported the 

negative correlation of LST with vegetation and water bodies (Ramachandra & Kumar, 

2010; Bharath et al., 2018). The negative correlation between LST and UD is relatively 

distinct observation in comparison to the findings in the urban heat island studies of the 

study area (Ramachandra et al., 2013). However, the urban land, water and vegetation 

enhance LST pattern during night-time.  

 

Several studies have been conducted on UHI effect in different urban centres of India. 

In Chennai, LST exhibits a negative correlation with vegetation and a positive 

correlation with densely built-up (Faris and Sudhakar Reddy, 2010) and air temperature 

increases in a radial direction from suburbs to city centre (Devadas and Ross 2009). 

Badarinath et al. (2005) observed the day and night-time UHI in Hyderabad and 

reported that core urban areas experience a night-time urban heat island. Thomas et al. 

(2014) noted that the UHI intensity is stronger in winter than in summer and the early 

night UHI is less intense when compared to the pre-drawn UHI in Kochi. A study 

carried out in Delhi from 2007 to 2010 suggests that a UCI is experienced during day 

time in May, June, November and December (Pandey et al., 2012).  

 

6.3.5 Hybrid PSO-SVR Model 

The non-linear relationship between surface area ratios and LST was established using 

a hybrid PSO-SVR model for the years 1989, 2001, 2005 and 2017. LST for the four 

time steps was predicted using different combinations of predictive variables. PSO 

algorithm was used to tune the hyperparameters of SVR model. The proposed model 

was implemented in MATLAB environment. The model was validated using evaluation 

indices, RMSE and Coefficient of Determination (R2). Optimal values of regularization 

parameter C and radial bias kernel function γ with the lowest MSE was estimated from 

the range specified, (Table 6.1) by employing the PSO algorithm. The SVR model was 

trained using these optimal hyperparameters. The performance of Hybrid PSO-SVR 
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model for four different combinations of predictive variables in the testing and training 

phase at four time steps is presented in Table 6.6.  

 

Model result diagrams of base combination where LST is modelled with respect to UD, 

VD, WD and BD for the years 2017, 2005, 2001 and 1989 are presented in the following 

sections. 

 

6.3.6 Results of Hyperparameter tuning 

The fitness values were recorded during the hyperparameter tuning process by applying 

PSO, to draw the fitness curves. Figure 6.14 shows the best fitness (minimum MSE) 

and average fitness (maximum MSE) for the years 2017, 2005, 2001 and 1989. 

 

 

 

 



 

106 
 

 

 

 

 

Figure 6.14 Fitness curves for optimizing hyperparameters using PSO for the 

years 2017, 2005, 2001, 1989 
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For the year 2017 the average fitness value ranges from 0.0111 to 0.0278 in first 100 

iterations. The minimum fitness decreased from 0.00564 to 0.00532 at sixth iteration 

and decreased further to 0.00529 at sixty second iteration and beyond remain constant. 

The lowest value of minimum MSE (0.00529) was attained after 62 iterations. In the 

case of 2005, minimum fitness decreased from 0.00751 to 0.00711 at the third iteration 

and decreased further to 0.00694 at thirty second iteration and kept constant. The 

average fitness value ranges from 0.01276 to 0.02015. The lowest value of minimum 

MSE (0.00694) was attained after 32 iterations. For 2001, the average fitness value 

ranges from 0.01574 to 0.0357. The minimum fitness decreased from 0.0129 to 0.01266 

at the seventh iteration, decreased further to 0.01234 at the fifteenth iteration, and 

remained constant. In the case of 1989, minimum fitness decreased from 0.01057 to 

0.00964 at the third iteration, decreased further to 0.00912 at eightieth iteration and 

beyond remains constant. The average fitness value ranges from 0.0156 to 0.02573. For 

2001 and 1989 the lowest value of minimum MSE (0.01234 and 0.00912) was attained 

after 15 and 80 iterations respectively. These results prove the feasibility and efficacy 

of PSO algorithm in tuning the hyperparameters of SVR. The Hybrid PSO-SVR model 

was built on the tuned hyperparameters for modelling LST with different surface area 

ratios at different time frames. 

 

6.3.7 Capability of Hybrid PSO-SVR model 

Figure 6.15 demonstrates the capability of the hybrid PSO-SVR model on the training 

and testing dataset. It can be observed that LST can be effectively modelled by 

employing the proposed model. R2 values of the training set was close to the R2 values 

testing set suggesting that the proposed model was well trained. 
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Figure 6.15 Performance of Hybrid PSO-SVR model at training and testing 

stages for the four time steps 

 

The values of optimized SVR hyperparameters (C, γ, ε) of the model are given in Table 

6.6. These hyperparameters are applied to the test data to predict LST accurately. The 

value of ε is kept constant at 0.1 while the values of C and γ are optimized using PSO 

method.  

 

The impact of UD, VD, WD and BD on LST can be observed from Table 6.6. The base 

combination where all the parameters are included has a higher value for R2 for all the 

four years. LST of the region is better predicted by using all the four surface area ratios. 

It can be observed that a single parameter or a combination of two parameters cannot 

accurately determine the LST of the region. The model results indicate that LST is the 

combined effect of all the land cover classes of the region. This combined effect is very 



 

111 
 

effectively modelled using the proposed Hybrid PSO-SVR model and it is consistent 

for all the four years. 

 

There is a commendable variation in values of UD and VD over the years as Bengaluru 

witnessed extensive urbanization from 1989 to 2017, however, the proposed method 

could accurately model the interrelationship of the LST with the predictive variable. 

This demonstrates the model's superiority in establishing and predicting non-linear 

relationships between parameters. 

 

Table 6.6 Optimal SVR hyperparameters and evaluation indices for train and 
test dataset 

Year 
Predictive 

variables 

Train   Test   
Optimal SVR  

Hyper-parameters 

R2 RMSE   R2 RMSE   C γ ε 

1989 

UD 0.971 0.076  0.957 0.081  5.971 0.745 0.1 

UD,VD 0.981 0.064  0.970 0.079  7.641 0.520 0.1 

UD,VD,WD 0.972 0.078  0.968 0.094  11.741 0.115 0.1 

UD,VD,WD,BD 0.976 0.074   0.967 0.055   15.819 0.143 0.1 

2001 

UD 0.917 0.106   0.890 0.159   2.071 2.904 0.1 

UD,VD 0.976 0.067  0.952 0.094  19.236 0.054 0.1 

UD,VD,WD 0.975 0.065  0.958 0.086  13.769 0.071 0.1 

UD,VD,WD,BD 0.968 0.077   0.964 0.062   11.253 0.036 0.1 

2005 

UD 0.958 0.105  0.953 0.122  8.470 0.447 0.1 

UD,VD 0.973 0.079  0.963 0.097  14.020 0.253 0.1 

UD,VD,WD 0.972 0.078  0.965 0.108  10.070 0.273 0.1 

UD,VD,WD,BD 0.981 0.071   0.965 0.087   20.000 0.184 0.1 

2017 

UD 0.836 0.188   0.808 0.232   7.114 0.069 0.1 

UD,VD 0.981 0.071  0.969 0.086  2.173 0.981 0.1 

UD,VD,WD 0.981 0.064  0.975 0.090  12.047 0.660 0.1 

UD,VD,WD,BD 0.981 0.072   0.966 0.095   11.525 0.273 0.1 
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6.4 CONCLUSION 

The urban land density and mean LSTn were modelled and parameterized using urban 

land density function for the years 1989, 2001, 2005 and 2017. The concentric ring-

based approach to determine the urban land density and LST with distance from the 

city centre is useful in characterizing the variation. The change in LST pattern over the 

years during day and night-time was established using this method relatively accurately. 

