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ABSTRACT 

Understanding the changes in surface water quality over time and space necessitates an 

examination of spatiotemporal water quality data. This data can be used to identify 

pollution sources, monitor changes in water quality, and assess the effectiveness of 

management and conservation efforts. Furthermore, spatiotemporal surface water 

quality assessment can forecast future water quality trends, allowing for precise 

decision-making and conservation. Overall, spatiotemporal water quality assessment is 

critical in protecting and managing water resources. 

Various multivariate statistical and machine learning techniques are used in this study 

to determine the river water quality status and comprehend the spatiotemporal pattern 

along the Middle Ganga Basin in Uttar Pradesh. The study was carried out for 14 years 

(2005-2018), with 20 Water Quality Parameters (WQPs) collected monthly and 

covering spatially from up-stream to downstream Ankinghat to Chopan respectively 

(20 monitoring stations under Central Water Commission, Middle Ganga Basin). The 

temporal dissimilarity of river water quality is established by applying the Spearman 

non-parametric correlation coefficient test (Spearman r). A significant p-level (0.0000) 

is observed for temperature within the season with a Spearman r of -0.866. Besides that, 

the parameters EC, pH, TDS, T, Ca, Cl, HCO3, Mg, NO2+NO3, SiO2, and DO strongly 

correlated with the season (p < 0.05). The K-means clustering algorithm temporarily 

classified the 20 monitoring stations into four clusters based on the similarity and 

dissimilarity of WQPs. Box and Whisker plots were generated based on these clusters 

to study water quality trends along individual clusters in different seasons. PCA was 

applied to screen out the most dominating WQPs causing spatial and seasonal variations 

from a large data set. Seasonally, the three PCs chosen explained 75.69% and 75% of 

the variance in the data. With PCs >0.70, the variables EC, pH, Temp, TDS, NO2+NO3, 

P-Tot, BOD, COD, and DO have been identified as the dominant pollutants. The 

applied RDA analysis revealed that LULC has a moderate to strong contribution to 

WQPs during the monsoon season but not during the non-monsoon season. 

Furthermore, dense vegetation is critical for keeping water clean, whereas agriculture, 

barren land and build-up area degrade water quality. Besides that, the findings suggest 

the relationship between WQPs and LULC differs at different spatial scales. The 
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stacked ensemble regression model is applied to understand the model's predictive 

power across different clusters and scales. Overall, the results indicate that the riparian 

scale is more predictive than a watershed and reach scales. 

As a further part of this work, an integrated use of remote sensing, insitu measurements, 

and machine learning modelling is used better to understand the water quality status 

along the study region. In this context, a remote sensing framework based on the 

Extreme Gradient Boosting (XGBoost) and Multilayer Perceptron (MLP) regressor 

with optimized hyperparameters to quantify the concentrations of different WQPs from 

the Landsat-8 satellite imagery is developed. Six years of satellite data from upstream 

to downstream Ankinghat to Chopan (20 stations under Central Water Commission 

(CWC), Middle Ganga Basin) are analysed to characterise the trends of dominant 

physicochemical WQPs across the four identified clusters. A significant coefficient of 

determination (R2) in the range of 0.88- 0.98 for XGBoost and 0.72-0.97 for MLP was 

generated using the developed XGBoost and MLP regression models. The bands B1-

B4 and their ratios are found to be more consistent with the WQPs. Meanwhile, the 

performance matrix RMSE for the parameters SiO2 and DO for all clusters for the 

XGBoost method is determined to be superior to MLP. Indeed, these findings show that 

a small number of insitu measurements is sufficient to develop reliable models for 

estimating the spatiotemporal variations of physicochemical and biological WQPs. As 

a result, Landsat-8 models could aid in the environmental, economic, and social 

management of any body of water. 

Keywords: Surface water quality, CA, PCA, LULC, Multi- spatial scale, RDA, SEM, 

RS of water quality, XGBoost, MLP.  
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CHAPTER 1 

1 INTRODUCTION 

1.1 GENERAL 

The sustainability of any natural resource necessitates a thorough understanding of the 

changing environment and socioeconomic issues. Investigating qualitative 

measurement is just as important as quantitative analysis for the long-term viability of 

water resources. Concerns about water quality are growing in Asia due to increased 

population and urbanization, which will aggravate the situation when combined with 

climate change. Water scarcity and water quality are expected to be the most severe 

barriers of the twenty-first century, particularly in developing countries. According to 

International Water Management Institute reports, approximately 30% of the world's 

population suffers from a lack of clean water. The quality of water in freshwater 

ecosystems is influenced by various natural and human-caused factors and can be 

highly complex. The specific characteristics of the catchment area and the impact of 

human activities play a significant role in determining surface water quality. Therefore, 

adequate water quality monitoring is critical for better water resource management 

programs. Acknowledging the concentration of different Water Quality Parameters 

(WQPs) present in any waterbody will provide quantitative information concerning 

water quality (Sudheer et al. 2007). Many researchers have discussed the influence of 

anthropogenic pollutants from rural (Tibebe et al. 2019), urban (Zhang et al. 2013; 

Miller and Hutchins 2017; Carstens and Amer 2019; Gu et al. 2019) and agricultural 

land use (Amato et al. 2018; Cheng et al. 2018). As a result, changes in land use could 

be directly linked to changes in water quality, i.e., the higher the percentage of 

agriculture and urban land, the higher the concentration of nitrate and phosphates in the 

freshwater system (Álvarez-cabria et al. 2016). Besides that, variations in precipitation, 

runoff, groundwater flow and interflow can all affect water quality. The orientation of 

a river and its associated drainage basin can also play a role, as can natural phenomena 

such as floods, droughts, and storms. 

All these factors and human activities make water quality highly dynamic, varying 

throughout the year and across different locations. Maintaining water quality can be 
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challenging due to a variety of pollutants that can be present in freshwater ecosystems. 

Point source pollutants come from a specific, identifiable source, such as a factory or 

sewage treatment plant. Non-point source pollutants (NPS), on the other hand, are not 

from a specific, identifiable source but rather from diffuse sources such as agricultural 

runoff or urban storm water runoff (Shi et al. 2017). These NPS pollutants can be more 

challenging to control and mitigate because they are not coming from a single, 

identifiable location (Zhou et al. 2016). Both point source and non-point source 

pollutants can have negative effects on water quality, and both types of pollution need 

to be addressed to effectively maintain water quality. Further, the correlation between 

rainfall and landscape characteristics complicates NPS identification (Abdul-Aziz and 

Al-Amin 2016). Over the last few decades, there has been an increased demand for 

regular monitoring of rivers, which has led to the accumulation of a large amount of 

data on water quality and has raised the need for tools to process and analyse such 

massive amounts of data. Advances in computing technology have made it possible to 

analyse these large databases in ways that were previously impractical. This has 

allowed for the development of more sophisticated models and analytical tools that can 

help to better understand and predict water quality trends and patterns. This technology 

can also be used for real-time monitoring and early warning systems to identify and 

respond to potential water quality issues more quickly and effectively (Antonopoulos 

et al. 2001). Therefore, long-term data are required to address the state of the world's 

water resources. In contrast, field measurements for water quality measurements 

include expensive, time-consuming, labour-intensive sampling on-site and transport to 

land-based or shipboard laboratories for evaluation. Furthermore, there is a possibility 

of data compromise due to poor quality-control protocols, as well as quality assurance 

due to the extended holding of samples before analysis. As a result, improved 

comprehension of water quality spatiotemporal patterns at large scales is only possible 

using remote sensing techniques. To address the shortcomings of the traditional data 

collection method, the use of remote sensing  data for water quality assessment has been 

investigated (Haji Gholizadeh et al. 2016). In other words, an integrated use of remote 

sensing, insitu measurements, and computer water quality modelling may result in a 

greater understanding of the water quality.  
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1.2 NATURAL AND ANTHROPOGENIC DRIVERS OF WATER QUALITY 

Various natural and anthropogenic factors influence water quality in fluvial 

ecosystems. In the absence of human influences, water quality would be controlled 

solely by natural processes such as wind deposition of dust and salt, natural leaching of 

organic matter, nutrients from the soil, hydrological factors leading to runoff, and 

biological processes in the aquatic environment, which could result in changes in the 

physical and chemical composition of water. As an outcome, water in nature may 

comprise both dissolved and non-dissolved particulate matter. Human changes to 

catchments have changed the quantity, quality, and balance of natural sources and 

introduced new water flow paths such as irrigation transfers, dam flow releases, and 

point and diffuse sources. The natural flow and associated water quality characteristics 

are altered by anthropogenic activities such as river regulation, catchment land use, and 

water extraction. Some water quality indicators respond almost instantly to 

environmental changes, particularly flow or water volume changes. However, it can 

take decades in some cases, such as salinity responses to land clearing (Arora et al. 

2017). Sources of pollution, categories and their influences are presented in Table 1.1.  

Table 1.1 Sources, categories and factors influencing pollution  

Main source Subcategories Factors of influence 

Natural Topography, e.g., 

Slope 

Transportation of organic and inorganic 

compounds such as Phosphorus and 

Nitrogen. 

Orientation of 

the river 

Controls the solar radiation over the water 

surface, the temperature of the river and the 

atmospheric temperature 

Precipitation Controls the catchment runoff processes. 

Natural disasters 

(e.g., Drought, 

Floods, 

landslides etc.), 

Lithology 

Large amounts of earth, rock, or mudflow 

quickly down the mountain sides and have a 

huge impact on water resources. 

Water alkalinity (pH), conductivity, and the 

concentration of various ions essential in 

many biogeochemical processes 
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Source: Álvarez-Cabria et al (2016) 

1.3 WATER QUALITY EXPLANATORY VARIABLE AT MULTI-SCALE 

To better manage the effects of LULC on water resources, it is necessary to think of 

streams as complex ecosystems that operate at different spatial and temporal scales 

(Mello et al. 2020). To relate landscape variables to stream water quality, three spatial 

scales, including reach, catchment, and riparian, have been widely used (Ding et al. 

2016; Shi et al. 2017; Mello et al. 2020).  

Catchment scale: This scale refers to the entire drainage area that contributes water to 

a particular stream or river. At the catchment scale, LULC can affect water quality 

through changes in precipitation, evapotranspiration, and runoff, which can affect the 

amount and timing of water that enters the stream. Land use practices such as 

urbanization, agriculture, and forestry can also affect water quality by releasing 

pollutants such as nutrients, sediment, and chemicals. 

Anthropogenic Construction Construction of dams causes changes in the 

natural hydrologic regime and the hydraulic 

characteristics of fluvial ecosystems, 

affecting the natural distribution of aquatic 

organisms and the export ratios of various 

organic and inorganic compounds. 

Direct dumping and site clearance activities 

are leading to deforestation, etc. 

Industrial Waste is produced in chemical 

manufacturing units, printing, petroleum, 

leather, paper, metal etc. 

Agricultural Mining process, Pesticides and Fertilizers- 

Runoff from the agriculture fields- Increase 

nitrogen concentration. 

Urban activities Transportation, construction, domestic and 

municipal sewage disposal, over usage of 

water, deforestation, rise in impervious 

surfaces, increased urban runoff etc. 
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Riparian scale:  This scale refers to the area immediately adjacent to a stream or river, 

often referred to as the "riparian zone." At the riparian scale, LULC can affect water 

quality through changes in vegetation, which can alter the amount and timing of water 

that enters the stream, as well as through changes in the types and amounts of pollutants 

that are released into the stream. 

Reach scale: This scale refers to a specific segment of a stream or river, and it is the 

most localized scale. At the reach scale, LULC can affect water quality through changes 

in stream flow, temperature, and water chemistry, which can affect the growth and 

survival of aquatic organisms. 

By relating landscape variables to stream water quality at these different spatial scales, 

it is possible to understand how LULC affects water quality and to identify the specific 

land use practices that are having the most significant impact on water quality. This 

information can then be used to develop management strategies to improve water 

quality and protect aquatic ecosystems. The past results demonstrate that anthropogenic 

activities at various scales affect water quality. Also, the dimensions of these variables 

may vary between studies based on the concentration of water quality and the density 

of LULC at different scales. Different catchment areas can also be used, ranging from 

local-segment catchments to small-stream catchments to entire river basins (Mello et 

al. 2018). The relative importance of those three scales on water quality, hydrology, 

and biology is determined by the extent and intensity of each scale's land use pressures 

determines the relative importance of those three scales on water quality and hydrology. 

Graphics of different spatial scale is presented in Figure 1.1. 
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Figure 1.1 Graphics showing different spatial scales 

Source: Mainali and Chang (2018) 

1.4 REMOTE SENSING OF WATER QUALITY 

Remote Sensing techniques have emerged as a widely accepted technology for carrying 

out research in complex water resource systems. Due to traditional laboratory sampling 

methods' coverage, efficiency, and cost-effectiveness, the fast-developing 

environmental information technology and remote sensing techniques have played an 

eloquent role in water quality monitoring. Numerous satellite of multi-sensors has been 

launched since the 1970s, continuously providing data. Satellite remote sensing is 

indeed a promising method for evaluating water quality variations in space and time 

(Glasgow et al. 2004; El Saadi et al. 2014; Bonansea et al. 2015; Liu et al. 2015; Zhou 

et al. 2017) along coastal, inland and estuarine water bodies (Vander Woerd and 

Pasterkamp 2004; González-Márquez et al. 2018; Yepez et al. 2018). Optically active 

substances in water, such as dissolved organic matter and algae, can interact with light 

and cause changes in the electromagnetic spectrum of reflected radiation. These 

changes can be analysed using techniques such as spectrophotometry and remote 

sensing to study the water's optical properties and detect the presence of specific 

substances (Koponen et al. 2002; Teodoro et al. 2007; Wen and Yang 2009; Haji 
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Gholizadeh et al. 2016). Remote sensing can be used to determine the relationship 

between the reflectance of water at specific wavelength bands (measured using sensors 

on satellites or aircraft) and insitu WQPs such as dissolved oxygen, chlorophyll, 

suspended sediment etc. This relationship, known as a "spectral signature," can be used 

to infer the water quality at a specific location based on the reflectance measurements. 

However, it is important to note that the relationship between remote sensing 

reflectance (Rrs) and WQPs can be affected by many factors, such as water body types, 

weather conditions, and atmospheric correction methods. Therefore, the accuracy of 

water quality estimation by remote sensing may vary depending on the specific case. 

Specifically, these studies will focus on identifying the various wavebands or band 

combinations (Panda et al. 2004; Sharaf El Din et al. 2017) with the highest correlation 

with different WQPs. Many studies have developed similar theories (Baba 1993; Allee 

& Johnson 1999; Andrzej Urbanski et al. 2016; Abdelmalik, 2018; Bonansea et al. 

2018) and described the usefulness of remote sensing applications in continuous water 

quality monitoring programmes. Although, the best band or combinations suggested to 

predict WQPs differ from one study to another due to the optical complexity of turbid, 

productive waters. Besides, the transferability of algorithms developed in one study to 

other environments remains unknown from the papers reviewed. Visible (VIS), infrared 

(IR), and microwave (MW) are indeed considered to be some of the most critical 

spectral bands of interest for remote sensing of water bodies. VIS bands are sensitive 

to water depth, turbidity and dissolved substances like chlorophyll and suspended 

sediment. IR bands are sensitive to water temperature and dissolved gases like oxygen 

and can detect sediment and organic matter in the water. MW bands are sensitive to 

water surface roughness and water-land boundaries and can detect the presence of 

surface vegetation and shallow waterbodies. It's worth noting that depending on the 

specific application, other spectral bands can also be considered important, such as 

ultraviolet (UV) and short-wave infrared (SWIR) bands. Also, the importance of each 

band may vary depending on the specific water body type and the WQPs being studied 

(Chang et al. 2015a). Spectral absorption by pure water does follow an approximately 

parabolic trend. In the UV region, pure water absorbs strongly due to the presence of 

dissolved oxygen, dissolved carbon dioxide, and other dissolved gases. In the visible 

spectrum, water has a peak absorption at a wavelength of around 440 nm, which is in 
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the blue-green region. This is due to the presence of dissolved substances such as 

dissolved organic matter, algae, and minerals, which can also cause a slight greenish-

blue colouration of the water. In the red-infrared (IR) region, pure water also absorbs 

strongly, this is due to the presence of dissolved gases and dissolved minerals. 

Therefore, pure water is usually a blue-green colour in transmission, although this can 

vary depending on the specific waterbody, and the presence of other dissolved 

substances (Julian et al.2013; Abdelmalik 2018) (Electromagnetic spectrum is 

illustrated in Figure 1.2).   