The spatial variation of LST and different land cover types and their interrelationship 

was explored by the correlation method.  

  

Bengaluru has experienced a significant sprawling urban growth during recent years. 

Over the years, the suburban areas and the urban fringes have developed. During the 

summer season, the behavior of LST during daytime and night-time contradict each 

other. During daytime, urban area experiences a cooling effect, and at night-time an 

urban heat effect is experienced. Apart from urban density, other land cover types also 

contribute to the LST pattern of the area.  

 

Regression models so developed could predict LST of the region effectively with R2 

value of about 0.94 for both day and night-time. The positive and negative effects of 

urban, vegetation and water bodies on LST have been quantified, and the coefficients 

of the equation indicate the association between LST and the land cover types. LST and 

land cover interaction was effectively modelled using linear and non-linear regression 

algorithms. For surface area ratio, R2 value in the range of 0.94 and 0.97 was obtained 

for MLR and Hybrid PSO-SVR model respectively.  
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CHAPTER 7 

  

MODELLING AND PREDICTION OF LST BASED ON URBAN 

SURFACE CHARACTERISTICS 

 

7.1 INTRODUCTION 

The relation between LST and urban surface characteristics can be studied by using 

remote sensing indices like Normalized Difference Vegetation Index (NDVI), 

Normalized Difference Water Index (NDWI) and Normalized Difference Built-up 

Index (NDBI). The variation influences the spatio-temporal patterns of LST in the 

urban surface characteristics such as the spatial arrangement of the urban land uses, the 

spatial composition, extent of built-up and vegetation. Therefore, the interaction 

between urban surface characteristics and LST requires further investigation. In this 

chapter, the relation between LST and NDVI, NDWI, NDBI is modelled by employing 

linear and non-linear regression techniques and further LST is predicted based on these 

surface characteristics. 

 

7.2 METHODS 

Remote sensing indices such as NDVI, NDWI and NDBI were determined from 

Landsat images for the years 1989, 2001, 2005 and 2017. The relationship between 

LST and remote sensing indices was analyzed based on linear and non-linear regression 

methods. The linear relationship between LST and remote sensing indices was studied 

by using MLR technique. Further, the proposed Hybrid PSO-SVR model was applied 

to the datasets to predict LST values based on these indices. Hypothetical scenarios 

were introduced in the prediction to assess the impact of change in vegetation and water 

bodies on LST. Temporal variation of urban heat anomaly of the region over the period 

of study was also investigated. The overall methodology is presented in figure 7.1. 
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Figure 7.1 Flowchart of methodology 

 

7.2.1 Urban Surface Characteristics 

Three remote sensing indices, NDVI, NDWI and NDBI were used to characterize the 

urban surface in the study area. NDVI, NDWI and NDBI were estimated from the 

Landsat images for the years 1989, 2001, 2005 and 2017. 

 

7.2.1.1 NDVI 

Researchers have formulated the NDVI index to evaluate the above-ground biomass. 

Features with lower red reflectance and higher Near-Infrared (NIR) reflectance will be 
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enhanced and those with low NIR and red reflectance will be eliminated (Chen et al., 

2006). NDVI is calculated using eq. (7.1) 

                                    NDVI =
NIR - Red

NIR + Red
                                           (7.1) 

The value ranges from -1 to +1. Negative values indicate open water features, zero 

refers to bare soil and positive values indicate vegetated surfaces 

 

7.2.1.2 NDWI 

NDWI was formulated by (McFeeters, 1996) to delineate open water features from 

satellite images and is based on the same assumption as NDVI. Green and NIR bands 

are used for the computation of this index. It is calculated using eq. (7.2) 

                                     NDWI =  
Green - NIR

Green + NIR
                                                 (7.2) 

The empirical equation was framed by taking advantage of the condition that open 

water features have maximum reflectance for the green band and low reflectance for 

NIR wavelength. Soil and terrestrial vegetation possess negative or zero value for 

NDWI while open water features have higher positive values. 

 

 7.2.1.3 NDBI 

NDBI was introduced by Zha et al. (2003b) to delineate built-up area based on the 

spectral response and other land covers using the eq.(7.3). A drastic increase in the 

reflectance of Mid-Infrared (MIR) and NIR is exhibited for built-up areas and barren 

land. The index will have a negative value for water bodies while the vegetated surface 

will have zero or close to zero values 

                                                     NDBI =  
MIR - NIR

MIR + NIR
                           (7.3) 

 

7.2.2 Multiple linear regression analysis 

The main objective of regression is to fit a model to a training dataset to understand the 

relationship between input and output variables. MLR was applied to datasets of the 

four-time steps in this study. Linear regression analysis was performed to model LST 

combining the three remote sensing indices. LST, NDVI, NDWI and NDBI were 
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employed to develop linear regression models of the study area for the years 1989, 

2001, 2005 and 2017. MLR was applied using two window sizes of 3x3 and 5x5. The 

correlation between LST and the indices is reported by developing linear equations for 

daytime for the study period. 

 

7.2.3 Establishment of proposed Hybrid PSO-SVR model 

The parameters of the SVR model C, ε and γ are tuned using PSO algorithm. The 

methodology explained in Chapter 6 section 6.2.6 is employed for developing the 

Hybrid PSO-SVR model.  

 

Table 7.1 PSO and SVR parameter values 

Method Parameters 
Assigned 

values  

PSO 

Cognitive Parameter 1.5 

Social Parameter 1.7 

Number of Iterations 100 

Inertia weight(w) 0.6 

Swarm size 20 

SVR 

Regularization parameter (C) 0.01 - 100 

Parameter of kernel function(γ) 0.01 - 100 

Insensitivity(ε) 0.1 

 

The SVR model intents to develop a relationship of the form: 

Q = f(p) 

Where p is the input vector comprising variables p1, p2, p3 and p4 and Q is the output 

vector. In this case, the input variables are NDVI, NDWI and NDBI, while the output 

variable is LST. The proposed model was developed for the years 1989, 2001, 2005 

and 2017 to evaluate the interaction between LST and urban surface characteristics. 
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The dataset for each year is divided into two sets: 70% for training the model and 30% 

for testing. Thereafter, the LST for the year 2020 was predicted by employing the 

datasets of the years 2001, 2005 and 2017. The input datasets used were resampled to 

300m resolution for better generalization of the results. 

 

7.2.4 Formulation of hypothetical scenarios 

Four different scenarios were formulated to explore the impact of change in remote 

sensing indices on LST for the year 2020. Polygons generated for the scenario 

formulation were randomly distributed in the suburban regions and urban fringes of the 

study area.  

 Scenario 1 and 2 constitutes a change in area of 225 km2 (10% of total area)   

 

 Scenario 3 and 4 has a change in area of 445 km2 (20% of total area) 

  

The values of remote sensing indices corresponding to the maximum value of NDVI 

for the scene was identified and in scenario 1, these values were assigned to the 

generated polygons. In scenario 2, the remote sensing indices values corresponding to 

the maximum value of NDWI was assigned to the generated polygons. The same 

methodology was used for the input data preparation of scenario 3 and 4 with 20% 

increase in vegetation and water body respectively. The Hybrid PSO-SVR model 

developed for the year 2020 was applied to the input data to predict the LST for all the 

four scenarios. 

 

7.2.5 Urban Heat Anomaly 

Urban heat anomaly is a relative concept and is defined by the temperature difference 

between urban and surrounding rural areas. The quantification of urban heat anomaly 

is one of the main aspects of UHI studies. Urban heat anomaly of a region can be 

quantified by employing the Urban Heat Island Intensity (UHII) equation. The rural 

baseline for the different periods was defined based on the surface area ratios 

formulated by the concentric ring approach.  

 

 



118 
 

UHII (eq. 7.4) for each year was calculated with respect to the rural baseline. 

                                               UHII = Tu – Tr                                             (7.4) 

Where Tu is the mean LST of urban area and Tr is the mean LST of the rural area 

demarcated by the concentric ring approach.  

 

Urban Heat Island Intensity Index (UHIII) introduced by (Cheng & Zhang, 2017) is a 

relative intensity to demonstrate the UHII. It is given by the eq. (7.5) 

                                                UHIII = (Tu - Tr) / Tr                                (7.5) 

The effect of land cover change on UHII can be identified from the values of UHIII. 

UHI intensity and UHI intensity index for the years 1989, 1994, 2001, 2005, 2014 and 

2017 was estimated for the daytime and nighttime heat intensities were calculated for 

the years 2005 and 2017. 

 

7.3 RESULTS AND DISCUSSION 

7.3.1 Characteristics of LST, NDBI, NDVI & NDWI 

The remote sensing indices (NDVI, NDWI and NDBI) for Bengaluru urban district for 

the years 1989, 2001, 2005 and 2017 were extracted based on the equations (7.1 to 7.3). 

Higher LST values are distributed in the outskirts of the city while lower LST is 

concentrated in the city centre. Areas with relatively higher temperatures are mostly 

barren land, while the lower temperature in the city centre can be attributed to the urban 

parks and water bodies in the region. Each remote sensing index is a good reflection of 

the characteristics of the study area, the spatial variation of LST, NDVI, NDWI and 

NDBI has a notable difference in the year 2017 (Figure 7.5). Figures 7.2 to 7.5 show 

that higher values of NDBI are scattered in the outskirts, which is in correlation with 

higher LST values while higher NDVI and NDWI values are distributed in the urban 

centre. The spatial distribution of LST and NDBI is in line with each other.  
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Figure 7.2 Spatial Distribution of NDBI, NDWI, NDVI and LST for the year 

1989 
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Figure 7.3 Spatial Distribution of NDBI, NDWI, NDVI and LST for the year 

2001 
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Figure 7.4 Spatial Distribution of NDBI, NDWI, NDVI and LST for the year 

2005 
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Figure 7.5 Spatial Distribution of NDBI, NDWI, NDVI and LST for the year 

2017 
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Researchers have documented that land cover changes especially due to urbanization 

causes significant of surface thermal anomalies. Hence, it is necessary to establish a 

quantifiable relationship between LST and these indices. NDBI has drastically 

increased in the year caused by the increase in barren land and urban areas while NDVI 

and NDWI have decreased over the years (Table 7.2). For the year 2017, there is a 

significant variation in the values of NDVI, NDWI and NDBI. 

 

 

Table 7.2 Descriptive statistics of LST, NDVI, NDBI and NDWI 

Year Parameter Minimum Maximum Mean 
Standard 

deviation 

Correlation 

with LST 

1989 

LST (◦C) 20.61 39.54 31.67 2.24 1 

NDBI -0.9815 -0.2723 -0.6031 0.0719 0.80 

NDVI -0.6287 0.7075 0.0217 0.1053 -0.19 

NDWI -0.5483 0.7242 -0.0248 0.0908 -0.15 

2001 

LST(◦C) 24.25 50.89 40.46 3.27 1 

NDBI -0.9602 -0.3851 -0.6350 0.0676 0.79 

NDVI -0.5521 0.7182 0.0662 0.1219 -0.48 

NDWI -0.5660 0.6517 -0.0450 0.0971 0.19 

2005 

LST(◦C) 24.50 49.84 37.81 2.88 1 

NDBI -0.9294 -0.0014 -0.6794 0.0699 0.41 

NDVI -0.6002 0.7127 0.0697 0.1136 -0.38 

NDWI -0.5329 0.7150 -0.0395 0.0936 0.09 

2017 

LST(◦C) 26.81 50.60 39.55 2.81 1 

NDBI -0.8006 0.6563 0.0330 0.1163 0.76 

NDVI -0.4959 0.8191 0.2791 0.1094 -0.31 

NDWI -0.7309 0.4953 -0.3162 0.1009 -0.20 
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Pearson’s correlation coefficient was employed to determine the correlation between 

LST and remote sensing indices. In comparison with other indices, LST has more 

correlation with NDBI. The correlation coefficient of NDBI and LST was fairly high 

in all the time periods. In order to determine the combined effect of the remote sensing 

indices on LST, a multiple linear regression model is required. A statistically significant 

correlation (P<0.01) was obtained between LST and remote sensing indices for all the 

years. 

 

7.3.2 Multiple Linear Regression Analysis 

Linear regression models were fitted to LST and remote sensing indices of the four time 

periods.  