 

Figure 1.2 Electromagnetic spectrum 

Source: Hajigholizadeh and Melesse (2017a) 

A list of commonly used space-borne sensors in the field of remote sensing of water 

quality is listed in Table 1.2. The relationship between satellite spectral signatures and 

WQPs in inland water bodies, such as lakes, can be more complex and non-linear than 

in other types of water bodies. This is because the water dynamics in lakes are 

influenced by a wide range of factors such as water depth, sediment and nutrient 

content, algae growth, and meteorological conditions, all of which can affect the 

reflectance of the water at different wavelength bands. For example, in lakes with high 

sediment and chlorophyll content, there can be a considerable scattering of light in all 

VIS and NIR bands. This scattering can cause changes in the reflectance of the water, 
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making it more difficult to infer specific WQPs from satellite data. Additionally, the 

non-linear relationship between the WQPs and the spectral signatures can be caused by 

the presence of multiple substances with different spectral properties in the water, such 

as dissolved organic matter and mineral particles, making it difficult to estimate the 

concentrations of a single WQP. Therefore, the use of advanced techniques such as 

multi-temporal data analysis, atmospheric correction, and inversion algorithms can help 

to improve the accuracy of water quality estimation from remote sensing data in inland 

water bodies (Panda et al. 2004; Chang et al. 2015c; a; Gholizadeh et al. 2016; Ritchie 

et al. 2003)
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Table 1.2 List of commonly used space-borne sensors in water quality 

C
at

eg
o
ry

 Types of Satellite-sensors Date of 

Launch 

Spectral bands (nm) Spatial 

resolution 

(m) 

Revisit 

in 

(Days) 

Mission Status 

V
er

y
 h

ig
h
 r

es
o
lu

ti
o
n
 

Geo Eye-IKONOS 24-

Sep-

1999 

4 MS (445–853), 1 Pan (526–

929) 

3.2-0.82 ~3 Decommissioned 

SPOT 5-HRG 4-May-

2002 

3 MS (500–890), 1 Pan (480–

710), 1 SWIR (1580–1750) 

2.5 and 5–

10–20 

2-3 Decommissioned 

Digital Globe Quickbird 18-

Oct-

2001 

4 MS (430–918), 1 Pan (450–

900) 

0.65 1-3.5 Decommissioned 

CARTOSAT-1 5-May-

2005 

Pan (500–850) 2.5 5 Active/ Elapsed Life of 

13 years, six months, 

29 days 

CARTOSAT-2 10-Jan-

2007 

Pan (450-850) ≤ 1 - Active 

Digital Globe Worldview-1 18-

Sep-

2007 

Pan 0.46 1.7 Active/ Expected end 

at the fourth quarter of 

2020 

Geo Eye-1 6-Sep-

2008 

4 MS (450-920),  1 Pan (450-

800) 

1.84-0.46 1-3 Active 

Digital Globe world view-2 8-Oct-

2009 

8 MS (400–1040), 

1 Pan- (450–800) 

1.85-0.46 1.1 Active/ Expected end 

in the fourth quarter of 

2022. 

NOAA World view-3 13-

Aug-

2014 

8 MS (400–1040), 

1 Pan- (450–800), 

8 SWIR (1195-2365) 

1.24-3.7-

0.31 

1-4.5 Active/ Estimated life 

10-12 years 
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Digital Globe Worldview-4 11-
Nov-

2016 

4 MS (655-920), Pan-(450-800) 0.31 1-4.5 Active/10-12 years of 
Estimated Life 

H
ig

h
 r

es
o
lu

ti
o
n
 

Landsat- 5 MSS 1-Mar-

1984 

4 MS (450-1750) 80 18 Decommissioned 

Landsat- 5 TM 1-Mar-

1984 

5 MS (450-1750), 2 SWIR 

(1550-2350), 1 Thermal (10400-

12500) 

30-120 16 Decommissioned 

IRS-1A 29-

Aug-

1988 

1 LISS-I (450-520), 3 LISS-II 

A/B (520-860) 

72.5, 36 22 Decommissioned 

IRS-1B 29-

Aug-

1991 

1 LISS-I (450-520), 3 LISS-II 

A/B (520-860) 

72.5, 36 22 Decommissioned 

IRS-1C 28-

Dec-

1995 

3 LISS-III (520-1700), 

1 PAN (500-750), 

2 WiFS (620-860) 

23.5, 70, 

5.8 

(PAN), 

188. 

24, 

5(WiFS) 

Decommissioned 

Landsat-7 ETM+ 15-

Apr-

1999 

4 MS (450-900), 2 SWIR 

(1550-2350), 1 Thermal (10400-

12500), 1 pan (520-900) 

30-15-60 16 Active 

IPS-P6 ResourceSat-1 17-

Oct-

2003 

3 LISS-IV (520-860), 4 LISS-

III (520-1700), 3 AWiFS (620-

1700) 

5.8, 23.5, 

70 

24, 

5(WiFS) 

Active 

Landsat-8- OLI 11-

Feb-

2013 

5 MS (430-880), 2 SWIR 

(1570-2290), 1 Pan (500-680), 1 

Cirrus (1360-1380), 2 Thermal 

(10600-12510) 

30-15-100 16 Active 
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ALOS AVNIR-2 24-Jan-
2006 

4 MS (420-890), 1 Pan (520-
770), 1 L-Band (1.3GHz) 

10 46 Decommissioned 

EO-1 ALI 21- 

Nov-

2000 

9(433-2350)- 1Pan(480-690) 10-30 16 Decommissioned 

EO-I Hyperion 21-

Nov-

2000 

242(350-2570) 30 16 Decommissioned 

HICO 10-

Sep-

2009 

128(350-1080) 100 10 Decommissioned 

Sentinel-2A MSI 23-

Jun-

2015 

10 MS (443-945), 3 SWIR 

(1375-2190) 

10, 20, 60 5-10 

days 

Active 

Sentinel-2B MSI 07-

Mar-

2017 

10 MS (442-943), 3 SWIR 

(1376-2185) 

10, 20, 60 5-10 

days 

Active 

SPOT-1 HRV 22-

Feb-

1986 

3 MS (500-890), 1 Pan (510-

730) 

20,10 26 days Decommissioned 

SPOT-2 HRV 22-Jan-

1990 

3 MS (500-890), 1 Pan (510-

730) 

20,10 26 days Decommissioned 

SPOT-3 HRV 26-

Sep-

1993 

3 MS (500-890), 1 Pan (510-

730) 

20,10 26 days Decommissioned 

SPOT-4 HRVIR 24-

Mar-

1998 

3 MS (500-890), 1 SWIR 

(1530-1750), 1 Pan (610-680) 

20,10 26 days Decommissioned 
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M
o
d
er

at
e 

re
so

lu
ti

o
n
 

IRS-P3 21-
Mar-

1996 

3WiFS (620-1700), 3 MOS 
(750-1605), IXAE (Indian X-

Ray Astronomy Experiment) 

188, 1500, 
520, 550 

5 Decommissioned 

MERIS 1-

March-

2012 

15 MS (390-1040) 300-1200 Daily Decommissioned 

MODIS 18-

Dec-

1999 

2(620-876)-5(459-2155)-

29(405-877) and thermal 

250-500-

1000 

1-2 Active 

GOCI 26-

June-

2010 

8(400-865) 500 1 hr/ 8 

image in 

day 

time 

Active/7years 
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The advantage of the temporal and spatial coverage of optical remote sensing are: 

 The best approach for overcoming the disadvantages of insitu water quality 

monitoring and reducing the difficulties in dealing with the complex 

heterogeneous and dynamic behaviour of coastal, inland, and estuaries 

(González-Márquez et al. 2018; Yepez et al. 2018). 

 Remote sensing data generally have a relatively high temporal resolution. This 

allows for repeated analysis and facilitates time series analysis, which can 

provide information on how WQPs are changing over time. (Kong et al. 2015) 

and quantify water quality issues (Haji Gholizadeh et al. 2016). Additionally, 

time series analysis can be used to detect changes in water quality that may be 

caused by human activities, such as changes in land use or changes in water 

management practices. 

 Remote sensing can be used to analyse water quality issues at different scales, 

such as at the regional, local, and watershed scales. By using remote sensing 

data with different spatial resolutions, it is possible to study the water quality of 

large areas, such as entire regions, as well as more localized areas, such as 

individual lakes or watersheds. 

 Satellite imagery provides near-continuous spatial coverage over large areas, 

allowing synoptic estimates of water quality. The use of satellite imagery can 

provide a synoptic view of water quality across a region, which can be useful 

for identifying patterns and trends in water quality over time. Additionally, a 

long record of archived Landsat imagery can be used to estimate historical water 

quality when ground measurements cannot be performed.  

1.5 MULTIVARIATE STATISTICAL TECHNIQUE FOR WATER 

QUALITY ANALYSIS 

Multivariate statistical approaches are extensively used for classification, model 

construction, dimension reduction, and interpreting water quality data with a minimum 

loss of original information. These statistical techniques enable the determination of the 

factors that significantly impact the river water quality. Such methodological 

approaches have emerged as a critical method for developing effective water 
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management strategies and addressing pollution issues. Besides this, multivariate 

statistical analysis can aid in validating seasonal variations induced by natural and 

anthropogenic factors. Principal Component Analysis (PCA), Factor Analysis(FA), 

Cluster Analysis (CA), Discriminant Analysis (DA) and Redundancy Analysis (RDA) 

are all commonly used multivariate techniques in the field of water quality research. 

These techniques analyse large datasets and identify patterns or relationships between 

WQPs. They can also classify or group water samples based on their chemical or 

physical characteristics. A multivariate model can be broadly classified into three 

groups:  

 Univariate analysis - which examines only one variable 

 Bivariate analysis - examines two variables. 

 Multivariate analysis - more than two variables. 

1.6 INVERSION METHODS AND RETRIEVAL ALGORITHM 

Remote sensing based water quality monitoring is a complex process that involves 

multiple steps, including image acquisition, pre-processing, data inversion, and data 

analysis. Selecting a suitable inversion method to find strong relationships between 

WQPs and remotely sensed data is one of the main challenges in this field. Inversion 

methods are used to infer WQPs from remotely sensed data, such as reflectance or 

radiance measurements. Different inversion methods have different strengths and 

weaknesses, and the choice of method will depend on the specific characteristics of the 

data and the research question. Some commonly used inversion methods include 

empirical and semi-analytical algorithms, such as the Beer-Lambert Law, and more 

complex methods, such as neural networks and machine learning algorithms. It is 

important to carefully evaluate the performance of different inversion methods and 

select the one that provides the most accurate and reliable results for a specific study. 

This often requires extensive testing and comparison of results using both remotely 

sensed data and insitu measurements of WQPs. The inversion model can be broadly 

classified into three  

 Empirical Method 

 Analytical Method 

 Semi-empirical/semi-analytical method (Hybrid method) 
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Empirical methods are a type of inversion method that is used to infer WQPs from 

remotely sensed data by identifying and modelling the statistical relationships between 

the measured WQPs and the spectral values (Chang et al. 2015). These methods are 

simple to implement and can provide quick results. They are commonly used in water 

quality monitoring applications, such as the development of algorithms for retrieving 

WQPs from satellite data. Empirical methods are relatively inexpensive and easy to 

use, but their results depend on the data quality used to establish the empirical 

relationship, and their accuracy may be limited in certain cases. The most critical barrier 

of empirical methods approaches is uncovering the relationships among WQPs and 

spectral values (single bands, band combinations, or band ratio) through regression-

related methods. The existence of a nonlinear relationship among WQPs, combined 

with the failure of linear regression techniques to detect genuine relationships, inspired 

scientists to devise novel approaches. As an outcome, machine learning methods such 

as ANN, RF, SVM, PSO, and GP, as well as combinations of these models, have been 

employed to retrieve WQPs from different bands of remote sensing data. The analytical 

method models the reflectance using inherent optical properties (such as the absorption 

coefficient, scattering coefficient, and volume scattering function) and intrinsic optical 

properties (such as the diffuse attenuation coefficient for downwelling irradiance and 

irradiance reflectance). The analytical approach uses a bio-optical approach to retrieve 

WQPs. Remotely sensed bio-optical models use the connection among inherent optical 

properties (IOPs) and apparent optical properties (AOPs) to evaluate WQPs based on 

sensor reflectance. IOPs are water's physical attributes that govern how light interacts 

with it. These include the water's absorption and scattering coefficients, which are 

determined by the concentration of dissolved and suspended substances. AOPs are 

water properties that can be analysed utilising remote sensing methods, including 

reflectance or radiance. These properties are influenced by the IOPs of the water, as 

well as the viewing and illumination constraints and sensor characteristics. These 

models use information from light-water interactions to measure the concentrations of 

WQPs. Although the analytical method is independent of insitu water quality data, it 

depends on the optical properties of water bodies. It thus is not a method that can be 

used across a wide range of spectral bands. Semi-empirical/semi-analytical methods, 

on the other hand, are the integration of empirical and analytical data. 
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1.7 SCOPE OF THE PRESENT STUDY 

Continuous monitoring of water supplies for domestic, industrial, and irrigated 

agriculture, livestock, and mining activities is required to ensure the right norms and 

standards are met (Giri and Qiu 2016). The impacts of water pollution are not limited 

to the environment; it also affects human health, livelihoods, and economies, and it is 

crucial to mitigate these impacts. Dischargeable sewage, agricultural runoff, and 

industrial waste have led to increased levels of bacteria and other pathogens in water 

bodies, making them unsafe for drinking and recreation.  Identifying the causes of water 

quality deterioration, measuring various water quality indices, determining appropriate 

explanatory variables, processing the data to capture the effect of these variables, and 

modelling them using identified explanatory variables are all essential steps in 

conducting a comprehensive water quality assessment. Because anthropogenic 

activities significantly impact most freshwater environments, dismissing human 

disturbance factors will limit the model's robustness and accuracy (Wang and Yang 

2019). As a result, the relationship between landscape characteristics and water quality 

provides critical information for addressing specific NPS management challenges. 

Remote sensing and GIS techniques are the most effective, cost-effective, and reliable 

tools for continuously monitoring and interpreting spatiotemporal phenomena. 

Moreover, the availability of open-access software and scripting provides additional 

benefits for processing these images. Given the preceding discussion, the purpose of 

this research is to investigate,  

 What is the geographic distribution of seasonal water quality changes at monitoring 

stations? Where may statistically significant trends be found? How seasonal are the 

monitoring stations? What are the most critical WQPs that favour spatiotemporal 

trends? 

 What are the implications of various seasons and analysis scales on the relationship 

between water quality changes and landscape characteristics? The study 

hypothesises that the factors impacting water quality trends differ depending on the 

season. The researchers also hypothesize that predictor variables generated at 

smaller scales can explain water quality better than the full catchment approach. 
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 Aside from that, the study focused on describing the spatiotemporal variability of 

dominating WQPs on smaller scales utilising remote sensing and machine learning-

based frameworks for improved management techniques. 

1.8 ORGANIZATION OF THESIS 

This thesis is divided into six chapters. 

Chapter I: Provides a brief overview of the importance of understanding the 

concentration of different WQPs present in any waterbody and the water quality 

explanatory variable at multi spatial scale. Besides that, the study discussed the benefits 

of incorporating remote sensing data and insitu, using machine learning techniques. The 

commonly used sensors in previous studies and the scope of the study are also discussed 

here.  

Chapter 2: Provides a comprehensive review of the literature on spatiotemporal 

variations of WQPs, feature selection, and dimension reduction to identify the dominant 

WQPs.  The literature on assessing water pollution caused by anthropogenic activities 

is also reviewed. Finally, the study examined the literature using remote sensing and 

insitu data to overcome the disadvantage of understanding water quality problems at a 

finer scale. The research objectives are presented based on the identified research gaps. 

Chapter 3: Describes the study area, the water quality problem along the Ganga River 

Basin, and the justification for choosing the Middle Ganga Basin for this study. There 

is also a brief description of the data collection and pre-processing steps.  

Chapter 4: Summarises the theoretical aspects of various multivariate statistical and 

machine learning techniques used to achieve the multiple objectives in this study. 

Chapter 5: Presents the results and discussions in separate sections in the exact order in 

which the objectives are derived. The results of various multivariate statistical 

techniques used to achieve the first and second objectives and the discussions based on 

the results are detailed. Finally, the spatiotemporal maps and predicted dominant WQPs 

generated using machine learning techniques are presented and discussed in this 

section. 

Chapter 6: Highlights the results' conclusions, as well as the study's limits and future 

scope. 



19 

 

CHAPTER 2 

2 LITERATURE REVIEW 

2.1 BACKGROUND 

Natural and anthropogenic components strongly influence the river water quality of any 

area; understanding these drivers is critical for the long term viability of the aquatic 

ecosystem. Over the last few decades, there has been an increase in the demand for 

regular monitoring of many rivers, which has increased the accumulation of reliable 

long-term water quality data. Advanced computing technology now allows processing 

and manipulating enormous databases in various ways that were impossible before 

(Antonopoulos et al. 2001). Water quality data are frequently collected at various 

stations will account for changing hydrogeological conditions. These flaws eventually 

result in non-normally distributed, noisy outliers and missing data, which cause 

significant deviations in modelled and monitored results (Fu and Gan Wang 2012; Liu 

et al. 2019). Numerous studies have been undertaken to analyse the influence of various 

contaminants on river water quality utilising water quality indices (WQI). Even though 

WQI is beneficial for predicting changes in water quality by considering various 

characteristics, it does not give evidence on pollution sources because it is derived after 

the normalisation of analytical results (Wunderlin et al. 2001). 