 

Table 7.3 MLR results for different window size 

Year 
Window 

size 
RMSE 

Adjusted R-

squared 

1989 

1x1 1.268 0.6785 

3x3 1.077 0.7615 

5x5 0.951 0.8057 

2001 

1x1 1.930 0.6520 

3x3 1.617 0.7469 

5x5 1.416 0.7949 

2005 

1x1 2.097 0.4681 

3x3 1.840 0.5767 

5x5 1.689 0.6249 

2017 

1x1 1.729 0.6207 

3x3 1.451 0.7263 

5x5 1.296 0.7739 
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LST is chosen as the dependent variable and NDVI, NDWI and NDBI are the 

independent variables. Regression analysis was performed with two window sizes of 

(3x3) and (5x5) and original data. Table 7.3 shows the performance of the regression 

models for different window sizes.  

 

A modified version of R2 which depends on the number of predictor variables termed 

as adjusted R2 is adopted to assess the performance of MLR models. For all the years, 

(5x5) window gives better results (higher Adjusted R2 and lower RMSE) compared to 

the other two datasets. 

 

Multiple linear regression equations developed for LST and remotes sensing indices 

using (5x5) window are given in equations (7.6 to 7.9).  

For the years 

 

 

 

 

 

7.3.3 Hybrid PSO-SVR Model 

The non-linear relationship between remote sensing indices and LST was established 

using a hybrid PSO-SVR model for the years 1989, 2001, 2005 and 2017. NDVI, 

NDWI and NDBI were chosen as predictive variables while LST is the dependent 

variable. PSO algorithm was used to tune the hyperparameters of SVR model. The 

proposed model was implemented in MATLAB environment. The model was validated 

using evaluation indices, RMSE and Coefficient of Determination (R2). Optimal values 

of regularization parameter C and radial bias kernel function γ with the lowest MSE 

was estimated from the range specified, (table 6.1) by employing the PSO algorithm. 

The SVR model was trained using these optimal hyperparameters. The performance of 

Hybrid PSO-SVR model for the predictive variables in the testing and training phase at 

four-time steps is demonstrated in Table 7.4. 

 

2017: LST = 37.33 + 20.11NDBI - 7.63NDVI - 11.65NDWI (7.6) 

2005: LST = 14.96 + 33.82NDBI - 30.22NDVI - 50.13NDWI (7.7) 

2001: LST = 64.08 + 36.68NDBI - 19.35NDVI - 21.03NDWI  (7.8) 

1989: LST = 46.44 + 24.62NDBI - 11.35NDVI - 13.12NDWI  (7.9) 
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The fitness values (MSE) were recorded during the hyperparameter tuning process by 

applying PSO algorithm. For the year 2017, the average fitness value ranges from 

0.00298 to 0.00736 in the first 100 iterations. The lowest value of minimum MSE of 

0.00265 was attained in the first 100 iterations. In the case of 2005, the lowest value of 

minimum MSE attained was 0.00419 while the average fitness value ranges from 

0.00425 to 0.00665. The average fitness value ranges from 0.00227 to 0.00384 and 

0.00233 to 0.00454 for the years 2001 and 1989 respectively. The lowest value of 

minimum MSE obtained for the years 2001 and 1989 was 0.00219 and 0.00228 

respectively. These results prove the feasibility of PSO algorithm in tuning the 

hyperparameters of SVR. The Hybrid PSO-SVR model was built on the tuned 

hyperparameters for modelling LST with remote sensing indices at different time 

frames. 

 

 

Table 7.4 Optimal SVR hyper-parameters and evaluation indices for train and 
test dataset 

Year 
Predictive 
variables 

Train   Test   
Optimal SVR 

Hyper-parameters 

R2 RMSE   R2 RMSE   C γ ε 

1989 
NDBI, 
NDVI, 
NDWI 

0.850 0.047   0.850 0.048   4.167 14.452 0.1 

2001 
NDBI, 
NDVI, 
NDWI 

0.849 0.046   0.838 0.048   7.815 40.000 0.1 

2005 
NDBI, 
NDVI, 
NDWI 

0.698 0.064   0.680 0.066   7.377 22.821 0.1 

2017 
NDBI, 
NDVI, 
NDWI 

0.836 0.051   0.832 0.052   1.779 5.514 0.1 

 

 

7.3.4 Capability of Hybrid PSO-SVR Model 

Figure 7.6 demonstrates the capability of the hybrid PSO-SVR model on the training 

and testing dataset. It can be observed that LST can be effectively modelled from 

remote sensing indices by employing the proposed model. R2 values of the training set 
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were close to the R2 values testing set indicating that the proposed model was well 

trained. 
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Figure 7.6 Performance of Hybrid PSO-SVR model at training and testing stages 

for the four-time steps. 
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The values of optimized SVR hyperparameters (C, γ, ε) of the model are given in Table 

7.4. These hyperparameters are applied to the test data to predict LST accurately. The 

value of ε is kept constant at 0.1 while the values of C and γ are optimized using PSO 

method.  

 

The model results indicate that LST is the combined effect of all the urban surface 

characteristics of the region. This combined effect is very effectively modelled using 

the proposed Hybrid PSO-SVR model. The proposed method could accurately model 

the interrelationship of the LST with the predictive variable. This demonstrates the 

superiority of the model in establishing and predicting non-linear relationships between 

parameters. 

 

7.3.5 Comparison of MLR and Hybrid PSO-SVR results 

The MLR was executed using a 10 x10 window and the performance was compared 

with Hybrid PSO-SVR model. In MLR analysis, RMSE values obtained for the years 

2017, 2005, 2001 and 1989 are 1.1241, 1.4699, 1.2160 and 0.8114 respectively. R2 

value obtained for the year 2017, 2005, 2001 and 1989 are 0.8089, 0.6641, 0.8174 and 

0.8355 respectively.  RMSE values obtained using Hybrid PSO-SVR model are 

significantly less than MLR method and R2 values are higher, confirming the superiority 

of the proposed model. Therefore, it can ascertain that Hybrid PSO-SVR model is 

performing better than MLR analysis for modelling the LST based on remote sensing 

indices. 

 

7.3.6 Prediction of LST  

LST for the year 2020 was predicted using remote sensing indices by employing Hybrid 

PSO-SVR model. Datasets for the years 2001, 2005 and 2017 were used as the training 

set. Optimal hyperparameters obtained from the training data were applied to testing 

data (remote sensing indices of 2020) to predict the LST of the region in the year 2020. 

RBF kernel was selected for the prediction and the values obtained for the optimal 

hyperparameters C and γ are 0.0677 and 78.28 respectively. RMSE and R2 for train data 

are 0.04338 and 0.7768 respectively (Figure 7.7). An R2 value of 0.6432 was obtained 
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for predicted LST (Figure 7.8). The results obtained demonstrate the efficiency of the 

Hybrid PSO-SVR model in the prediction of LST from NDVI, NDWI and NDBI. The 

performance of the proposed model for LST prediction can be improved by 

incorporating more input variables. 

 

 

Figure 7.7. Performance of Hybrid PSO-SVR model for LST prediction at the 

training stage  
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Figure 7.8 Performance of Hybrid PSO-SVR model for LST prediction at the 

testing stage 

 

7.3.7 Hypothetical Scenario Analysis 

Hypothetical scenarios were formulated to represent green corridors and artificial lakes. 

Four different scenarios were developed to predict LST in the year 2020. Scenario 1 

and 2 includes 10% increase in vegetation and water bodies and scenario 3 and 4 

includes 20% increase in vegetation and water bodies respectively. The results indicate 

a notable change in the distribution of LST across the study area.  
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Figure 7.9 Spatial variation of difference in LST for scenario1 and 3 compared 

to the estimated LST of the year 2020 

 

Figure 7.9 illustrates the spatial distribution of change in predicted LST for scenario 1 

and 3. Positive values refer to the increase in the LST predicted using hypothetical 

scenarios while a negative value indicates a decrease in LST compared to the estimated 

LST for the year 2020. For all the scenarios, the predicted LST has decreased in the 

eastern and southern regions, but increased on the northern side. The change in LST for 

scenario 1 and 2 are almost similar. In scenario 3, there is a slight increase in the areas 

experiencing lower LST and it is concentrated on the eastern side of the study area. It 

can be observed that a major portion of the study area experiences a change in predicted 

LST of about -1 to +1◦C. The regions experiencing higher LST (52◦C - 56◦C) has 

reduced by approximately 104 km2 in scenario 1 and 2 and 112 km2 in scenario 3 and 

4 respectively. There is no significant change in LST distribution when vegetation is 

replaced by water. 
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Figure 7.10 Change in area experiencing a different range of predicted LST for 

the four scenarios. 

 

Figure 7.10 highlights the change in area corresponding to different ranges of LST 

predicted. A positive value indicates a decrease in area corresponding to a particular 

range of predicted LST and a negative value refers to the increase in area. It can be 

clearly observed that the area experiencing the predicted LST range of 48 to 50◦C has 

increased in all four scenarios. It can be inferred that introduction of hypothetical 

scenarios in the prediction of LST has increased in regions experiencing mean LST (48 

to 50◦C). In all the four scenarios, the maximum predicted LST has been reduced from 

57 to 55◦C. From the analysis, it can be ascertained that an increase in vegetation or 

water bodies will reduce the maximum LST of the study area. 

 

7.3.8 Analysis of Urban Heat Anomaly 

The study area exhibits an anomalous behaviour compared to the urban heat island 

effect experienced by most cities. During the day, a surface urban cool island is 

observed while an urban heat island is experienced in the study region at night. The 

negative value of UHII for daytime and positive values during night-time confirms this 

phenomenon (Table 7.5). The surface urban cool island effect has been consistent over 
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the years and shows an increasing trend from 1989 to 2017. The increasing values of 

UHII over the years indicate a significant difference in the mean LST of rural and urban 

areas. For night-time, the UHII of 2005 and 2017 (based on MODIS LST data) was 

analysed and shows a decreasing trend. The UHI intensity index also shows an 

increasing trend from 1989 to 2017. 

 

  Table 7.5. Temporal variation of UHI intensity in the study area 

 

Year 

Mean LST  

(Deg. Celsius) 
UHII UHIII 

Urban 

area 

Rural 

area 

Day time 

1989 29.78 31.75 -1.97 -0.0620 

1994 23.86 24.85 -0.99 -0.0398 

2001 38.86 40.61 -1.75 -0.0431 

2005 35.16 38.13 -2.97 -0.0779 

2014 35.04 37.91 -2.87 -0.0757 

2017 36.88 40.21 -3.33 -0.0828 

Night time 

2005 21.01 16.56 4.45 0.2687 

2017 23.24 20.46 2.78 0.1359 

 

 

The major land cover type in the rural area is barren land and since the study is 

conducted during the summer season, there is very less vegetative cover and hence the 

LST is higher. Urban region comprises built-up area, urban parks and lakes which 

causes a cooling effect leading to the lower values of LST compared to the rural area. 

Analysis of urban characteristics indicates a significant shift in the NDBI value over 

the years. In 1989, NDBI values were negative, while in 2017 positive. NDBI values 

were observed in 45% of the urban area and 75% of rural area. The positive NDWI 

values were observed in 80% of the urban area and 23% of the rural area in the year 

1989, which has considerably reduced for both urban and rural area in the year 2017. 

The areas with positive NDVI values increased in urban and rural regions from 1989 to 
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2017. The investigations on urban surface characteristics demonstrate a significant 

urbanizing trend in the study area consistent with land cover change analysis. Even 

though the study area has experienced remarkable urbanization over the years, the 

surface temperature is lower in the urban area compared to the rural surroundings 

causing a surface urban cool island during the daytime. In the night-time, the process 

is reversed.  

 

7.4 CONCLUSION 

The variation of urban surface characteristics and LST and its correlation was analysed 

for the years 1989, 2001, 2005 and 2017. The spatio-temporal variation of urban surface 

characteristics indicates an urbanizing trend in the study area from 1989 to 2017. NDBI 

has drastically increased in the year 2017, which is caused by the increase in barren 

land and urban areas while NDVI and NDWI have decreased over the years. Higher 

values of NDBI are scattered in the outskirts while higher NDVI and NDWI values are 

distributed in the urban centre. NDBI has a high positive correlation with LST during 

the period of study. 

 

The relationship between urban surface characteristics and LST was efficiently 

modelled using linear and non-linear regression algorithms. R2 value in the range of 

0.80 and 0.85 was obtained for MLR and Hybrid PSO-SVR model respectively. Hybrid 

PSO-SVR model proved to be effective in establishing the relationship between LST 

and urban surface characteristics, NDVI, NDBI and NDWI and in predicting the future 

LST.  

 

Hypothetical scenarios were developed in the prediction of LST to quantify the impact 

of urban surface characteristics. The results of future prediction scenarios indicate that 

the regions experiencing higher LST (52◦C - 56◦C) has reduced by approximately 104 

km2 in scenario 1 and 2 and 112 km2 in scenario 3 and 4 respectively. An increase in 

either vegetation or water bodies will reduce the maximum LST of the study area. It 

can be concluded that the introduction of vegetation and water bodies in the suburban 

and urban fringes will reduce the difference in LST between urban and rural areas. An 

urban heat anomaly was observed in the area wherein an urban cool island is 
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experienced during daytime and an urban heat island during night-time. The intensity 

of heat anomaly has increased from 1989 to 2017. The magnitude of urban heat 

anomaly can be curtailed by developing green corridors and artificial lakes in the 

suburban and urban fringes of Bengaluru. 
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CHAPTER 8 

  

SUMMARY AND CONCLUSIONS 

 

8.1 SUMMARY 

The study presents a comprehensive approach for analysing the spatio-temporal 

variation of LC and LST and the impacts of LC change on the environment. The study 

area was delineated from satellite images based on SoI toposheets. The land cover map 

for Bengaluru Urban district was prepared for the years 1989, 1994, 2001, 2005, 2014 

and 2017. Four broad land cover classes were identified: urban, barren, vegetation and 

water body. Over the years from 1989 to 2017, the study area has experienced a drastic 

increase in the urban area.  