On the other hand, a univariate strategy is a most often used method for analysing river 

water quality. Still, it is not a viable solution for environmental data involving many 

physiochemical variables. As a result, the application of multivariate statistical and 

machine learning models to learn spatial and temporal hydrological data has shown to 

be a valuable tool in dealing with uncertainties in water quality data (Sundaray et al. 

2006; Azhar et al. 2015) caused by natural and anthropogenic factors (Singh et al. 2004; 

Bhat et al. 2014). As emphasized in the previous section, the advancements in 

communications and technologies caused quality assessment to become a new change 

norm. Incorporating remote sensing with traditional water quality programs has boosted 

the data's synoptic coverage and temporal consistency. Furthermore, their capacity to 

give vital information on inland and near-coastal transitional waters in locations where 

traditional water quality programmes are either missing or insufficient has expanded 
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the scope of evaluation in isolated areas. It also allowed a successful real-time 

evaluation of water quality as well as the quick detection of possible contamination, 

such as eutrophication and dangerous algal blooms. 

Several study articles have been published in recent years that analyse WQPs to 

determine the most significant water quality variable and parameter that causes 

temporal and geographical fluctuations caused by natural and human seasonal 

variables, and so on. At the onset of the survey, the research articles on these topics 

were reviewed and documented. The overall methodology followed in this chapter is 

explained below.  

 An overall methodological framework for the literature review will be explained 

in Sec. 2.2. 

 Evaluation of spatiotemporal variations in WQPs Sec 2.3. 

 Sec 2.4 Assessment of water pollution induced by anthropogenic activities. 

 Mapping the concentration of WQPs using satellite data and machine learning 

algorithms is discussed in Sec 2.5.  

2.2 THE METHODOLOGICAL FRAMEWORK FOR LITERATURE 

REVIEW 

Good definitions are essential for most research studies, particularly in theory building, 

where concepts must be aptly defined, and in literature reviews, the research topic 

should be clearly outlined. As discussed in the review paper by Pourhabibi et al. (2020), 

this literature survey adopted a systematic approach to the literature review and 

followed the three-phase methodology employed by Ngai et al. (2011). "Research 

definition" was part of the first phase. It entails identifying the research area, developing 

review objectives, and defining the research scope. The river water quality assessment 

is the focus of this study, with three main goals: (1) identifying current research trends 

in the topic, (2) highlighting current challenges and providing directions for future 

research. The scope also covers studies conducted on inland waters using satellite data 

products in the remote sensing domain. The second stage is "research methodology," 

which begins by searching scientific databases for publications in peer-reviewed 

journals that are relevant to the study. The latest research papers were segregated based 

on the parameters studied, the scale of the study and the methodology applied. The last 
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phase was based on the set of research questions, similar to the procedure employed by 

(Chan et al. 2017; Pourhabibi et al. 2020; Snyder 2019), which included multiple levels 

of interpretation and analysis of previous research within the domain area, are addressed 

in the following sections. 

2.3 EVALUATION OF SPATIOTEMPORAL VARIATIONS IN WQPS 

2.3.1 Spatial pattern of seasonal water quality trends in monitoring stations 

Investigating any study's spatiotemporal changes of dominant WQPs is critical for 

proposing the appropriate treatment for the water bodies. River water quality data at 

numerous spatiotemporal scales are necessary for environmental pollution control and 

policy planning for contaminated site management. Evaluating river water's physical, 

chemical, and biological condition at finer spatiotemporal scales is critical for 

operationalising wastewater facilities and sectoral water supply from riverine sources 

(Swain and Sahoo 2017a). However, they were identified as not being unique for 

different studies. Mainali and Chang (2018)  observed that the significant factors differ 

across scales but not across seasons on the same scale. This part of the literature survey 

discussed the various multivariate statistical techniques applied over the year to 

understand the monitoring stations causing the spatiotemporal changes and the 

significant WQPs.  

In real-world problems, the dataset collected from the respective authorities is 

unlabelled. In machine learning, there are various methods for labelling these datasets, 

and clustering is one of them. Clustering is an unsupervised learning technique to 

predict the groups from an unlabelled dataset. Over the past years, clustering techniques 

have been widely used in engineering, economics, geology, electronics, statistics, and 

psychology. It divides the input space into regions based on predesigned criteria without 

training data (Ay and Kisi 2014; Li et al. 2016). Since it does not require any 

prerequisite knowledge about the data, it is also known as unsupervised learning 

(Kamble and Vijay 2011; Hajigholizadeh and Melesse 2017). Clustering identifies the 

subgroups in the data so that the data points in the same subgroups or clusters are 

similar, while data points in different clusters are different (Shamitha and Ilango 2019). 

Chang et al.(2012) used K-means clustering to divide the dataset into a user-specified 
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number of subsets called clusters to discover and evaluate the spatiotemporal patterns 

of WQ in Tampa Bay based on parameters of similar qualities. K-means clustering is 

one of the simplest unsupervised learning algorithms, which identifies the K number of 

centroids in the whole dataset and allocates every data point to the nearest cluster while 

keeping the centroids as small as possible. The K-means algorithm initially starts by 

randomly selecting a centroid value for each cluster. The K-means algorithm calculates 

the Euclidean distance within each data instance and centroids of all the clusters. Then 

it assigns the data instances to the cluster of the centroid with the nearest distance. After 

the clusters are assigned, a new centroid value is calculated based on the mean values 

of the coordinates of all the data instances from the corresponding cluster. The principle 

behind the K-means clustering is it calculates the Euclidean distance between two 

points, which can be measured with a measuring device or found using the Pythagorean 

formula (Chang et al. 2012a). 

2.3.2 Feature selection and dimensionality reduction 

PCA is a statistical unsupervised machine learning approach that uses an orthogonal 

transformation to convert a group of correlated variables to uncorrelated variables (Li 

and Liu 2018). Each of the principal components (PCs) is chosen to describe the 

majority of the available variance in the data and is orthogonal to each other. The first 

principal component has the most significant variance of all PCs. It is a necessary tool 

for ecological evaluation since most environmental studies are made up of multiple 

variables, making it difficult to identify relevant patterns in the data. The factor score 

is used to organise the data into groups of variables having the greatest relationships. 

In other words, the groups, also known as PCs, are organised or sorted in the order of 

the total variance explained. As a data reduction strategy that compresses a large 

number of variables into a smaller number of variables (Wunderlin et al. 2001) that 

makes ecological assessment more practicable. Feature selection and dimensionality 

reduction task is crucial for high dimensional machine learning analysis to select 

dominant features in training the dataset. Besides, these techniques can be further 

helpful in preventing overfitting, simplifying the model to improve the computational 

efficiency and reducing the algorithm's overall running time. It is critical to gather only 

relevant characteristics in the training dataset before executing any machine learning 
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method., i.e. minimising the dimensions of feature space is called dimensionality 

reduction. Besides, it further helps to prevent overfitting and makes the model simple 

and efficient with less running time. PCA and linear discriminant analysis (LDA) is the 

popular pre-processing linear transformation techniques often used for dimensionality 

reduction and to select relevant features. Table 2.1 lists the critical findings and WQPs 

used in various studies. 

Table 2.1 Feature selection and dimension reduction of water quality data 

Parameters Models Critical Findings Reference 

22 WQPs Spearman r 

coefficient, 

FA/PCA, 

DA 

FA/PCA gave a 40% data 

reduction, selected 13 out of 22 

WQPs and explained 71% of 

spatiotemporal changes. DA 

observed considerable data 

reduction with 6 WQPs 73% 

reduction to differentiate samples 

from monsoon or non-monsoon 

season and 5 WQPs 77% 

reduction in data to differentiate 

spatially. 

(Wunderlin et 

al. 2001) 

 24 WQPs CA, 

FA/PCA 

Hierarchical CA grouped the 

eight sampling sites into 3 

clusters of similar characteristics 

based on their water quality 

characteristics and pollution load 

(Natural and Anthropogenic). 

Data reduction by PCA and DA 

and observed soluble salts 

(natural) and organic pollution 

load (anthropogenic) are the 

parameters responsible for 

spatiotemporal variations.  

(Singh et al. 

2004) 
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Chl-a, DO, 

TKN, TP and 

water 

temperature 

CA and DA Stepwise DA and Spatial DA 

identified the most critical 

discriminating WQPs responsible 

for temporal and spatial 

variations. Using the CA trend in 

environment pollution was found 

from the low-pollution region to 

high pollution region. 

(Hajigholizadeh 

and Melesse 

2017b) 

DO, FC, BOD, 

pH, T, TP, TS, 

Nitrate 

PCA, CA PCA of all WQPs showed a 

sample separation based on 

seasonality. CA grouped the 

stations based on similarity and 

dissimilarity exist between the 

parameters. 

(Ahmed et al. 

2019) 

2.4 WATER POLLUTION INDUCED BY ANTHROPOGENIC ACTIVITIES 

LULC has emerged as an important research topic for determining the relationship 

between surface water quality and non-point source (NPS) pollutants, which are 

essential pollutant regulators in overland flow and interflow (Chen et al. 2016b). NPS 

pollution concerns are distinguished by complicated processes and occasional 

occurrences, attributed mostly to NPS, which is recognised to have a direct association 

with LULC (Abdulkareem et al., 2018). The point source is easily identifiable and 

governed by identifying its source, primarily industrial and domestic sewage load. 

However, owing to the complex and diffuse interaction between runoff and landscape, 

NPS pollution is challenging to identify (Ding et al. 2016; Giri and Qiu 2016). NPS 

usually involve urban and agricultural runoff, pollutant decomposition, and so on, 

whereas land use patterns such as forest cover tend to retain water quality conditions 

(Álvarez-cabria et al. 2016; Mello et al. 2020). Many previous studies have 

demonstrated a strong correlation between WQPs and agricultural land use due to 

fertilizer mixing into river water via agricultural runoff (Patra et al. 2018; Ahmad et al. 

2021; Umwali et al. 2021). Urbanization alters the water quality via three primary 

mechanisms: i) pollutant discharge at the point source and mobilization of pollutants 
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from diffuse sources; ii) flow modification; and iii) changes in water temperature 

(Miller and Hutchins 2017). As a result, watersheds that include relevant water 

catchments used for domestic, agricultural, and industrial purposes necessitate well-

balanced LULC planning to reduce the detrimental impacts of certain types of land use 

on river water quality (Meneses et al. 2015). Many researchers have previously 

examined the effect of LULC on water quality using various analysis techniques, 

particularly statistical tools. It can be established that the entire area upstream from the 

monitoring stations may be utilised as a predictor of WQPs at many scales and that 

comparing scale and seasonal impacts with LULC variations could be useful in 

exploring the complex dynamics of LULC on water quality (Tanaka et al. 2016; Shukla 

et al. 2017; Cheng et al. 2018; Mello et al. 2018). As a result, one critical question is 

which land use spatial extent has the most effect on water quality (Ding et al. 2016). 

Using scale correctly allows managers to make better decisions and use resources more 

efficiently. However, the outcomes are not always reliable. Some studies discovered 

that land use at the reach or riparian sizes predicted WQPs better than land use at the 

catchment scale (Wang et al. 2012; Sandoval et al. 2014; Pathak et al. 2018; Gu et al. 

2019), whilst Others discovered that land use at the watershed scale accounted for better 

variability in water quality. These contradictory findings were most likely attributable 

to discrepancies in study designs and geographical areas. Multivariate statistical 

methods including cluster analysis (CA), correlation analysis, and Principal Component 

Analysis (PCA) are extensively utilised assessing temporal and spatial variations of 

WQPs, as well as Redundancy Analysis (RDA) to evaluate the global descriptions of 

the influencing factors of the LULC pattern on WQPs while accounting for the various 

scale effect. In the table below, we discussed spatial scale, models, and key findings 

from the most recent publications from 2017 to 2021 (Table 2.2).
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Table 2.2 Recent literature on assessment of water pollution induced by anthropogenic factors 

Spatial Scale , WQPs, 

Environmental Variables 
Models Critical Findings Reference 

Catchment, Riparian and 

Reach scale. 

BOD, COD, DO, EC, pH, 

TSS, nitrate nitrogen and 

ammonium nitrogen. 

Agriculture, Forest, Grass 

land, Urban. Water and 

Landscape metrics 

 

 One-way ANOVA, t-

test, RDA 

A strong relationship between land use and WQPs was 

observed during the monsoon season. The RDA results 

revealed that riparian scales explained more of the 

LULC patterns on WQPs than catchment and reach 

scales. 

Various land use measures generated different scale 

impacts, emphasising that multi-scale land use 

planning should be used in water quality management. 

(Shi et al. 2017) 

 

Sub catchments  

TSS, TP, TN and ammonia 

nitrogen 

 

 

ANOVA 

 

Changes in LULC condition increased NPS pollutant 

loads among different LULC changes.  

Urbanisation was the dominant LULC change with the 

highest pollutant load. 

LULC changes have given rise to high-level TSS in 

urbanised areas. 

(Abdulkareem et al. 

2018) 

WQPs 

LULC 

Elevation 

Slope 

Soil Types 

Population density 

Mann Kendall's trend 

analysis, Correlation, 

Spatial 

Autocorrelation, 

Regression 

The explanatory power of the 100m buffer and one-

kilometre upstream scale analyses was more 

significant than that of the sub-watershed size studies. 

Each regression model's significant factors vary 

between scales but not between seasons on the same 

scale. By reducing residual spatial autocorrelation, the 

(Mainali and Chang 

2018) 
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spatial filtering strategy considerably boosted the 

explanatory power of water quality trend models. 

Watershed and Riparian Correlation, RDA The RDA model explained 82% of the variation for the 

whole watershed and 75% for the riparian zone 

composition. Forest cover is significant in keeping 

water clean, urban and agricultural areas degrade water 

quality. Also identified the importance of streamflow 

and temperature as important predictors that explain 

some variations in WQPs. 

(Mello et al. 2018) 

Sub-watersheds 

TOC, COD, TP, NO3, EC 

Farmland, forest land, 

grassland, bodies of water, 

barren land, urban land, and 

rural land, altitude, slope, 

NDVI and landscape metrics 

Source-Sink 

landscape theory, 

RDA and PLS-SEM  

Watersheds containing urban landscapes significantly 

impacted water quality (β = 0.835, p<0.001), 

indicating water quality degradation due to point 

source pollution in the non-monsoon season.  

Rainy season - Agriculture and urban areas serve as the 

"source" landscape. Agricultural development 

exacerbates inorganic pollution, and urban 

development exacerbates organic pollution.  

Natural vegetation landscape - serves as a "sink" for 

inorganic pollution and a "source" for organic 

pollution. 

(Wang et al. 2021) 

DO, FC, pH, BOD, Temp, TP, 

Nitrate, Turbidity, TS 

Pearson Correlation, 

PCA and CA 

Partial Least Squares 

Path Modelling 

During the non-monsoon season, a strong positive 

correlation was observed between DO, TP, and 

cropland; turbidity and forest; FC and built-up areas; 

and FC and waterbodies. 

BOD and cropland had a strong positive correlation; 

turbidity and forest; BOD and grassland had a strong 

(Umwali et al. 2021) 
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negative correlation; temperature and built-up had a 

strong negative correlation. Nitrates and wetlands had 

a strong positive correlation, whereas TP and built-up 

had a negative correlation. 
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Although traditional monitoring techniques are more accurate, they are time- and 

labour-intensive. Many studies incorporating remote sensing and insitu WQPs have 

been published over the last few decades. Remote sensing techniques have evolved into 

valuable tools for achieving the goal of continuous water resource monitoring. With 

advancements in space sciences, computer applications and computing power have 

established a new standard for water quality assessment. Based on the literature study, 

a collection of sensors used to measure different WQPs, bands of interest, modelling 

methodologies, and critical discoveries were found and are provided in separate tables. 

2.5 MAPPING THE WQPS USING SATELLITE DATA AND MACHINE 

LEARNING ALGORITHMS 

Long term data requirement is vital to address the state of the world’s water resources. 

Field measurements for water quality assessment include costly, time-consuming, 

labour-intensive sampling on site and transport to land-based or shipboard laboratories 

for their evaluation. Besides, there are possibilities to compromise on data due to poor 

quality-control protocols and quality assurance due to the extended holding of samples 

before analysis (Gholizadeh et al. 2016). The fast developing environmental 

information technology and remote sensing techniques have played a significant role in 

water quality monitoring due to the coverage, efficiency and cost saving. It depends on 

the spectral response or scattering reflected from the water. Remote sensing techniques 

employ different optical properties of surface water by changing the reflected energy 

spectra or emitting thermal radiation from it (Ritchie et al. 2003; Swain and Sahoo 

2017b). The concentrations of optically active water constituents can be estimated from 

satellite images by interpreting the received radiance at the sensor at different 

wavelengths (Keiner and Yan 1998). Sensors on board satellites with a wide range of 

spectral (the ability of a satellite sensor to measure specific wavelengths of the 

electromagnetic spectrum), temporal (time between images), and spatial resolutions 

(size of the smallest feature that a satellite sensor can detect) have been proposed to 

access several WQPs (Liu et al. 2015). These processed data have the potential to 

analyse the trends in many instances of time. With the incorporation of traditional 

sampling data, the assessments of WQPs have been improved (Steissberg et al. 2010). 
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2.5.1 Satellite Sensors and Platforms 

Technological advances in the late twentieth century improved satellite sensor 

capabilities, such as finer spatiotemporal and spectral resolutions. Sensors with short 

revisit times, such as MODIS Aqua, enable more satellites to be used for real-time 

monitoring applications (Chang et al. 2015a). This has created a huge opportunity for 

event-based water quality assessment, such as surface water quality assessment after 

the flood. Passive remote sensing devices that detect light within visible NIR regions 

of the electromagnetic spectrum (400-1000 nm), whether portable or mounted on 

aeroplanes or satellites, are most typically employed for water-related applications. The 

most widely used data resources are the Landsat series satellites. Because of its early 

launch, open access, and longest operational period in orbit, Landsat-5 TM is used 

significantly more than any other multispectral sensor (Wang and Yang 2019). The 

thermal band fitted to Landsat-7 and 8 extends the parameter range measured by the 

ETM sensor. Multispectral sensors give more integrated spectral information than 

hyperspectral sensors but have lower spectrum resolution. Hyperspectral remote 

sensing has shown high potential in detecting water quality conditions and their 

parameters (Peneva et al. 2008; Olmanson et al. 2013; Antonini et al. 2017; Chen et al. 