 

The primary objective of the study was to explore the spatio-temporal patterns of land 

cover and LST from 1989 to 2017. The extent and rate of LC change for the time period 

in the entire area and in each category are examined using Intensity Analysis. The 

intensity analysis can be divided into three levels: interval, category, and transition. At 

interval level analysis, the LC change experienced during both the periods is analysed 

and the period in which the land transition is faster is identified. At the category level, 

the four categories, viz., vegetation, water, urban and barren, were examined. The active 

and dormant categories were also determined. The LC class which is intensively 

avoided or targeted is identified in the transition level analysis. LST of the study area 

was retrieved from the thermal infrared band of Landsat images using a simple single-

channel algorithm. The spatial correlation of LST in the study area was investigated by 

employing an optimized hot spot analysis tool (Getis-Ord Gi*) in the ArcGIS software. 

The LST pattern was linked with the change in LC to assess the impact of LC change 

on LST. The hot spot maps were created for three years 1989, 2001 and 2017. 
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The second objective of the study comprehends a detailed analysis of the urban growth 

pattern, modelling of surface cover and LST. The urban growth and LST pattern were 

modelled based on the concentric ring approach. The urban land density and LST for 

the years 1989, 2001, 2005 and 2017 were modelled as a function of distance from the 

urban centre. The spatial variation of urban land density and LST with distance from 

the urban centre was quantified by a modified sigmoid function providing an inverse 

S-shape curve. The relationship between land cover types and LST was established 

using multiple linear regression algorithms. Further, the non-linear relationship 

between LST and surface cover types were quantified by developing a Hybrid PSO-

SVR model. 

 

The third objective was to investigate the spatio-temporal patterns of urban surface 

characteristics and their interaction with LST. The urban surface characteristics were 

assessed based on remote sensing based indices such as NDVI, NDWI and NDBI. The 

MLR models and Hybrid PSO-SVR model were developed to establish the inter 

relationship between LST and urban surface characteristics for the years 1989, 2001, 

2005 and 2017. The LST for the year 2020 was predicted using Hybrid PSO-SVR 

model and three hypothetical scenarios were developed to quantify the impact of 

vegetation and water bodies on LST. The urban heat anomaly of the study area was 

analysed from 1989 to 2017 and shows an increasing trend. 

 

8.2 CONCLUSIONS 

The methodology proposed in this study provided a detailed understanding of the 

spatial and temporal patterns of LC and LST and their interrelationships. The Bengaluru 

Urban district has witnessed a tremendous increase in an urban area (4 to 43%) from 

1989 to 2017 and experiences a surface urban cool island effect. The magnitude of 

urban heat anomaly could be reduced by developing green corridors and artificial lakes 

in the suburban and urban fringes of the Bengaluru Urban district. 

 

Hybrid PSO-SVR model proved to be effective in modelling LST based on surface area 

ratio and urban surface characteristics compared to MLR. Radial Basis Function (RBF) 
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was used as the kernel function for achieving the best performing SVR model as 

observed in previous literature. Gamma parameter governs the smoothing of the shape 

of the regression curve, thereby providing RBF function results with better flexibility 

in dealing with non-linear data. Determining the kernel function and tuning the 

hyperparameters is crucial in establishing a robust predictive model. The PSO 

algorithm accurately optimized the hyperparameters of the SVR model. Machine 

learning algorithms are based on statistical learning theory, which explains their 

performance better when compared to MLR. Assumptions of probability and 

distribution of data account for the poor performance of MLR. The present study 

emphasizes the application of remote sensing data with a machine learning approach to 

minimize the cost of ground inventory.  

 

The methodology proposed in this study can be implemented in other urban areas, as it 

provides a scientific reference for the management of the surface temperature of the 

area. This approach could be applied to other geophysical parameters to understand its 

variation over the urban area. The study aids urban planners in designing comfortable 

environments for new urban areas by optimizing the benefits of the urban thermal 

environment at the city scale. In future land use planning, a sufficient proportion of 

public space, green area, and water bodies should be provided in metropolitan cities to 

cater to the effect of climate change due to urbanization. This study provides a scientific 

basis for the land use planners and policymakers to manage cities confronting rapid 

urban growth. 

 

The objective specific conclusions are highlighted below: 

 

The LC change from 1989 to 2001 is faster than the period from 2001 to 2017. The 

mean LST of the study area has increased overall by 6◦C during the period from 1989 

to 2017. It was found that examining LST patterns at different time frames can be 

effectively performed using hot spot analysis by Getis-Ord Gi* statistics. Seven 

categories were identified from the statistical results: very cold spot, cold spot, cool 

spot, not statistically significant, warm spot, hot spot, and very hot spot. Approximately 

24% of the study area is warmer, while 14% is cooler throughout the time period.  As 
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the urban expansion occurs, the cold spots have increased, and it is mainly clustered in 

the urban area. It confirms the presence of an urban cool island in the Bengaluru urban 

district. 

 

Bengaluru has experienced significant urban sprawling during recent years. Over the 

years, the suburban areas and the urban fringes have developed. During the summer 

season, the behaviour of LST during daytime and night-time contradict each other. For 

surface area ratio, R2 value in the range of 0.94 and 0.97 was obtained for MLR and 

Hybrid PSO-SVR model respectively.  

 

Higher values of NDBI are scattered in the outskirts, which correlates with higher LST 

values, while higher NDVI and NDWI values are distributed in the urban centre. The 

R2 value in the range of 0.80 and 0.85 were obtained for MLR and Hybrid PSO-SVR 

model respectively. The results of future prediction scenarios indicate that the regions 

experiencing higher LST (52◦C - 56◦C) has reduced by approximately 104 km2 in 

scenario 1 and 2 and 112 km2 in scenario 3 and 4 respectively. The intensity of urban 

heat anomaly has also increased from 1989 to 2017, indicating the disparity in the 

surface heating capacity of rural and urban areas. 

 

8.3 LIMITATIONS  

1. The limitations of the study was that the usage of single satellite image for a particular 

year with relatively large spatial resolution and the vertical growth has not been fully 

considered. Also, anthropogenic activities such as industrial emissions, vehicular 

exhaust, etc., are not integrated.  

2. The inclusion of more images with a high spatial resolution for assessing the mean 

LST for the particular years will provide more generalized relationship between the 

various parameters used in the study.  
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8.4 FUTURE PERSPECTIVES 

 The impact of urban morphology and vehicular emissions on LST can be 

explored. 

 Application of other machine learning algorithms for the prediction of LST and 

comparing it with the proposed Hybrid PSO-SVR model.  