2016a). The narrow intervals of hyperspectral channels enable a wide range of 

reflectance that is useful in assessing the water quality conditions of many open water 

aquatic ecosystems (El-Magd and El-Zeiny 2014). Remote sensing of shallow waters 

may produce images characterized by limited image coverage, strong uneven 

background, and high noise/speckle levels, which contribute to the challenges of 

extracting spatial information. Phinn et al. (2008) compared Quickbird-2 multi-spectral, 

Landsat-5 Thematic Mapper multi-spectral data and Airborne hyperspectral image 

CASI-2 sensor using a pixel size of 4.0 m. The study observed the highest overall 

accuracies (46%) for airborne hyper-spectral data produced, followed by Quickbird-2 

and Landsat-5 Thematic Mapper. The low accuracy levels were attributed to the 

mapping methods and difficulties in matching locations on image and field datasets. 

The applications of hyperspectral remote sensing have been applied in riverine (Lepistö 

et al. 2010; Rostom et al. 2017; Zhang et al. 2020), coastline (Bertels et al. 2008; El-

Magd and El-Zeiny 2014; Keith et al. 2014) and both riverine and costline water quality 

analysis (Brando and Dekker 2003). However, the major drawbacks of airborne 
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hyperspectral data for routine monitoring are the limited coverage during each flight 

and the relatively high costs involved (Bertels et al. 2008).  

Morel and Prieur (1977) grouped the surface water into Case I and Case II waters based 

on their optical properties. Case I generally refers to open ocean, whereas Case II inland 

waterbodies, estuaries and coastal waterbodies. In Case I, chlorophyll is the most 

optically active constituent, and the water contains little suspended sediment (SS). As 

a result, the algorithms that use empirical models to relate sensor radiances to surface 

concentrations have yielded promising results (Sudheer et al. 2007). Therefore, this 

group's optical properties can be modelled as a function of Chl-a.  

However, in Case II waters, the relationship between sensor radiance and WQPs is more 

complicated due to the interaction of components, such as chlorophyll, suspended 

sediments, and yellow substances. Therefore, in the complex Case II waters, the optical 

properties cannot be modelled as a function of Chl-a but as an independent variable 

(Novoa et al. 2011). Some marine coastal waters will neither belong to Case I nor Case 

II waters are referred to as a Non-Case I waters (Kondratyev et al. 1998). Remote 

sensing of turbid Non-Case I water still poses numerous challenges due to poor 

interpretation of signals stemming from different constituents of such waters. 

Considering past research, it can be noticed that remote sensing has been widely used 

for water quality monitoring of optically active substances like Turbidity (T), 

Phytoplankton and Yellow substances or Coloured Dissolved Organic matter (CDOM) 

(Novoa et al., 2011). These studies determine the reliable relationship between Rrs at 

certain wavelength bands and insitu WQPs. The studies specifically sought to explain 

the current level of empirical remote sensing in inland waterways and to identify 

remotely sensed band(s), band ratios, and band arithmetic variables suitable for 

identifying specific characteristics in various water types using statistical 

methodologies (Matthews 2011).  

Sensors involved in water resource problems cover a broad portion of the EM spectrum 

that indirectly measures variables of a water resource system using remote sensing 

techniques later, these hydrological variables can be solved by applying some empirical 

or transform functions. The VIS, IR, and MW bands are the essential spectral bands of 

interest for remote sensing of water bodies (Chang et al. 2015a). These bands allow for 

the detection and analysis of various water properties, such as water depth, temperature, 
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and turbidity. Each band has its advantages and limitations, and they are often used in 

combination to provide a complete picture of the water body being studied. In the case 

of inland water, the water dynamics are more complex to have a linear relationship 

between the satellite spectral signatures and WQPs. There is considerable scattering in 

all VIS and NIR bands from the lake waters with high sediments and chlorophyll 

content (Panda et al. 2004). Thus, attention has to be paid to identifying the methods 

capable of sensitively and continuously detecting and quantifying WQPs (Li and Liu 

2018). In this chapter's coming sections, different modelling techniques are discussed 

for various WQPs using remote sensing techniques.  

2.5.1.1 Water temperature 

The advantage of satellite data in digital format is that it can be easily combined with 

other geographic information and could be used to create temperature models. Emitted 

thermal infrared radiation (TIR, λ = 8 to 14 µm) can be used to measure surface water 

temperature (top approximately 100 µm) (Haji Gholizadeh et al. 2016; Vanhellemont 

2020). The wide range of TIR sensors provides many opportunities to measure water 

bodies' temperatures. The TIR technology to measure the water temperature of rivers 

are diverse and has been employed in a wide variety of fluvial environments (Handcock 

et al. 2012). Most of the works focused on monitoring the temperature of lakes 

primarily using Landsat TM and TM+ sensors with the perfect spatial and time 

resolution (Ramsey et al. 1992; Kay et al. 2005; Lamaro et al. 2013; Bonansea et al. 

2015). 

In most cases, the band ratio multi regression approach is used to obtain the relation 

between satellite signal and insitu measurements. The success of WQPs quantification 

in inland environments depends on water characteristics and the used sensor. The 

combination of good real-time coverage, spatial resolution and accessible data 

availability makes the Landsat system appropriate for studying these waterbodies.  

2.5.1.2 Dissolved Oxygen (DO), Biological Oxygen Demand (BOD), Chemical 

Oxygen Demand (COD) 

Remote sensing applications still present challenges in estimating DO, BOD, and COD. 

Landsat 8-based BPNN have shown an R2 of 0.934 (Sharaf El Din et al. 2017), and a 
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similar accuracy is observed with the regression model (González-Márquez et al. 2018). 

Moreover, the study by Wang et al. (2011) using GA-SVR and SPOT-5 data observed 

an R2 of 0.938. In another study conducted using Landsat 7, ETM+ identified the bands 

B1, B2 and B4, showing good agreement with the remote sensing data using multiple 

linear regressions (Sharma 2018). Their study has observed, the independent variables 

B1 and B1/B2, B2 and B2/B1 and B1/B4 and B2/B4 explain about 93% of the variance 

in BOD, COD and DO, respectively. It is noted that no research has given any 

recommendation on sensors or band/band ratio. Many studies in the past have proposed 

the application of Landsat comparatively promising in conjunction with insitu data and 

statistical techniques. However, the relationship between nonoptical parameters and 

satellite reflectance are very complicated to model using simple regression equations 

with Landsat. To address this fundamental issue, indirect estimation of COD, DO and 

BOD through other indicator variables may serve as a practical solution. The 

discussions on different band or their combinations correlations obtained in different 

study are poorly explained in most of the studies. However, the studies cleared the 

technicality on understanding the correlation between satellite data and insitu 

physicochemical parameters and their mapping. In fact, such studies are highly 

beneficial to understanding the dynamics of these parameters at a finer spatial and 

temporal scale, especially over a remote area.  

2.5.1.3 Turbidity  

Turbidity is an optical property of water that makes light scatter and absorb rather than 

transmit in straight lines, which is the opposite of clarity. Turbidity in any waterbody 

can be caused due to the presence of suspended and dissolved matter (Nazeer and 

Nichol 2015; González-Márquez et al. 2018). Highly turbid water will affect the 

physical appearance of water. Algae, CDOM and suspended matters are more dominant 

parameters in most lakes that obstruct the clarity and the satellite responses. The high 

concentration of turbidity is generally observed in the monsoon season due to the heavy 

surface runoff and transportation of sediments from soil to the stream (Maillard and 

Pinheiro Santos 2008; Yuan and Chen 2011). Their concentrations largely depend on 

catchment geology, climate, topography, vegetation, impoundment, and land use. 

Turbidity will make the light disperse and absorb rather than transmit in a straight line 



34 

 

in the water column. Its radiance is governed by the size of the particles individually 

present in the suspension and grain size distribution as well. It was suggested in many 

studies that the higher the concentration of TSS/turbidity, the higher will be the radiant 

emergent from the water surface along VIS and NIR of the EM spectrum (Garg et al. 

2017; Espinoza-Villar et al. 2018; Santos et al. 2018; Yepez et al. 2018). Vanhellemont 

and Ruddick (2015) discussed the advantages of using Landsat 8-OLI for high 

resolution and quality monitoring of coastal sediments and explained the benefits of 

higher SNR (Signal to Noise Ratio) compared to other Landsat images. A recently 

published study conducted by Garg et al. (2020) examined the variability of turbidity 

along the Ganga river basin during the COVID-19 lockdown period without using the 

ground observation data. The variation in turbidity has been discussed in terms of 

alterations in reflectance values in the VIS and NIR regions of Sentinel-2A/B. The 

results have been validated using the normalised difference turbidity index (NDTI) 

band ratio approach. The red and near-infrared wavelengths were found to be the most 

sensitive for turbidity analysis. A summary of various WQPs, sensors, bands of interest 

and methods employed is listed in Table 2.3. 
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Table 2.3 Summary of some of the WQPs analysed in past research 

Parameters Sensors used Bands and Methods Reference 

Chl-a and SS Landsat TM Bands 1, 

2,3,4,5 and their 

combinations 

ANN, MLP. TM1, TM2, TM3, and TM4 performed best 

among all ANN SS models and TM1 and TM2 for ANN 

Chl-a models. 

(Sudheer et al. 2007) 

Chl-a and TSS Landsat5 and ETM+ Based on the red spectral reflectance. Resampled Landsat 

data to MODIS in a GIS environment using ENVI 

Software. The statistical model was applied to model TSS 

and remote sensing images. A significant correlation (p 

< 0.05) for predicted TSS with predicted chlorophyll-a 

concentration (R2 = 0.969).  

(Dalu et al. 2015) 

Turbidity and TSS 

  

MODIS and Landsat Temporal Adaptive Reflectance Fusion Model (STAR-

FM). Surface reflectance values of all six bands of fused 

images. MATLAB ANN toolbox 

entitled NARXNET 

(Imen et al. 2015) 

Turbidity ,TSS, COD, 

BOD and DO 

Landsat 8 OLI  ANN and SVM. Seven neurons using bands CB, B, G, R, 

NIR, SWIR1, and SWIR2. BPNN models, with R2  ≥ 93% 

(Sharaf El Din et al. 

2017) 
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at the network testing phase, are observed for WQPs 

turbidity, TSS, COD, BOD, and DO concentrations.  

Fe, TSS, Turbidity, Zn, 

Cu, Cr, Pb and Cd 

MODIS and Landsat STAR-FM-based algorithm to fuse MODIS and Landsat. 

Bands Red, NIR and combinations of these two. 

Development of regression models between turbidity 

concentration and Landsat surface reflectance. 

(Swain and Sahoo 

2017a) 

Turbidity , EC, pH, DO, 

and depth maps 

Landsat-8 OLI R2 = 0.6419 with the sum of bands b4 and b5 for T. EC 

linked to the B2-B3/B4-B6 with R2 =0.6994. pH with B3, 

B4, B5, and B6 with R2 of 0.8153. DO with B1, B3, B4, 

B5, and B7 presented R2 = 0.930. 

(González-Márquez et 

al. 2018) 

Chl-a 33 years of Landsat 

from 1984-2017. 

Bands 1 to 5  

33 years of data from 1984-2017. Bands 1 to 5. 

Normalized difference chlorophyll index (NDCI), cloud 

computing tool by Google Earth. 

(Maeda et al. 2019) 

Chl-a, DO, total SS, 

Secchi disk depth, TDS, 

and pH 

Landsat 8 OLI 

Sentinel 2A and 

Göktürk-2 (GK2) 

satellite sensors. 

Principal component analysis (PCA) data fusion and 

mining techniques. R2=0.89 for PCA. The first five 

components represented about 90% of the data used for 

the band selection. The PCA-based method is superior to 

MLR, ANN, and SVM data. 

(Batur and Maktav 2019) 
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Blue-green algae, Chl-a, 

Fluorescent dissolved 

organic matter DO, 

specific conductance, 

and Turbidity  

Landsat-8 and Sentinel 

data fusion 

Progressively decreasing deep neural network (pDNN), 

MLR, SVR and ELR. Fusion increased the temporal 

frequency required for dynamic systems such as inland 

water bodies. The pDNN approach significantly 

outperformed MLR, SVR, and ELR in terms of overall 

accuracy and error. 

(Peterson et al. 2020) 

TP, Total Kjeldahl 

Nitrogen (TKN), TSS, 

and Chl-a 

Landsat TM and 

Landsat OLI 

A strong correlation was observed for TP and TKN with 

Chl-a, TSS, and selected band ratios. Bands Blue, Green, 

Red, NIR and combinations. Medium to high R2 values 

was observed for non-monsoon and monsoon seasons. 

(Hajigholizadeh et al. 

2021) 
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2.6 SUMMARY OF LITERATURE REVIEW 

The review provides an overview of conventional river water quality assessment and 

incorporating remote sensing with traditional techniques. Most published research 

discusses the significance of having a continuous monitoring program to understand the 

spatiotemporal water quality of any aquatic water resource. Past literatures discussed 

about how unsustainable land use practices affect the availability of usable freshwater 

in terms of both water quality and quantity. Furthermore, the changing relationship 

between water quality and LULC at different spatial scales is well discussed. Previous 

research into the relationship between landscape characteristics and water quality used 

the reach, riparian, and catchment scales to predict water quality. Literature documents 

numerous natural and anthropogenic factors that influence stream water chemistry. 

Their impacts on hydrochemistry can be diffuse (for example, runoff from urban and 

crop cultivation, interflow through organic rich soils) or point pollutants (e.g., industrial 

effluents). From the research survey, it is found that these relationships are indeed site 

specific. Some certainly exercised the role of multivariate statistical approaches to 

identify the spatiotemporal trend in water quality, dominant WQPs causing 

spatiotemporal changes in water quality, grouping the monitoring stations based on 

similarity and dissimilarity among them. Different modelling approaches, like 

statistical and machine learning approaches to identify the relationship between water 

quality response variables and predictors are also well acknowledged. Many 

researchers, however, discussed the inability of insitu monitoring data to explain the 

long-term water quality trend on a finer scale. To address this issue, we reviewed 

articles that used remote sensing techniques in conjunction with insitu water quality 

data. Many researchers discussed the success of empirical methods in identifying the 

statistical relationships between insitu WQPs and remote sensing spectral values. These 

techniques include statistical regression, curve fitting, nonlinear regression and 

computational intelligence techniques such as ANN, SVM, Tree-based algorithms, 

Ensemble algorithms, PSO, and GP models, among others. According to the available 

literature, Landsat sensors, including the Thematic Mapper (TM), Multi-Spectral 

Scanner (MSS), Enhanced Thematic Mapper (ETM), and Operational Land Imager 
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(OLI), have been used fairly successfully to measure physico-chemical and biological 

WQPs to explain the near real time water quality status of any waterbody.  

2.7 RESEARCH GAPS BASED ON LITERATURE REVIEW  

Understanding spatiotemporal water quality characteristics and the relationships 

between (LULC) patterns and water quality is critical for investigating the causes of 

different source pollution and conducting scientific land-use planning. Many 

researchers have examined the water quality trend using a variety of WQPs and 

identified their relationships with various LULC classes. No study has identified the 

dominant WQPs from a large water quality dataset to find the relationship between the 

LULC. However, due to the high cost of data collection and laboratory work, the 

amount of possible insitu measurements of WQPs is usually limited, particularly in 

spatial and temporal domains. At this stage, a long term water quality assessment still 

lacks in this domain.  