 The future scope of the study could explore the correlation of LST of Bengaluru 

with other megacities in India.  

 A detailed investigation of the latent heat transfer occurring in the study area 

can be conducted. 
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Appendix 

Table A.1. Spatial distribution of surface area of land cover for each concentric ring 
for 2017 

Concentric 
ring 2017 

Distance 
from centre 
point(km) 

Area of the 
concentric 
ring(km2) 

Surface Area ratio 

Urban Vegetation Water Barren 

1 0.25 0.20 0.49 0.35 0.01 0.16 
2 0.75 0.59 0.56 0.24 0.05 0.16 
3 1.25 0.98 0.63 0.19 0.03 0.14 
4 1.75 1.37 0.62 0.22 0.02 0.15 
5 2.25 1.77 0.59 0.24 0.02 0.16 
6 2.75 2.16 0.59 0.23 0.02 0.17 
7 3.25 2.55 0.62 0.22 0.01 0.15 
8 3.75 2.94 0.61 0.21 0.03 0.16 
9 4.25 3.34 0.64 0.19 0.02 0.16 

10 4.75 3.73 0.67 0.18 0.00 0.15 
11 5.25 4.12 0.64 0.19 0.01 0.16 
12 5.75 4.51 0.69 0.17 0.01 0.14 
13 6.25 4.91 0.67 0.19 0.01 0.13 
14 6.75 5.30 0.67 0.18 0.01 0.14 
15 7.25 5.69 0.71 0.14 0.02 0.13 
16 7.75 6.08 0.70 0.13 0.03 0.14 
17 8.25 6.48 0.66 0.18 0.02 0.15 
18 8.75 6.87 0.64 0.19 0.02 0.15 
19 9.25 7.26 0.66 0.17 0.02 0.14 
20 9.75 7.65 0.69 0.14 0.03 0.15 
21 10.25 8.05 0.68 0.14 0.02 0.16 
22 10.75 8.44 0.66 0.16 0.02 0.16 
23 11.25 8.83 0.64 0.14 0.03 0.19 
24 11.75 9.22 0.64 0.15 0.02 0.19 
25 12.25 9.62 0.62 0.15 0.01 0.23 
26 12.75 10.01 0.58 0.15 0.01 0.27 
27 13.25 10.40 0.57 0.13 0.01 0.29 
28 13.75 10.79 0.56 0.13 0.02 0.29 
29 14.25 11.19 0.52 0.14 0.02 0.33 
30 14.75 11.58 0.46 0.19 0.01 0.34 
31 15.25 11.97 0.45 0.19 0.01 0.35 
32 15.75 12.36 0.43 0.19 0.02 0.37 
33 16.25 12.76 0.39 0.19 0.02 0.40 
34 16.75 13.15 0.39 0.20 0.03 0.38 
35 17.25 13.54 0.40 0.19 0.01 0.40 
36 17.75 13.93 0.37 0.20 0.01 0.42 
37 18.25 14.33 0.36 0.18 0.01 0.45 
38 18.75 14.72 0.38 0.18 0.01 0.43 
39 19.25 15.11 0.38 0.18 0.01 0.44 
40 19.75 15.50 0.36 0.18 0.01 0.45 
41 20.25 15.90 0.35 0.20 0.00 0.45 
42 20.75 16.29 0.34 0.17 0.01 0.48 
43 21.25 16.68 0.34 0.15 0.00 0.50 
44 21.75 17.07 0.34 0.16 0.01 0.50 
45 22.25 17.47 0.32 0.18 0.02 0.49 
46 22.75 17.86 0.30 0.17 0.01 0.52 
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Table A.2. Spatial distribution of surface area of land cover for each concentric ring 
for 2005 

Concentric 
ring 2005 

Distance 
from centre 
point(km) 

Area of the 
concentric 
ring(km2) 

Surface Area ratio 

Urban Vegetation Water Barren 

1 0.25 0.20 0.59 0.35 0.05 0.01 
2 0.75 0.59 0.62 0.29 0.02 0.07 
3 1.25 0.98 0.69 0.26 0.01 0.04 
4 1.75 1.37 0.70 0.27 0.01 0.03 
5 2.25 1.77 0.66 0.29 0.01 0.04 
6 2.75 2.16 0.67 0.28 0.01 0.05 
7 3.25 2.55 0.72 0.24 0.01 0.03 
8 3.75 2.94 0.68 0.25 0.03 0.04 
9 4.25 3.34 0.73 0.19 0.02 0.06 

10 4.75 3.73 0.76 0.17 0.01 0.06 
11 5.25 4.12 0.72 0.20 0.01 0.07 
12 5.75 4.51 0.78 0.16 0.01 0.05 
13 6.25 4.91 0.73 0.21 0.01 0.06 
14 6.75 5.30 0.75 0.20 0.00 0.04 
15 7.25 5.69 0.75 0.19 0.01 0.05 
16 7.75 6.08 0.71 0.21 0.02 0.07 
17 8.25 6.48 0.64 0.25 0.01 0.10 
18 8.75 6.87 0.64 0.23 0.03 0.10 
19 9.25 7.26 0.60 0.25 0.03 0.12 
20 9.75 7.65 0.56 0.26 0.03 0.15 
21 10.25 8.05 0.51 0.28 0.02 0.19 
22 10.75 8.44 0.45 0.31 0.01 0.23 
23 11.25 8.83 0.39 0.31 0.03 0.27 
24 11.75 9.22 0.35 0.33 0.01 0.30 
25 12.25 9.62 0.35 0.31 0.01 0.34 
26 12.75 10.01 0.31 0.31 0.01 0.37 
27 13.25 10.40 0.29 0.33 0.01 0.38 
28 13.75 10.79 0.26 0.35 0.02 0.37 
29 14.25 11.19 0.23 0.41 0.02 0.35 
30 14.75 11.58 0.21 0.47 0.01 0.32 
31 15.25 11.97 0.20 0.44 0.01 0.35 
32 15.75 12.36 0.19 0.45 0.01 0.36 
33 16.25 12.76 0.15 0.46 0.02 0.36 
34 16.75 13.15 0.15 0.48 0.02 0.35 
35 17.25 13.54 0.15 0.48 0.01 0.36 
36 17.75 13.93 0.15 0.48 0.01 0.36 
37 18.25 14.33 0.11 0.46 0.01 0.43 
38 18.75 14.72 0.12 0.44 0.00 0.43 
39 19.25 15.11 0.11 0.47 0.00 0.41 
40 19.75 15.50 0.11 0.49 0.00 0.41 
41 20.25 15.90 0.11 0.49 0.00 0.41 
42 20.75 16.29 0.10 0.41 0.00 0.49 
43 21.25 16.68 0.09 0.42 0.00 0.49 
44 21.75 17.07 0.09 0.43 0.00 0.48 
45 22.25 17.47 0.10 0.40 0.00 0.50 
46 22.75 17.86 0.11 0.36 0.01 0.52 
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Table A.3. Spatial distribution of surface area of land cover for each concentric ring 
for 2001 