In the remote sensing part of the research survey, we observed that most studies 

estimated WQPs, especially optically active parameters, using remote sensing and 

regression-based modelling. Theoretically, water quality is too complicated to have a 

simple relationship with satellite spectral signatures (Yu et al. 2016). Furthermore, 

regression based approaches fail to describe the complex connection between satellite 

reflectance and concentrations of various WQPs, particularly non-optical constituents 

(Sharaf El Din et al. 2017). The best band or combinations suggested for predicting 

WQPs differ from one study to another due to the optical complexity of turbidity, 

suspended matter, and productive waters. Besides, the transferability of algorithms 

developed in one study to other environments remains unknown from the papers 

reviewed. It has also been found that classical machine learning algorithms are used in 

inland water remote sensing such as ANN (Teodoro et al., 2007; Liu et al., 2015; Sharaf 

El Din et al., 2017; Said & Khan, 2021), GA (Chang et al. 2012b; Lounis et al. 2013; 

Swain and Sahoo 2017a), SVM (Li et al. 2018; Wang et al. 2010), Random Forest 

(RF)/Boosted Regression Trees (Hafeez et al. 2019; Rubin et al. 2021) and Convolution 

Neural Network (CNN) for wetland water area (Günen 2022) has shown potential in 

reliably calculating WQPs at several spatiotemporal scales. However, to the best of our 
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knowledge, the boosting ensemble algorithm and other deep learning algorithms are 

rarely used in this domain. 

2.8 PROBLEM FORMULATION 

The Ganga River Basin (GRB) is India's largest river basin in terms of the catchment 

area, named India's "National River" in 2008. GRB accounts for 26% of the country's 

land mass (8,61,404 sq. km), holding approximately 43% of its population (448.3 

million as of the 2001 census) and accounts for about 79% of the area. 11 states share 

the GRB: Uttarakhand, Madhya Pradesh, Rajasthan, Haryana, Himachal Pradesh, 

Chhattisgarh, Jharkhand, Bihar, West Bengal, and Delhi, which lies between longitudes 

73°02' and 89°05' E and latitudes of 21°06' and 31°21' N. The flow characteristics of 

the river vary considerably throughout the year due to significant temporal variations 

in precipitation (Namami Gange 2020). 

In this study, we have chosen the part of the Middle Ganga Basin (MGB), a stretch 

from Haridwar to Varanasi of Uttara Pradesh (UP) (Dutta et al., 2020), which in terms 

of the catchment area is the most significant contributor of pollution. High and low 

flows mainly cause the basin's water-related problems. Concurrently, increased effluent 

discharge from industries and urban areas has also contributed to water quality issues 

in many reaches of the Ganga and Yamuna upstream of Allahabad (India-WRIS). 

Numerous cities along the Ganga basin yield and discharge substantial quantities of 

sewage water, the vast majority eventually transported to the river via the natural 

drainage system. Tanneries in Kanpur, distilleries, paper mills, and sugar mills in the 

catchments of the Yamuna, Kosi, Ramganga, and Kali rivers are identified as 

significant polluters (Dutta et al., 2020). The risk of contamination from urban and 

industrial areas has caused a drastic decline in the quality of Ganga water. The Ganga 

and its tributaries have become industrial effluent transport channels in addition to city 

wastewater drain over the years. The usage of river water is classified as follows: Class 

A water is best suited for drinking without conventional treatment, Class B for outdoor 

bathing, Class C for drinking with traditional treatment, Class D for wildlife and 

fisheries, and Class E for recreation and aesthetics, irrigation, or industrial cooling 

(ENVIS-UP). With a current treatment capacity of about 4,000 MLD, approximately 

12,000 MLD of sewage is produced (Consortium of 7 IITs 2013a). Currently, roughly 
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3000 MLD of sewage is released into the Ganga from Class I and II towns along its 

banks, necessitating a 1000 MLD more treatment capacity installation (Namami Gange 

2020). Furthermore, industrial pollution appears to contribute about 20% of total 

pollution, but its impact is much more significant because it’s toxic and non-

biodegradable nature. 

2.9  RESEARCH OBJECTIVES 

 Evaluation of spatial and temporal variations in WQPs. 

 To establish a correlation between complex insitu WQPs and to identify the 

statistically significant seasonal trend. 

 To identify the similarities or dissimilarities between the sampling sites and 

to identify the most significant water quality variables responsible for spatial 

and temporal variations in water quality.  

 Assessment of water pollution induced by anthropogenic activities. 

 To model the relationship between LULC pattern and water quality at 

different spatiotemporal scales.  

 To identify which LULC has the strongest influence on water quality. 

 Mapping the concentration of WQPs using Landsat-8 and machine learning 

algorithms. 

 To propose an appropriate learning-based algorithm to model insitu water 

quality data and satellite-derived reflectance data using Landsat-8 for water 

quality prediction over inland waterbody at a finer scale.  

 To produce a spatial distribution map for each water quality parameter over 

each pixel of the selected study area. 
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CHAPTER 3 

3 STUDY AREA AND DATA COLLECTION 

3.1  GENERAL 

The study focuses on a portion of the MGB, a stretch of the GRB from Balrampur to 

Chopan in the Indian state of Uttar Pradesh. The analysis in this study was based on 

insitu data collected from the Middle Ganga Division (MGD I & II) by Central Water 

Commission (CWC), India, for 20 water quality monitoring stations located in Uttar 

Pradesh (UP). 

3.2 GANGA RIVER BASIN 

The GRB is India's largest river basin in terms of catchment area and was named India's 

"National River" in 2008. The Ganga originates as Bhagirathi from the Gangotri 

glaciers in the Himalayas at an elevation of about 7010 m in the Uttarkashi district of 

Uttrakhand and flows for a total length of about 2525 km and empties into the Bay of 

Bengal via the former main course Bhagirathi-Hooghly. The five Ganges headstreams 

are the Bhagirathi, Alaknanda, Mandakini, Dhauliganga, and Pindar, which all rise in 

the mountainous region of northern Uttarakhand state. Tropical and subtropical 

temperature zones dominate the GRB climate. Summers are hot and humid, while 

winters are cool. In the Ganga plains, temperatures range from 5° to 25° C in winter 

and from 20° C to more than 40° C in summer. From July to October, the southwestern 

monsoon is responsible for most of the rain in the basin (Consortium of 7 IITs, 2013). 

Rainfall along the basin ranges from 390 to 2000 mm, with an average of 1100 mm, 

80% of which falls during the monsoon season (Consortium of 7 IITs 2012, 2013c, 

2014a). Agriculture is the most common land use (51%), followed by forest (17%), 

uncultivated land (14%), and fallow land (8%) (Consortium of 7 IITs 2014b). GRB 

drains about 26% of the country's land mass (8,61,404 sq. km), houses approximately 

600 million populations (nearly half of the Indian population) and contributes 40% of 

the Indian GDP (Namami Gange 2020). The Ganga's main stem passes through 50 

major Indian cities, almost all of which have populations over 50,000. The basin 

provides more than one-third of India's surface water, with 90% used for irrigation. 
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Eleven states share the GRB (Figure 3.1 & Figure 3.2) Uttarakhand, Madhya Pradesh, 

Rajasthan, Haryana, Himachal Pradesh, Chhattisgarh, Jharkhand, Bihar, West Bengal, 

and Delhi, which lies between longitudes 73°02'E and 89°05' E and latitudes of 21°06'N 

and 31°21' N.  

 

Figure 3.1 GRB Index map, Drainage and Sub-basin 

Source: CWC and NRSC (2014) 

 

 

Figure 3.2 State-wise drainage area of Ganga basin (In Indian Territory)  

Source: (Consortium of 7 IITs 2014b) 
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The 'Namami Gange Programme' is an Integrated Conservation Mission initiated as a 

'Flagship Programme' by the Union Government in June 2014 with a budget of Rs. 

20,000 Crore to achieve the twin goals of effective pollution abatement and 

conservation and rejuvenation of the National River Ganga. The basin's primary sources 

of river pollution are urban sprawl, industrialization, and agrarian chemicalisation 

(Consortium of 7 IITs 2013c). These sources can be classified as point and NPS. Some 

of the point and non-point source of pollution and their causes along the basin is 

presented in Figure 3.3. Domestic sewage accounts for 70-80 per cent of wastewater 

entering the Ganga, with industrial effluent accounting for the remaining 15 per cent. 

The productivity of the basin varies greatly. Parts of Uttar Pradesh have very high soil 

productivity, while certain parts of Madhya Pradesh, Rajasthan and Haryana have lower 

productivity (CWC and NRSC 2014).  

 

Figure 3.3 Various point and NPS of pollution and their causes along GRB 

 Source: Namami Gange (2020) 

Rapid population expansion, improved living standards, growing urbanisation, and 

industrialisation all resulted in different types of degradation. The mighty Ganga is no 
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exception since the decline of water quality directly impacts humans in some places, 

particularly during the non-monsoon season; the Ganga has become unfit for bathing 

(Namami Gange 2020).  

According to (Consortium of 7 IITs 2013c), the entire basin is divided into three 

sections: Upper Ganga Basin (Uttarakhand), Middle Ganga Basin (Uttar Pradesh), and 

Lower Ganga Basin (Bihar and West Bengal). The Himalayan region's upper Ganga 

Basin is usually considered pollution-free. The Ganga water in the upstream, midstream 

and downstream areas is used not only for drinking and irrigation but also for deity 

worship and holy bathing. The results revealed that the values of TDS, EC, alkalinity, 

calcium, and hardness were highest in downstream places due to this intervention 

(Dimri et al. 2021). Also,  according to studies on groundwater draft in UP, there is a 

general drop in water level by 2-4m (CWC and NRSC 2014). Given the significance of 

pollution contribution, a portion of MGB covering 20 monitoring stations was chosen 

for the study (Figure 3.4 & Figure 3.5).  
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Figure 3.4 Geographical location of the study area 
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Figure 3.5 Monitoring stations along the parts of MGB 
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3.2.1 Middle Ganga Basin  

The Middle Ganga plains have a transitional climate since they have positioned 

between the Himalayan area to the north and the peninsular foreland to the south. 

Winter cyclones sweep the central region, bringing cold waves and hot summer breezes 

from the west (CWC and NRSC 2014). The MGB, which includes the entire state of 

Uttar Pradesh, is one of India's most populous regions, with a population of around 200 

million (as of the 2011 Census). Uttar Pradesh covers a massive portion of the very 

fertile and heavily inhabited upper and middle Gangetic plains, with an area of 236,286 

square kilometres. (Consortium of 7 IITs, 2013).  

As per Census 2011, the state has seven cities with populations higher than one million 

and 16 cities larger than five lakhs. The total urban population increased from 34.54 

million in 2001 to 44.47 million in 2011 (Consortium of 7 IITs 2013c). Greater 

urbanization and river proximity to major cities such as Kanpur, Ghaziabad, Meerut, 

Gautam Budh Nagar, Agra, Aligarh, Allahabad, and Varanasi have a significant impact 

on river quality and quantity (Consortium of 7 IITs 2013c). The total of towns and cities 

had already risen from 704 in 2001 to 915 in 2011. The overall urban population has 

increased from 34.54 million in 2001 to 44.47 million in 2011, representing a 

compound annual growth rate of 2.56% (Consortium of 7 IITs 2013c). Furthermore, 

sewage quantities in certain religious and culturally significant cities and towns rise 

substantially throughout festivals (Refer Figure 3.6 Varanasi City along the banks of 

Ganga Course). 

The state has the most Micro, Medium, and Small Enterprises (MSMEs) Table 3.1 in 

India, accounting for 14.20% of the country's total MSMEs. 
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Figure 3.6 Varanasi City along the banks of Ganga 

Source: Namami Gange, (2020) 

Table 3.1 Key Industrial sectors at different zones under MSME.  

Zone  District Key Sector 

Western 
GB Nagar, Ghaziabad, Meerut, 

Saharanpur and Aligarh 

Food processing, 

Electronics and 

metals 

Northern Amroha, Bijnor and Moradabad 
Chemicals and basic 

metals 

Eastern 
Sonbhadra, Allahabad, Varanasi 

and Gorakhpur 

Chemicals and basic 

metals 

Southwestern Agra and Firozabad 
Leather and metal 

products 

Bundelkhand Zone Jhansi and Chitrakot 
Aerospace and 

defence 

Source: Misra (2015) 

Municipal sewage is estimated to contribute approximately 80% by volume of the total 

wastewater disposed into the Ganga, while industries contribute around 15%. Over 

time, the urban population has risen considerably, while municipal sewage treatment 

facilities have remained insufficient (Table 3.2). Metropolitan, with a population of one 

million or more, are included in the Census 2011 for classifying the urban settlements. 

Class-I towns have a population ranging from 1 lakh to 10 lakhs; Class-II, 50,000 to 1 

lakh; Class-III, 20,000 to 50,000; Class-IV, 10,000 to 20,000 and Class-V 5,000 to 
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10,000; Class-VI, 3,000 to 5,000 (Consortium of 7 IITs 2013c). Figure 3.7 depicts a list 

of Class I and Class II cities and their proximity to the river. 

Table 3.2 Wastewater generation and treatment in Uttara Pradesh based on 

Population 2001 

SL. No. City/Town 
Population 

2001 

Total 

Sewage 

generation 

(in MLD) 

Treatment 

Capacity 

( in MLD) 

Percentage 

covered 

Class I 

1 Kanpur 3114530 339.3 171.1 50 

2 Varanasi 1353920 187.1 141 75 

3 Allahabad 1218070 208 89 43 

4 

Farrukhabad-

cum- 

Fatehgarh 

280290 30.5 8.3 27 

5 
Mirzapur-

Vindhyachal 
252470 27.5 14 51 

6 Unnao 178250 23.9 19.4 81 

7 BaIlia 125740 18 - 0 

8 Dehradun 550800 76.1 - 0 

9 Hardwar 215260 39.6 18 45 

Class II 

10 Bijnor 79368 7.6 8.1 100 

11 Mughalsarai 88386 16 - 0 

12 Ghazipur 95243 10.7 - 0 

13 Kannauj 71530 7 - 0 

14 Deoband 81706 7.8 - 0 

15 Gangaghat 70817 6.8 - 0 

16 Rishikesh 59671 10.7 6.3 59 

17 Roorkee 97064 11 - 0 

Source: (Consortium of 7 IITs 2013c) 



52 

 

The study performed during the lockdown period reported a gradual transformation of 

water quality from the restoration point. However, this improvement in water quality is 

believed to be 'short-lived.' That quality will deteriorate once normal industrial 

activities resume, indicating a strong influence of untreated commercial-industrial 

wastewater (Dutta et al. 2020). 

 
Figure 3.7 Class I and Class II cities along the study area 

Source: Consortium of 7 IITs (2013a) 

3.3 DATA COLLECTION AND PREPROCESSING 

The data collected in this study are presented in two categories  Table 3.3: Spatial and 

Non-Spatial datasets. 
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Table 3.3 Spatial and Non-spatial data 

Data Descriptions Resolution Year 

Spatial Data 

DEM 
Shuttle Radar Topography Mission 

(SRTM) Credits-USGS 
30m 

2005, 2009, 

2015 and 2018 

LULC 
Published LULC - Bhuvan Portal, 

Indian Space Research Organisation   

2005, 2009, 

2015 and 2018 

Non-Spatial Data 

Insitu WQPs 

Middle Ganga Division (MGD) (I & 

II), Central Water Commission 

(CWC) 

Monthly 

data/20 

stations 

2005-2018 

3.3.1 Spatial and Non-spatial dataset 

Using ArcGIS© 10.2.1 geoprocessing tools, the global SRTM DEM was pre-processed 

for filling sinks in the dataset. For LULC analysis, Landsat images are pre-processed, 

cloud-removed, and mosaicked using Google Earth Engine (GEE). Published LULC 

maps from the Indian Space Research Organization (ISRO) on Bhuvan Portal were then 

used as a reference to improve the LULC classification (Kumar Shukla et al. 2018). For 

ground truthing of prepared LULC maps, ground control points (GCPs) were collected 

from Google Earth images. The SWAT module and ArcGIS© (10.2.1) are employed to 

delineate three geographical scales: watershed, riparian, and reach. The catchment scale 

encompasses the entire upstream of monitoring stations, a bandwidth of 1000m on each 

side extended upstream above all monitoring sites considered for riparian and 500m 

upstream of all monitoring sites considered for reach scale (Shi et al. 2017).    

The non-spatial dataset is pre-processed using Anaconda (conda 4.7.10) and the 

Numpy, Pandas, Matplotlib, and Scikit Learn libraries. Because the different variables 

of this study are measured at distinct units, scales were treated by z-transformation in 

Python pre-processing tool after data scaling. The whole dataset used in the study is 

grouped into two seasons: non-monsoon (November-May) and monsoon (June-

October) (CWC and NRSC 2014), and statistical analyses were run for each season 

(Hajigholizadeh and Melesse 2017b).
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CHAPTER 4 

4 METHODOLOGY 

4.1 GENERAL 

This chapter describes the statistical and machine learning methodologies for insitu 

WQPs integrated with remote sensing. A summary of descriptive and inferential 

statistics used in data analysis is provided. It also describes the various machine 

learning approaches used to analyse river water quality. The overall methodology chart 

(Figure 4.1) and methodology for each objective are explained separately under spatial 

and non-spatial categories. 

 

Figure 4.1 Overall methodology chart of the study 

4.2 ASSESSMENT OF SPATIOTEMPORAL VARIATIONS IN WQPS 

This section explains the part of 1st objective, which focuses on non-spatial analysis, 

explicitly using different multivariate statistical approaches. Multivariate data 

processing can be applied to evaluate temporal and spatial variations of water quality 

(Sundaray et al. 2006; Azhar et al. 2015) caused by natural and anthropogenic factors 
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(Singh et al. 2004; Bhat et al. 2014). The below section explains the type of multivariate 

techniques adopted in the present study (Figure 4.2).  

 

Figure 4.2 Concept map spatiotemporal variations in WQPs. 

4.2.1 Data Pre-processing 

4.2.1.1 Normality Test 

A normality test evaluates whether or not a sample was drawn from a population with 

normal distribution. It is typically used to determine whether the data used in the study 

has a normal distribution. The concept of normal distribution supports many statistical 

methods, including parametric tests, correlation, regression, t-tests, and ANOVA. The 

mean, median, and mode values are the same in a perfectly normal distribution, and 

they clearly show the peak of the curve. There are two broad approaches for 

determining whether data are normally distributed or not. Graphical (histograms and 

Q-Q probability plots) and analytical (such as the Shapiro-Wilk, D’Agostino-Pearson 

test and Kolmogorov-Smirnov tests). In the present study, D’Agostino-Pearson and 

Shapiro-Wilk test was applied. 

The D'Agostino-Pearson test is a highly effective and adaptable technique for 

identifying non-normality induced by skewness and kurtosis. It tests statistics by 

comparing the sample data's kurtosis and skewness coefficients with the moments of a 

normal distribution measured by Pearson's coefficients as defined in equation (4.1). 
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These statistical tests share the null hypothesis that the insitu water quality data was 

drawn randomly from a normal distribution. A statistically significant p-value (usually 

0.05 or 5%) gives strong proof against the null hypothesis, showing a non-normal 

sample distribution. 

𝐾2 = 𝑍2(√𝑏1) + 𝑍2(√𝑏2)   (4.1) 

Where, 

𝑍(√𝑏1) and 𝑍(√𝑏2)  - normal approximations to test skewness. 

√𝑏1 and √𝑏2    - Test of kurtosis 

𝐾2 - Statistic has a chi-squared distribution with two degrees of freedom when the 

population is normally distributed. 

The D'Agostino-Pearson test statistic combines the benefits of skewness and kurtosis 

tests to provide an omnibus normality test (Omnibus refers to the capacity to identify 

variations from normalcy caused by skewness or kurtosis). 

Shapiro-Wilk (S-W) test will reject the normality hypothesis if p is equal to or less than 

0.05. Unless the test fails, the test can state with 95% confidence that the data will not 

fit the distribution usually. However, if the test is passed, the test can state that there is 

no significant deviation from normality.  

The S-W test was initially designed to assess the normality of univariate distributions. 

To begin, arrange the given univariate dataset Y= 𝑦𝑖,…. 𝑦𝑛,  in ascending order and 

proceed as shown in equation (4.2).  

𝑊 =
(∑  𝑛

𝑖=1 𝑎𝑖𝑦𝑖)
2

𝑛𝑆2    (4.2) 

where the 𝑎𝑖 - S-W coefficients, and 𝑆2- statistical variance of the sample. 𝑊- a statistic 

which requires a sample size  of 7 and  2,000 (Shapiro and Wilk 1965) 

4.2.2 Classification 

Cluster analysis is essential for comprehending various phenomena and investigating 

the characteristics of obtained data. Clustering identifies data groups that are similar to 

one another. It divides the data into similar groups ensuring that the distance between 

two instances is identical if they belong to the same cluster and far if they belong to 
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different clusters (Kotekani and Ilango 2022). Distance metrics are crucially significant 

in the clustering process. The greater similarity between the data throughout clusters, 

the more likely those specific data items will belong to that particular group. It is 

essentially an unsupervised learning method. Unsupervised learning is an approach that 

gathers references from dataset of input data without labelled responses. There are 

various types of clustering algorithms. The centroid-based process is one of the iterative 

clustering algorithms in which clusters are formed based on the proximity of the dataset 

to the cluster centroid. The cluster centre or centroid is included in this scenario so that 

the distance between data points and the centre should be as minimal as possible. K-

means is the most popular clustering algorithm among all. This algorithm minimises 

the sum of squared errors, which is the objective function. The algorithm tries to 

identify 'K' clusters by satisfying specific clustering criteria (Kulluk et al., 2023). The 

Euclidean distance metric was used in the present study for implementation, which 

consists of positive real values.  

Let (p1, p2) be the Cartesian coordinate of p in a Euclidean plane, and q have coordinates 

(q1, q2). Then Euclidean distance between these two can be written as given by equation 

(4.3)  

𝑑(𝑝, 𝑞) = √(𝑞1 − 𝑝1)2 + (𝑞2 − 𝑝2)2     (4.3) 

The above equation's accuracy depends entirely on the chosen initial seeds. The number 

of clusters is fixed based on the cluster quality using intrinsic methods like silhouette 

score, which is based on the silhouette coefficient. This method generates a concise, 

pictorial depiction of how perfectly each object fits into its cluster. A flowchart on the 

working of K- means clustering is presented in Figure 4.3.  

https://scikit-learn.org/stable/modules/generated/sklearn.metrics.silhouette_score.html
https://scikit-learn.org/stable/modules/generated/sklearn.metrics.silhouette_score.html
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Figure 4.3 Working of K- means clustering 

The Elbow method is the most effective way to determine the number of clusters. 

Within-sum-of-squares (WSS) is applied as a metric to determine the optimal number 

of clusters for the given dataset as defined in equation (4.4). WSS is calculated by adding 

the squared distances between each cluster member and its centroid. 

𝑊𝑆𝑆 = ∑  𝑚
𝑖=1 (𝑥𝑖 − 𝑐𝑖)

2    (4.4) 

𝑥𝑖 −   Data points and  𝑐𝑖 − Closest point to the centroid 

The algorithm begins with K initial seeds. The Euclidean distance is used to compare 

all n data to each seed, and the closest cluster seed is assigned. The method is then 

repeated until convergence is reached.   

4.2.3 Relationship 

Correlation is a statistical measure that expresses how closely two variables are related 

linearly. Because the measured WQPs are not normally distributed, the Spearman r 

coefficient is used to investigate the correlation structure between the variables. It is a 

non-parametric measure used to evaluate the correlation between variables derived 

from ranked data (Wunderlin et al. 2001; Singh et al. 2004). Spearman r is defined as 

the Pearson correlation coefficient but calculated over ranks (the values of variables 
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arranged from the smallest to the largest). The test identifies the steady decrease or 

increase in the importance of one random variable with the same changes in another 

random variable, called monotonically increasing or decreasing. When both variables 

are proportionally increasing/decreasing, a positive (+) correlation exists. Suppose one 

falls when the other increases or vice versa, implying that the variables are negatively 

(-) correlated. The result lies between -1 and +1.  

The Spearman rank correlation coefficient can be calculated as discussed in equation 

(4.5) (Antonopoulos et al. 2001). 

𝜌 = 1 −
6 ∑ (𝐷𝑖𝐷𝑖)𝑛

𝑖=1

𝑛(𝑛2−1)
    (4.5) 

𝜌 = Spearman′rank correlation coefficient 

𝐷𝑖 = Difference between the two ranks of each observation 

𝑛 = number of observations 

The WQPs were categorized into two seasons (monsoon and non-monsoon) and 

assigned a numerical value in the data file (monsoon = 1, non-monsoon = 2), which 

was correlated (pair by pair) with each of the measured parameters (Wunderlin et al. 

2001; Singh et al. 2004).  

4.2.4 Data reduction 

Before implementing any machine learning algorithm, it is crucial to obtain only 

relevant features in the training dataset, i.e., reducing the dimensions of feature space is 

called dimensionality reduction. Besides, it further helps prevent overfitting, making the 

model simple and efficient with less running time. PCA and linear discriminant analysis 

(LDA) are two data pre-processing linear transformation techniques frequently used for 

dimensionality reduction and feature selection. PCA is a statistical unsupervised 

machine learning approach that employs an orthogonal transformation to convert a set 

of correlated variables to uncorrelated variables (Li and Liu 2018). PCA is the most 

widely used unsupervised dimension reduction tool in exploratory data analysis in 

machine learning techniques for predictive models. 

Moreover, as an unsupervised statistical technique, it examines the interrelations among 

variables. Each of the principal components (PCs) is chosen to describe most of the 

available variance, and these PCs are orthogonal to each other. Out of all PCs, the first 
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principal component has a maximum variance. PCA sorts out the data into groups of 

variables with the strongest correlations as reflected by the factor score. In other words, 

the groups, otherwise called PCs, are grouped or ranked in the order of total variance 

explained.  

PCA is implemented in the Scikit Learn library in Python. Before using PCA in Scikit 

Learn, it is necessary to standardize/normalize the data. PC can be mathematically 

derived (Dash et al. 2018) using the following steps  

Step 1: Calculate the covariance matrix for the normalized data as in equation (4.6).  

Covariance between feature vectors 𝜎𝑗𝑘 =
1

𝑛−1
∑  𝑛

𝑖=1 (𝑥𝑗
𝑖 − 𝜇𝑗)(𝑥𝑘

𝑖 𝜇𝑘)             (4.6)  

xⱼ and xₖ are the two feature vectors, and σⱼₖ is the covariance. Covariance quantifies how 

two features differ from one another. A positive covariance indicates that features 

change together. A negative covariance indicates that the two characteristics vary in 

opposite directions.  

Step 2: Eigen values and Eigen vectors. 

The eigenvectors are the principal components with the directions of maximum variance 

of a covariance matrix. The eigenvalues are the magnitudes that correspond to them. The 

eigenvector with the largest corresponding eigenvalue represents the direction of the 

highest variance.  

An eigenvector 𝑣 satisfies the condition  Σ𝑣 = 𝜆𝑣 where 𝜆 is a scalar, also known as 

eigenvalues.  

Step 3: Selecting the Principal Components (PCs) 

The calculated eigenpairs are arranged based on the magnitude of their eigenvalues. 

Plotting the cumulative sum of the eigenvalues can be used to determine the number of 

PCs to be chosen for dimensionality reduction.  

The cumulative sum is computed using the equation following (4.7): 

Cumulative sum =  
𝜆𝑗

∑  𝑑
𝑗=1 𝜆𝑗

   (4.7) 

Feature selection and dimensionality reduction task is crucial for high dimensional 

machine learning analysis to select dominant features in training the dataset. Besides, 

these techniques can be further helpful in preventing overfitting, simplifying the model 

to improve the computational efficiency and reducing the algorithm's overall running 

time. 
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4.3 WATER POLLUTION INDUCED BY ANTHROPOGENIC ACTIVITIES 

4.3.1 General 

The dominant WQPs causing spatiotemporal variability identified in previous sections 

were used to determine water pollution caused by anthropogenic activities. The 

anthropogenic activities in this study are limited to LULC changes. The methodology 

applied for the various models involved is discussed separately for spatial and non-

spatial analysis Figure 4.4.  

 

Figure 4.4 Concept map of water pollution induced by anthropogenic activities 

4.3.2 Satellite data and LULC classification in the GEE platform 

Understanding the changing LULC geographical distribution over large areas is 

extremely important for many environmental and monitoring tasks, including climate 

change, ecosystem dynamics analysis, food security, and others (Shelestov et al. 2017; 

Wang et al. 2020). With the availability of cloud-based platforms such as Google Earth 

Engine (GEE) (https://code.earthengine.google.com/), it is now feasible to monitor 

LULC spatiotemporally to study the global dynamics (Liu et al. 2020; Tamiminia et al. 

2020). GEE is a cloud-based platform for the scientific analysis and visualization of 

petabyte-scale geospatial dataset. It stores several decades of historical images and 

scientific dataset and enables parallel computing and feasible big data processing in a 

large study area. In addition to the availability of an extensive repository of raw 
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remotely sensed imagery, users have access to pre-processed, cloud-removed and 

mosaicked images in the GEE data catalogue (Tamiminia et al., 2020). 

Furthermore, Google provides a cloud-based platform called Google Cloud Platform 

(GCP) that offers a wide range of services for high-speed parallel processing and 

machine learning. GCP provides access to robust computational infrastructure, 

including virtual machines and clusters, as well as a library of APIs for machine 

learning and other tasks. The GEE platform supports several programming languages, 

including JavaScript and Python, users can access these tools and data through the GEE 

API and use them to develop their own applications. It has an extensive archive of 

satellite imagery and other earth observation data, including Landsat and Sentinel-2, 

which can be used for LULC classification. GEE provides a variety of pre-trained 

machine learning models for LULC classification and the ability to train custom models 

using the platform's built-in tools and APIs. Users can also access a library of pre-built 

scripts and algorithms for LULC classification tasks.  

A graphical engine interface can acquire high-quality Landsat images from the GEE. 

For this study, two Landsat time series images, namely, Landsat-7 (2005, 2009) and 

Landsat-8 (2015, 2018) Top of Atmosphere (TOA) for non-monsoon and monsoon 

seasons, were used from GEE Landsat collection and pre-processed. The presence of 

the cloud is identified and removed using the Fmask cloud and shadow matching 

algorithm. All indices were calculated with the GEE Code Editor, and all images were 

clipped to a typical geographic extent before being assembled into a ready-to-use time 

series dataset.  

GEE's Classifier package handles supervised classification using conventional machine 

learning algorithms in Earth Engine. The general classification workflow is as follows:  

 Gather training data. Assemble features with a property that stores the known 

class label and properties that store numeric values for the predictors.  

 Create a classifier object. If necessary, configure its parameters.  

 Using the training data, train the classifier.  

 Classify a feature collection  

 Estimate classification error using data from independent validation. 

Three classifiers, namely CART, SVM, and RF, were tested for the classification in 

GEE. These classifiers have a solid methodological foundation and are commonly used 
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in land cover and forest mapping applications (Koskinen et al., 2019). In this study, RF, 

CART and SVM classifiers algorithms were applied using the following code in GEE.  

 RF:ee.Classifier.smileRandomForest(numberOfTrees,variablesPerSplit,minLe

afPopulation,bag-Fraction,maxNodes,seed), 

 CART: ee.Classifier.smileCart(maxNodes,minLeafPopulation)  

 SVM:ee.Classifier.libsvm(decisionProcedure,svmType,kernelType,shrinking,d

egree,gamma,coef0,cost,nu,terminationEpsilon,lossEpsilon,oneClass) 

(Kulithalai Shiyam Sundar and Deka 2021). 

The parameters for RF (Breiman 2001), CART (Breiman et al. 1984) and SVM (Hsu et 

al. 2003) are selected based on this literature. To train and validate the dataset, sample 

() syntax is applied. Each class is trained with 80-100 ROIs for classification and 

validated with 30-45 ROIs. It was additionally ensured that the data was distributed in 

a normal and spectrally pure manner (Kulithalai Shiyam Sundar and Deka 2021). The 

error matrix was created for the selected years during the non-monsoon and monsoon 

seasons to determine classification accuracy. The error matrix identifies various 

matrices such as overall accuracy, consumer accuracy, producer accuracy, and kappa 

statistics. The errorMatrix () function is called on the classified Feature Collection to 

obtain the confusion matrix representing the validation accuracy. Finally, based on the 

classification accuracies chosen for conceptual modelling, the best-performing 

classifier is determined. Finally, the best-performing classifier is determined based on 

classification accuracies selected for the conceptual modelling.  

4.3.3 Delineation of Watershed, riparian and reach zone  

Geographic Information System (ArcGIS© 10.2.1) was used to assess the spatial spread 

of various LULC classes at three distinct spatial scales: 1) Catchment, which includes 

the whole upstream section above the monitoring station 2) The riparian scale contained 

a band width of 1000 m on both sides that extended upstream above all sample locations 

(Shi et al. 2017) and 3) Reach buffer (reach) is a 500-m-wide area on either side that 

extends upstream above the monitoring site (Figure 4.5). These parameters were chosen 

based on past research and data resolution. Automatic watershed delineation using 

ArcSWAT/ArcGIS© was employed to delineate sub-watersheds based on an automated 

procedure using Digital Elevation Model (DEM). The Soil and Water Assessment Tool 
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(SWAT) outlines the catchment areas in the ArcGIS© 10.2.1 platform. The catchment's 

riparian and reach regions were digitised using a GIS buffering tool. 

 

Figure 4.5 Spatial distribution of catchment (a), riparian (b), and reach (c) at 

Allahabad station. 

4.3.4 Redundancy Analysis (RDA) 

As a constrained ordination, RDA can determine how much variation in one set of 

variables can be explained by variation in another set of variables. It is a direct extension 

of multiple regression, which models the effect of an explanatory matrix X (n x p) on a 

response matrix Y (n x m), i.e., modelling the impact of an explanatory matrix on a 

response matrix rather than a single response variable. The Pearson correlation 

coefficient was used to evaluate the statistical significance of the association between 

LULC classes and water quality variables at p < 0.01 and p < 0.05 levels (2- tailed), 

respectively (Mello et al., 2018). To accurately perform the correlation test, the one-

sample Kolmogorov-Smirnov test was used to check the variables' homogeneity and 

normal distribution. In this study, RDA was implemented to assess the influences of 

LULC patterns on WQPs while accounting for the watershed, reach, and riparian zone.  