Concentric 
ring 2001 

Distance 
from centre 
point(km) 

Area of the 
concentric 
ring(km2) 

Surface Area ratio 

Urban Vegetation Water Barren 

1 0.25 0.20 0.55 0.39 0.04 0.02 
2 0.75 0.59 0.60 0.30 0.02 0.08 
3 1.25 0.98 0.66 0.26 0.01 0.07 
4 1.75 1.37 0.65 0.28 0.01 0.06 
5 2.25 1.77 0.61 0.30 0.01 0.08 
6 2.75 2.16 0.61 0.31 0.01 0.07 
7 3.25 2.55 0.65 0.27 0.01 0.07 
8 3.75 2.94 0.63 0.26 0.03 0.08 
9 4.25 3.34 0.68 0.21 0.02 0.09 

10 4.75 3.73 0.72 0.17 0.01 0.10 
11 5.25 4.12 0.67 0.19 0.01 0.13 
12 5.75 4.51 0.71 0.18 0.01 0.11 
13 6.25 4.91 0.69 0.19 0.00 0.12 
14 6.75 5.30 0.68 0.19 0.01 0.13 
15 7.25 5.69 0.64 0.17 0.02 0.18 
16 7.75 6.08 0.54 0.17 0.05 0.24 
17 8.25 6.48 0.46 0.20 0.03 0.32 
18 8.75 6.87 0.43 0.18 0.04 0.35 
19 9.25 7.26 0.37 0.22 0.04 0.37 
20 9.75 7.65 0.33 0.23 0.03 0.41 
21 10.25 8.05 0.29 0.22 0.02 0.47 
22 10.75 8.44 0.25 0.31 0.02 0.42 
23 11.25 8.83 0.22 0.31 0.03 0.44 
24 11.75 9.22 0.21 0.29 0.02 0.48 
25 12.25 9.62 0.18 0.27 0.01 0.54 
26 12.75 10.01 0.18 0.27 0.01 0.54 
27 13.25 10.40 0.18 0.28 0.01 0.53 
28 13.75 10.79 0.16 0.28 0.01 0.54 
29 14.25 11.19 0.14 0.31 0.02 0.54 
30 14.75 11.58 0.13 0.34 0.01 0.51 
31 15.25 11.97 0.14 0.32 0.01 0.53 
32 15.75 12.36 0.13 0.31 0.01 0.54 
33 16.25 12.76 0.12 0.34 0.03 0.51 
34 16.75 13.15 0.12 0.34 0.03 0.51 
35 17.25 13.54 0.11 0.33 0.01 0.55 
36 17.75 13.93 0.10 0.35 0.00 0.55 
37 18.25 14.33 0.11 0.33 0.01 0.56 
38 18.75 14.72 0.11 0.32 0.00 0.56 
39 19.25 15.11 0.11 0.32 0.00 0.56 
40 19.75 15.50 0.11 0.36 0.00 0.52 
41 20.25 15.90 0.11 0.35 0.01 0.53 
42 20.75 16.29 0.11 0.31 0.00 0.58 
43 21.25 16.68 0.12 0.30 0.00 0.58 
44 21.75 17.07 0.12 0.32 0.00 0.56 
45 22.25 17.47 0.12 0.32 0.01 0.55 
46 22.75 17.86 0.13 0.30 0.02 0.55 
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Table A.4. Spatial distribution of surface area of land cover for each concentric ring 
for 1989 

Concentric 
ring 1989 

Distance 
from centre 
point(km) 

Area of the 
concentric 
ring(km2) 

Surface Area ratio 

Urban Vegetation Water Barren 

1 0.25 0.20 0.42 0.50 0.06 0.02 
2 0.75 0.59 0.56 0.36 0.01 0.07 
3 1.25 0.98 0.57 0.37 0.01 0.05 
4 1.75 1.37 0.52 0.38 0.01 0.09 
5 2.25 1.77 0.47 0.41 0.02 0.10 
6 2.75 2.16 0.52 0.38 0.01 0.09 
7 3.25 2.55 0.52 0.37 0.02 0.09 
8 3.75 2.94 0.52 0.31 0.02 0.15 
9 4.25 3.34 0.51 0.28 0.00 0.20 

10 4.75 3.73 0.38 0.31 0.01 0.30 
11 5.25 4.12 0.38 0.27 0.00 0.34 
12 5.75 4.51 0.26 0.31 0.00 0.43 
13 6.25 4.91 0.21 0.28 0.01 0.49 
14 6.75 5.30 0.15 0.33 0.02 0.49 
15 7.25 5.69 0.12 0.38 0.03 0.47 
16 7.75 6.08 0.09 0.36 0.02 0.52 
17 8.25 6.48 0.07 0.35 0.04 0.53 
18 8.75 6.87 0.07 0.37 0.04 0.52 
19 9.25 7.26 0.07 0.40 0.03 0.51 
20 9.75 7.65 0.06 0.40 0.03 0.50 
21 10.25 8.05 0.05 0.42 0.03 0.50 
22 10.75 8.44 0.04 0.49 0.02 0.44 
23 11.25 8.83 0.03 0.45 0.04 0.48 
24 11.75 9.22 0.02 0.44 0.02 0.52 
25 12.25 9.62 0.02 0.38 0.01 0.59 
26 12.75 10.01 0.02 0.38 0.01 0.58 
27 13.25 10.40 0.03 0.38 0.01 0.58 
28 13.75 10.79 0.02 0.37 0.02 0.59 
29 14.25 11.19 0.02 0.43 0.02 0.53 
30 14.75 11.58 0.02 0.45 0.02 0.52 
31 15.25 11.97 0.01 0.41 0.02 0.56 
32 15.75 12.36 0.01 0.36 0.02 0.61 
33 16.25 12.76 0.01 0.39 0.03 0.57 
34 16.75 13.15 0.01 0.41 0.04 0.54 
35 17.25 13.54 0.01 0.40 0.02 0.57 
36 17.75 13.93 0.00 0.42 0.01 0.57 
37 18.25 14.33 0.00 0.40 0.01 0.58 
38 18.75 14.72 0.01 0.39 0.01 0.59 
39 19.25 15.11 0.01 0.41 0.01 0.57 
40 19.75 15.50 0.01 0.43 0.01 0.55 
41 20.25 15.90 0.00 0.40 0.02 0.57 
42 20.75 16.29 0.00 0.38 0.03 0.59 
43 21.25 16.68 0.00 0.38 0.02 0.59 
44 21.75 17.07 0.01 0.38 0.02 0.59 
45 22.25 17.47 0.01 0.38 0.05 0.57 
46 22.75 17.86 0.01 0.36 0.05 0.58 
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