The RDA function from R's vegan package was used in the present study. It consists 

primarily of two steps. The first step is multiple regression analysis. Each Y parameter 

is registered on an explanatory variable X (Figure 4.6). This produces a matrix of fitted 

values known as Yfit, which can be calculated using the below steps. 

X- Matrix of explanatory variables 

Y- Matrix of response variables 

The following steps were performed as in (Borcard et al. 2011)  
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Figure 4.6 RDA Explanatory and Response Variables 

Step 1: Each (centred) y variable is regressed on the explanatory matrix X, and the fitted 

(�̂�) and residuals (yres) vectors are computed.  

Step 2: Make a new matrix (�̂�) that contains all of the fitted vectors (�̂�). 

Step 3: Perform a PCA on �̂�. It produces a vector of canonical eigenvalues as well as a 

matrix U of canonical eigen vectors (PC). 

Multiple linear regression between X and each yi is used to generate �̂� (Figure 4.7).  

 

Figure 4.7 Multiple Regression between X and each �̂� 

Step 4: A PCA is run on �̂�, yielding a set of principal component vectors U  (Figure 

4.8).  
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Figure 4.8 Generation of principal components 

The primary distinction between PCA and RDA is that PCA is used to a matrix of 

explanatory variables, whereas RDA is applied to a set of predicted explanatory 

variables.  

4.3.4.1 Evaluation matrix for RDA 

The evaluation matrix R2 is unadjusted and thus biased as the relative contribution of 

each eigen vector. Therefore, it is preferable to use adjusted R2 to compute the fair 

values of R2 using the function R2 Adjusted () as given by equation (4.8).  

𝑅𝑎𝑑𝑗
2 = 1 −

𝑛−1

𝑛−𝑚−1
(1 − 𝑅2)  (4.8) 

Where R2- is sample, n- Number of samples, m- Number of predictors 

Because ecological data is often non normally distributed, parametric tests are 

inefficient. In canonical studies such as RDA, permutation tests establish model 

significance. A permutation test is designed to establish a reference distribution of the 

selected statistic under the null hypothesis H0 by randomly permuting suitable data 

items multiple times and recalculating the statistic each time. The statistic's actual value 

is then compared to the reference distribution. For a one-tailed test in the upper tail, 

such as the F test used in RDA, the p-value is determined as the proportion of permuted 

values equal to or larger than the actual (unpermuted) value of the statistic (Borcard et 

al. 2011). A permutation test is requested in R’s Vegan package. The results are first 

displayed to determine whether or not the relationship between them is significant. The 
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statistical validity of the RDA was determined using a Monte Carlo permutation test in 

this study (999 permutations) (Mello et al. 2018). The degree of correlation in RDA is 

represented by two arrows pointing in the same direction. The angle formed by these 

arrows is inversely proportional to the degree of correlation. Moreover, the length of 

the arrow represents the degree of similarity between contributions (Ding et al. 2016; 

Shi et al. 2017; Günen 2022). RDA can also reveal the proportion of the difference in 

water quality attributed to different LULCs. 

4.4 ENSEMBLE AND STACKED ENSEMBLE MODELLING (SEM)  

Stacking is an ensemble machine learning algorithm that learns to combine prediction 

performance from multiple high-performing machine learning models effectively. To 

boost efficiency, this integrated algorithm employs a higher-level model to integrate 

lower-level models, ultimately increasing the predictive power of the classifier 

(Moradkhani and Fathi, 2022). Furthermore, by reducing bias and variance, this 

approach aims to minimize overfitting errors (Martín et al. 2021; Wu et al. 2021; 

Zounemat-Kermani et al. 2021). The most basic stacking model has two levels: level 0 

(Base-Model) contains basic models, and level 1 (Meta-Model) contains the meta-

learner (Kotekani and Ilango 2022). Base Model (Level 0): Models that fit the training 

data and predict data from outside the sample. Meta Model (Level 1): Model that fits 

on base-model predictions and learns how to best combine the predictions. Bagging and 

boosting are the most popular among the other methods.  

Bagging: Also known as boot strap aggregation, combines the predictions from 

different decision trees (DT) via majority voting (democracy) (Figure 4.9). This 

approach, which employs DT, aids in variance reduction and model robustness 

enhancement; thus, it is well-suited for original weak models with high variance. RF, 

Extremely Randomized Tree (ERT) and rotation forest methods are some examples of 

bagging methods.   
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Figure 4.9 Schematic illustration of bagging ensemble modelling 

Source: Zounemat-Kermani et al (2021) 

Boosting: Builds model sequentially by minimizing the error from the previous models 

and boosting the influence of high-performance models (Figure 4.10). The boosting 

technique works by sequentially adding new models to the ensemble. Weak learners 

(base learners) are effectively boosted into strong learners in this ensemble. Boosting 

prevents DT from overfitting (Zounemat-Kermani et al. 2021). As a result, it aids in 

reducing variance and bias in ensemble machine learning and increasing prediction 

accuracy. Stochastic Gradient Boosting (SGB), AdaBoost, and eXtreme Gradient 

Boosting (XGBoost) are famous examples of this category 
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Figure 4.10 Schematic illustration of boosting ensemble modelling 

Source: Zounemat-Kermani et al (2021) 

The base model's training dataset can be subjected to k-fold cross-validation to avoid 

overfitting. At Level 0, four algorithms are considered Support Vector Machine (SVM), 

Random Forest (RF), Gradient Boosting Machine (GBM) and XGBoost. The below-

explained steps and parameter range for the stacking algorithm (Table 4.1) are adapted 

from (Martín et al. 2021; Wu et al. 2021) is applied in this study.  

The general steps involved in stacking model 

1. Divide the original dataset into training and testing sets. 

2. Implement a k-fold cross-validation to separate the dataset into k-folds. 

3. Reserve one fold and train the other folds with multiple independent base 

models. 

4. Predict the reserved fold using the base models 
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5. Repeat these steps until to get them out of sample predictions for all the defined 

k-folds. 

6.  Feed all out-of-sample predictions to the meta-model as features (training data). 

7. Using the meta-model, predict the final result. 

Table 4.1 Parameters selected for the stacking algorithm 

Step 1 Method Parameter range 

Level-0 

algorithms 

SVM tolerance in [0.0001, 0.01]; regularization in [2, 14]; 

RF trees in [350, 600]; min. Size of terminal nodes in [5, 15]; 

GBM trees in [550, 650]; 

XGBoost 
iterations in [40, 50]; instance weight in [5, 7]; 

trees in [50, 200]; depth in [3, 5] 

Level-1 

algorithms 
XGBoost 

iterations in [40, 50]; instance weight in [5, 7]; trees in [50, 

200]; depth in [3, 5] 

Source: Martín et al (2021) 

4.5 RETRIVAL OF WQPS USING LANDSAT-8 AND MACHINE LEARNING 

ALGORITHMS  

4.5.1 General 

The goal is to propose a suitable learning-based algorithm for estimating optically 

active and non-active WQPs using an appropriate set of input variables (remote sensing 

band data). This could help to mitigate the drawbacks of limited insitu measurements 

for understanding spatiotemporal domains, as well as the cost of data collection and 

laboratory analysis. To accomplish this, we proposed ANN-based MLP and XGBoost 

regression with hyperparameter optimization, insitu water quality data and satellite-

derived reflectance data (Landsat-8) for water quality prediction over inland waterbody. 

Finally, to delineate spatial maps for the predicted WQPs (methodology as discussed in 

Figure 4.11). 
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Figure 4.11 Concept map for remote sensing of WQPs using machine learning 

techniques 

This section describes the methodologies in detail with four main Sections 1st Explains 

the study area selected and the list of clusters and WQPs chosen from the previous 

study. 2nd Satellite data, 3rd Modelling of WQPs using different machine learning 

algorithms: The feature selection method for the modelling, ANN-MLP and XGBoost 

regression algorithms, and hyperparameter optimization adopted for the study are 

discussed.  

4.5.2 Satellite Data 

Research suggests that imagery must be acquired within a day of an insitu collection 

event when selecting images for water quality correlation studies. This conservative 

window limits the availability of cloud-free Landsat images. Many researchers have 

even suggested a window of up to seven days as acceptable (Barrett & Frazier, 2016; 

Song et al., 2020) and 3-10 days as indicated by (Andrzej Urbanski et al., 2016). For 

our case study, we elected to include images collected within five days of (before or 

after) an insitu sampling event due to the highly variable weather pattern along the study 

area. Landsat-8 OLI data for cloud-free dates were acquired from 2014-2019 for the 
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study. Preprocessing the data, such as radiometric and atmospheric corrections, is 

essential for retrieving qualitative data using remote sensing imageries (Abdelmalik 

2018). The images were precision corrected by radiometric and geometric means. 

Atmospheric correction was then conducted on the images acquired using the FLAASH 

module in ENVI (Olmanson et al. 2013; Abdelmalik 2018; Yepez et al. 2018) (Exelis 

garg Visual Information Solutions, Inc. Boulder, USA). FLAASH is a first-principle 

atmospheric correction tool that corrects wavelengths visible to near-infrared and 

shortwave infrared regions up to 3μm (Garg et al. 2017). It incorporates the 

MODTRAN 4 radiation transfer code. FLAASH is widely used to eliminate the effects 

of the atmosphere and convert spectral radiance to the surface reflectance of water. The 

geometric accuracy of the multispectral imagery was then checked by ground control 

points (Liu et al. 2015). The water area was then calculated using the Normalized 

Difference Water Index (NDWI) equation (4.9) in ENVI©  5.3.  

𝑁𝐷𝑊𝐼 =
 𝑅𝐺 −𝑅 𝑁𝐼𝑅

𝑅𝐺+𝑅 𝑁𝐼𝑅
   (4.9) 

Where 𝑅𝐺 and 𝑅 𝑁𝐼𝑅 are the reflectance in the green and NIR bands respectively 

It is based on the difference in reflectance between NIR and SWIR bands, with higher 

NDWI values indicating higher probability of water. The NDWI values can range from 

-1 to 1, with values greater than 0 typically indicating the presence of water. However, 

the exact threshold value for water detection can vary depending on factors such as 

water body size, turbidity, and sensor characteristics, so a trial and error approach may 

be needed to find the optimal threshold value (Garg et al. 2020). After determining the 

water pixels, the visible VNIR bands were masked for water pixels for the respective 

dates. 

4.5.3 Modelling of WQPs Using Different Machine Learning Algorithms 

4.5.3.1 XGBoost modelling 

Extreme Gradient Boosting (XGBoost) is a popular and powerful machine learning 

algorithm that is used for supervised learning tasks, such as classification and 

regression. It is an implementation of Gradient Boosting Machines (GBM) which is an 

ensemble method that combines multiple weak models to create a strong model 



74 

 

(Ibrahem et al. 2021). XGBoost uses the boosting ensemble learning algorithm 

principle better to predict performance (Kiangala and Wang 2021). A detailed 

explanation is carried out in this research paper. It is known for its high performance 

and ability to handle missing data and categorical features. Additionally, it is equipped 

with a number of built-in regularization options such as L1 and L2, which help to 

prevent overfitting. Ensembles are constructed from DT models, wherein trees are 

added one at a time to the ensemble. These will then correct the prediction errors made 

by prior models. XGBoost has the appealing properties of limited sample learning, fast 

model training, few parameters to adjust, mathematical solid explanation ability, 

tabular data processing, and data feature invariance when compared to popular neural 

network-based deep learning models. The procedure of constructing XGBoost consist 

of assembling a base model for an existing model, i.e., training an initial tree then it 

will construct a second tree combined with the initial tree, and repeat the second step 

until the expected number of trees is reached (Zhang et al. 2020).  

The principle behind XGBoost is gradient boosting, which is a method of ensemble 

learning that combines the predictions of multiple weak models to create a more 

accurate and robust final prediction (Natekin and Knoll 2013).  The basic idea is to train 

a sequence of simple models, such as decision trees, on the data and iteratively add new 

models that correct the errors made by the previous models. XGBoost is an 

implementation of gradient boosting that uses decision trees as the base model. It is 

designed to handle large datasets and high-dimensional features by using a technique 

called "gradient tree boosting" which is efficient and scalable. XGBoost uses a 

technique called SGB which is a variation of gradient boosting that randomly 

subsamples the training data before fitting the model, which makes the algorithm more 

robust to overfitting and improves the speed of the training process. Additionally, 

XGBoost also has a built-in regularization term called "Lambda" to prevent overfitting. 

XGBoost also has a number of advanced features such as handling missing data, 

parallel and distributed computing, and built-in evaluation metrics. To summarize, 

XGBoost is an efficient and powerful implementation of gradient boosting that uses 

decision trees as the base model, and it handles large datasets and high-dimensional 

features by using techniques such as SGB, regularization, and advanced features such 
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as handling missing data and parallel computing. A detailed workflow is explained in 

Figure 4.12. 

 

Figure 4.12 XGBoost Algorithm workflow  

Source: Kiangala and Wang(2021) 

It is designed to be highly efficient and scalable, and can handle large datasets with 

ease. Most XGBoost enhancements focus on fully maximizing computing and memory 

capacities to speed up the learning process to the maximum (González et al., 2020). 

Besides, XGBoost also includes necessary adaptations to reduce over-fitting and extend 

its use to all problems. The main feature against over-fitting is its regularized model 

formalization. XGBoost is a powerful gradient boosting algorithm that can perform 

three different boosting techniques: Regularized Boosting, Stochastic Boosting, and 
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Gradient Boosting. Regularized Boosting is a technique that adds a regularization term 

to the loss function, which helps to prevent overfitting. Stochastic Boosting is a 

technique that randomly subsamples the data before each iteration, which can improve 

the model's generalization performance. To approximate the goals, XGBoost adopts the 

Taylor expansion (González et al. 2020). XGBoost objective function includes a 

regularization term that controls the complexity of the model. This addition allows to 

learn simple and predictive models and find a good bias-variance trade-off.  

The theoretical background of the same is explained in the below section (Kiangala and 

Wang 2021). Dataset B contains a collection of independent attributes or observations 

(𝑔𝑖) and dependent variable or labels (ℎ𝑖) can be represented as equation (4.10) 

𝐵 = {𝑔𝑖 , ℎ𝑖}   (4.10) 

𝑖 ∈ {0 … 𝑘}, 𝑘 denotes the total number of samples in the dataset 

B and i is the ith sample of the dataset. If the total number of DT in the model is G and 

the expected values are ℎ̃𝑖 , which can be computed by following equation (4.11) 

ℎ̃𝑖 = ∑  𝐺
𝑝 𝑓𝑝(𝑔𝑖)   (4.11) 

Where, 𝑓𝑝(𝑔𝑖)  is the expected count of sample i for the pth tree 

To obtain excellent prediction outcomes, the XGBoost algorithm develops a "objective 

function" to optimize the loss function using the previous level's results and it 

incorporates a "regularization" mechanism to improve its output. 

The initial objective function can be represented mathematically as in equation (4.12) 

𝐾 = ∑  𝑛
𝑖=1 𝑙(ℎ𝑖 , ℎ̃𝑖) + ∑  𝐺

𝑝=1 Ω(𝑓𝑝) …… (4.12) 

Where n - is the total amount of data processed at the pth tree, G - the number of trees 

in total, i - ith sample of the dataset, 𝑙(ℎ𝑖 , ℎ̃𝑖) - loss function computes the difference 

between the dependent variable and the independent variable (ℎi) and its predicted 

value ℎ̃𝑖.  

Equation (4.13) and (4.14) represents loss functions and regularization terms for 

overfitting issues, respectively.  

𝑙(ℎ𝑖 , ℎ̃𝑖) = ∑  𝑛
𝑖=1 (ℎ𝑖 − ℎ̃𝑖)

2
    (4.13) 
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𝛺(𝑓) = 𝜃𝑇 +
1

2
𝜂 ∑  𝑇

𝑏=1 (𝑋𝑏
2)    (4.14) 

where T- sum of regression lead nodes in a DT, b - each leaf in a node has its own 

identification index, X- a single leaf node's weight or score, 𝜃 and 

𝜂 weight parameters higher the values simple DT structure and less overfitting risks.  

The objective function at a particular iteration s can be rewritten as given in (4.15). The 

second-order Taylor expansion, i.e., the optimized version of (4.15) is given in (4.16). 

𝐾(𝑠) = ∑  𝑛
𝑖=1 𝑙 (ℎ𝑖 , ℎ̃𝑖

𝑠−1 + 𝑓𝑠(𝑔𝑖)) + 𝛺(𝑓𝑠)        (4.15) 

𝐾(𝑠) = ∑  𝑛
𝑖=1 [𝑙(ℎ𝑖 , ℎ̃𝑖

𝑠−1) + 𝑚𝑖𝑓𝑠(𝑔𝑖) +
1

2
𝑛𝑖𝑓2(𝑔𝑖)] + 𝛺(𝑓𝑠)          (4.16) 

Where 𝑚𝑖 𝑎𝑛𝑑 𝑛𝑖 The gradient statistics of the loss function can be defined in equation 

(4.17) and (4.18).  

𝑚𝑖 = ∂
ℎ̃𝑖

(𝑠−1)𝑙(ℎ𝑖 , ℎ̃𝑖
(𝑠−1)

)         (4.17) 

𝑛𝑖 = ∂
ℎ̃𝑖

(𝑠−1)
2 𝑙(ℎ𝑖 , ℎ̃𝑖

(𝑠−1)
)             (4.18) 

Substituting (4.14), (4.16), (4.17) and (4.18) extracting the derivative and computing 

the optimal value of loss function score as in equation 4.19 at a specific leaf t.  

𝐾(𝑠) = ∑  

𝑛

𝑖=1

[𝑙(ℎ𝑖 , ℎ̃𝑖
𝑠−1) + 𝑚𝑖𝑓𝑠(𝑔𝑖) +

1

2
𝑛𝑖𝑓𝑠

2(𝑔𝑖)] + Ω̇(𝑓𝑠)(7)𝐾(𝑠) =

∑  

𝑛

𝑖=1

[𝑙(ℎ𝑖 , ℎ̃𝑖
𝑠−1) + 𝑚𝑖𝑓𝑠(𝑔𝑖) +

1

2
𝑛𝑖𝑓𝑠

2(𝑔𝑖)] + Ω̇(𝑓𝑠)

 

𝐾∗ = −
1

2
∑  𝑇

𝑡=0
(∑𝑚𝑖)2

∑𝑛𝑖+𝜂
+ 𝜃𝑇   (4.19) 

𝑋𝑡
∗ = −

∑𝑚𝑖

∑𝑛𝑖+𝜂
                            (4.20) 

A low value of K* indicates a superior DT composition. The ideal weight of a leaf t is 

represented by equation (4.20). 

4.5.3.2 Multi-Layer Perceptron (MLP)  

The multi-layer perceptron (MLP) is a type of feedforward artificial neural network that 

is commonly used for supervised learning tasks such as regression and classification. 

MLPs can be used to model complex non-linear relationships between input and output 

variables, making them well-suited for applications in water resource management, 
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such as predicting water levels, flows, and other hydrological variables. The ability of 

MLPs to capture non-linear relationships is due to the presence of multiple layers of 

interconnected nodes, or neurons, that are trained to learn the underlying patterns in the 

data. MLP network is an extension of perception consisting of three layers: input, 

hidden, and output (Figure 4.13). It includes a set of artificial neurons that are 

information processing units. MLP uses the biological nervous system principle, which 

comprises a massive parallel system composed of many processing elements connected 

by links of variable weights. An elementary neuron consists of R inputs (different 

Band/Band combinations), each input is weighted with an appropriate weight of W. The 

sum of these weighted inputs and the bias forms the input to the transfer function f. 

Neurons can use any differentiable transfer function f to generate their outputs. The 

initial assigned weights are progressively corrected during the training process. Here, 

the outputs predicted by MLP are compared with known outputs, and errors are back 

propagated (from right to left) to determine the appropriate weight adjustments 

necessary to minimize errors. It is difficult to choose the best algorithm that can 

accurately predict the target while optimizing many factors such as processing speed, 

numerical precision, and memory requirements. As a result, choosing a training 

algorithm is the most important step in ANN. A training algorithm that works well for 

one problem but fails in another. In our study, we used the Levenberg–Marquardt 

backpropagation learning rule, which is a variant of Newton's method that 

incrementally adjusts the weight and bias terms to minimize the network's mean square 

error (MSE) (Naganna and Deka 2019) equation (4.21).  

The output of a neuron can be expressed as f (e).  

Where,  

𝑒 = ∑  𝑅
𝑗=1 𝑊𝑗𝑋𝑗 + 𝐵; 𝑋1, 𝑋2, 𝑋3 … 𝑋𝑅    (4.21) 
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Figure 4.13 The basic structure of MLP 

X1, X2, X3…. XR are the input signals, and W1, W2, ...… WR are the weights of neurons. 

B is the bias value, f is the activation function, and R is the number of elements in the 

input vector (Ay and Kisi, 2014; Naganna and Deka, 2019; Günen et al. 2020). At first, 

allocated weights are gradually adjusted over the training procedure. In addition to the 

input nodes, each node is a neuron with a non-linear activation function and stringent 

feature selection and data normalisation constraints (Tian et al. 2020). This 

methodology works by learning the problem-solving process and determining the 

implicit link. However, MLPs still suffer from problems (Zhan et al. 2003). First, the 

training algorithm may be trapped in a local minimum, and objective functions are 

frequently extremely complex. Traditional training algorithms are easily trapped in a 

local minimum and will never converge to an acceptable error. Even the training dataset 

cannot be adequately fit in that case. Second, it is difficult to determine the best MLP 

architecture, such as the number of hidden layers and nodes within them.  

4.5.3.3 Feature Selection for XGBoost and MLP 

Feature selection is the primary focus of any machine learning model to remove the 

non-informative or redundant predictors from the model. Because adding unwanted 

variables to the model will reduce the generalization and overall accuracy of any model, 

moreover, increase the complexity. Pearson's correlation coefficient method was used 

to analyse the correlation between WQPs, remote sensing bands, and band 
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combinations. Pearson's correlation coefficient is a method for analysing whether there 

is a close correlation between two variables, defined as the covariance quotient and the 

standard deviation between two variables. The correlation of two random variables can 

be well measured based on covariance. 

4.5.3.4 Hyperparameter Optimization (HPO) 

Model hyperparameters are the parameters that cannot be estimated by the model using 

the given data. Although, the model from the data can estimate a model parameter. HPO 

is the process of identifying the right combination of hyperparameters that makes the 

model maximize its performance. Conceptually, hyperparameters tuning is just an 

optimization loop on top of machine learning model to find the set of hyperparameters 

leading to the lowest error on the validation set. An hyperparameters is 

a parameter whose value controls the learning process. Model tuning is carried out for 

hyperparameters in order to determine the parameters that result in the most accurate 

predictions. These parameters directly influence the behavior of the training algorithm. 

These have a significant impact on model performance. Nevertheless, choosing the 

right combination of hyperparameters is not an easy task. Hyperparameters can be 

adjusted by manual tuning or by automated tuning, and the former is time-consuming. 

Automated tuning approaches such as Optuna and GridsearchCV were used in this 

work for the XGBoost and MLP regressors, respectively. 

4.5.3.5  Hyperparameter optimization for XGBoost using Optuna 

Optuna is a software framework for automating the optimization process of these 

hyperparameters. It automatically finds optimal hyperparameters values using different 

samplers such as Grid search, Random, Bayesian, and Evolutionary algorithms. Optuna 

uses a historical record of trails details to determine the promising area to search for 

optimizing the hyperparameters and hence finds the optimal hyperparameters in a 

minimum amount of time. It has a pruning feature that automatically stops the 

unpromising trails in the early stages of training to save computing time. 

https://en.wikipedia.org/wiki/Parameter
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4.5.3.6 Hyperparameter optimization for MLP regressor using GridsearchCV 

The traditional way of performing HPO is by exhaustive searching within a specified 

subset of the hyperparameters space of a learning algorithm. A grid search algorithm 

must be guided by some performance metric, typically measured by cross-validation on 

the training set or evaluation on a held-out validation set. Since the parameter space of 

a machine learning may include real-valued or unbounded value spaces for specific 

parameters, manually set bounds and discretization may be necessary before applying 

grid search. Grid search is arguably the most basic hyperparameters tuning method. 

With this technique, we build a model for each possible combination of the 

hyperparameters values provided, evaluate each model, and select the architecture that 

produces the best results. 

Below is a list of hyperparameters applied for tuning the model:  

Hidden layer sizes - A tuple of numbers defining the sizes of hidden layers in multi-

layer perceptions is accepted. Many perceptron will be generated per hidden layer based 

on the size of the tuple, default = (100,).  

 activation - It defines the function for activating hidden layers, default=relu 

o 'identity' – Number of Activation. f(x) = x 

o 'logistic' - Logistic Sigmoid Function. f(x) = 1 / (1 + exp(-x)) 

o 'tanh' - Hyperbolic tangent function. f(x) = tanh(x) 

o 'relu' - Rectified Linear Unit function. f(x) = max(0, x) 

 solver - It accepts one of the following strings to select the optimization solver 

to use for updating neural network hidden layer perceptron weights, 

default='adam' 

o 'lbfgs' 

o 'sgd' 

o 'adam' 

https://en.wikipedia.org/wiki/Brute-force_search
https://en.wikipedia.org/wiki/Cross-validation_(statistics)
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 learning_rate - The learning rate controls how much to update the weight at the 

end of each batch, and the momentum controls how much to let the previous 

update influence the current weight update. The learning rate controls how 

quickly the model is adapted to the problem. 

 'constant' - Maintains a consistent learning rate using a learning method specified 

in learning_rate_init. 

 invscaling' - It steadily reduces the learning rate.   

 'adaptive' - It keeps the learning rate constant as long as the loss is reducing, or 

the score improves 

 early_stopping - It allows a boolean indicating if training should be stopped if 

the training score/loss is not improving. 

Grid Search tries the list of all combinations of values given for a list of 

hyperparameters with the model, records the model's performance based on evaluation 

metrics, and keeps track of the best model and hyperparameters.  

4.5.3.7 Performance Evaluation Matrices 

The Table 4.2 below explains the different performance matrices applied in remote 

sensing of water quality.  

Table 4.2 Performance matrices 

Criteria for Statistics Range Inference 

Root Mean Square Error 

𝑹𝑴𝑺𝑬 = √∑  

𝑛

𝑖=1

(�̂�𝑖 − 𝑦𝑖)2

𝑛
 

Value below half of standard 

deviation 
Satisfactory 

Relative RMSE  

𝑹𝑹𝑴𝑺𝑬 =
𝑅𝑀𝑆𝐸

𝜎𝑜𝑏𝑠
 

0.00 <= RRMSE <= 0 .10 Very Good 

0.10 <= RRMSE <= 0.30 Good 

0.30 <= RRMSE <= 0.50 Satisfactory 

RRMSE > 0.70 Poor 
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Coefficient of determination 

𝑹𝟐 =
𝑆𝑆𝑅

𝑆𝑆𝑇
 

𝑺𝑺𝑹 = ∑  
𝑖

(�̂�𝑖 − �̅�)2 

𝑺𝑺𝑻 = ∑   (𝑦𝑖 − �̅�)2 

R2 > 0.85 Very Good 

0.75 < R2  <=  0.85 Good 

0.60 < R2 <= 0.75  Satisfactory 

R2<= 0.60 Poor 

 Adjusted R2 

𝑅𝑎𝑑𝑗
2

= 1 − [
(1 − 𝑅2)(𝑛 − 1)

𝑛 − 𝑘 − 1
] 

R2 > 0.85 Very Good 

0.75 < R2 <= 0.85 Good 

0.60 < R2 <= 0.75 Satisfactory 

R2 <=0.60 Poor 

SSR – Sum of Squared Regression or the variation explained by the model 

SST – Sum of Squared Total or Total variation in the data  

𝑦𝑖 – y value for observation i 

�̅� – Mean of y value 

�̂� − Predicted value of 𝑦 for observation 𝑖 

n- Number of data points 

k - represents the number of independent variables 

R2 - represents the R-squared values determined by the model 
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CHAPTER 5 

5 RESULTS AND DISCUSSIONS 

5.1 GENERAL 

The descriptive and inferential statistical findings of various machine learning 

algorithms and remote sensing applications evaluated in the research region are 

presented in this chapter. The resulting statistical metrics are thoroughly examined and 

assessed to give a significant theoretical breakthrough in our knowledge of the 

spatiotemporal condition of river water quality. The graphs and maps created using the 

methodologies covered here are examined briefly. This chapter also discusses the 

outcomes of spatial maps developed with remote sensing and machine learning 

methods  

5.2 SPATIOTEMPORAL WATER QUALITY ASSESSMENT 

5.2.1 Feature selection and Dimensionality reduction  

Descriptive statistics showing the spatial and seasonal variations of WQPs for all 20 

monitoring stations are analysed separately for non-monsoon and monsoon seasons. 

The correlation heatmap is plotted using the Seaborn visualization library in Python, 

which is based on the Matplotlib library to visualize and interpret the data based on the 

colour. Table 5.1 & Figure 5.1 for the non-monsoon season.  

Table 5.1 Descriptive Statistics for non-monsoon season (2005-2018) 

WQPs count mean std min 25% 50% 75% max 

EC(µmho/cm) 16 359.43 83.71 189.48 297.14 386.20 425.39 488.85 

pH  16 8.14 0.13 7.87 8.06 8.15 8.21 8.50 

TDS (mg/L) 16 235.36 41.88 172.79 200.35 225.34 276.41 306.07 

Temp (deg C) 16 21.50 1.28 19.44 20.83 21.34 22.80 23.72 

Ca (mg/L) 16 36.48 4.19 27.70 35.33 37.32 39.11 42.41 

Cl (mg/L) 16 27.75 12.37 13.22 20.44 24.66 30.36 55.97 

CO3 (mg/L) 16 7.50 3.28 4.07 5.79 6.48 7.63 15.93 

F (mg/L) 16 1.21 3.63 0.19 0.22 0.30 0.39 14.82 
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HCO3 (mg/L) 16 167.60 26.59 113.60 160.39 170.54 177.92 212.47 

K (mg/L) 16 7.16 1.84 4.51 5.55 7.69 8.40 10.32 

Mg (mg/L) 16 19.06 2.81 14.68 17.78 18.70 20.59 25.24 

Na (mg/L) 16 21.08 9.58 8.62 15.36 18.28 30.47 39.63 

NH3-N (mg/L) 16 0.70 0.98 0.04 0.05 0.29 1.22 3.60 

NO2+NO3 (mg 

/L) 
16 1.89 2.53 0.35 0.38 0.53 1.97 6.91 

P-Tot (mg/L) 16 0.13 0.10 0.01 0.01 0.19 0.21 0.24 

SiO2 (mg/L) 16 8.27 0.80 6.33 7.82 8.46 8.82 9.28 

SO4 (mg/L) 16 24.35 6.28 14.74 19.69 23.71 27.64 35.41 

BOD (mg/L) 16 3.48 2.48 0.99 2.19 2.94 4.10 10.83 

COD (mg/L) 16 12.23 4.46 5.85 9.13 12.68 14.51 23.43 

DO (mg/L) 16 6.90 1.18 2.82 6.87 7.27 7.49 7.88 

This approach was applied to synthesize the complex water quality data matrix and 

understand the correlation pattern between different WQPs.   

 

Figure 5.1 Correlation among WQPs non-monsoon season (2005-2018) 
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The Spearman non-parametric correlation coefficient test determines the temporal 

fluctuations in river water quality (Spearman r). Scientific library for Python (scipy), 

from scipy.stats package was utilized to perform Spearman r and significance of 

correlation (p-value). Before starting the test, two-season was assigned a numerical 

value in the data file (Monsoon=1 and Non-monsoon=2)  as mentioned by (Wunderlin 

et al., 2001; Singh et al., 2004). The results of correlation and statistical significance 

against the season are discussed in Table 5.2. 

Table 5.2 Correlation and statistical significance of WQPs against the season 

WQPs Correlation with season r 
Statistical significance 

 p-value 

EC  0.3812 0.0152** 

pH 0.3942 0.0118** 

TDS 0.3725 0.0179** 

Temp -0.8663* 0.0000** 

Ca 0.5328 0.0040** 

Cl 0.1689 0.2974 

CO3 0.3075 0.0536 

F 0.0260 0.8735 

HCO3 0.4765 0.0019** 

K 0.2469 0.1246 

Mg 0.4895 0.0013** 

Na 0.2296 0.1542 

NH3-N 0.0780 0.6325 

NO2+NO3 0.4158 0.0076** 

P-Tot 0.1083 0.5060 

SiO2 0.3119 0.0501** 

SO4 0.2079 0.1980 

BOD 0.0606 0.7101 

COD 0.0823 0.6137 

DO 0.3595 0.0227** 

*r>0.8 and ** p < 0. 05 are marked as bold. 
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Spearman r and p-value are calculated using this numerical value for 20 nos of WQPs. 

Temperature with the season has the greatest Spearman r (-0.866) with a p-level of 

0.0000. Generally, many factors affect the increase or decrease in temperature, 

percentage of DO and other biological activities. Some parameters had a moderate 

temporal correlation (Ca, Mg, HCO3 and Mg). The season has a strong correlation with 

the parameters EC, pH, TDS, T, Ca, HCO3, Mg, NO2+NO3, SiO2, and DO (p < 0. 05). 

Cl, CO3, F, K, Na, NH3-N, P-Tot, SO4, BOD and COD had a non-significant correlation 

with r-value between moderate to low range. The aforementioned suggests changing 

natural and anthropogenic sources in the catchment. However, including other 

prediction variables like  LULC, flow and rainfall could be more beneficial to conclude 

this precisely.  

5.2.2 Spatiotemporal Clustering 

The CA classified 20 monitoring stations in this study into four distinct clusters based 

on the measured variables: Cluster 1, Cluster 2, Cluster 3, and Cluster 4 ( called C1, 

C2, C3, and C4) and was confirmed by investigating the cluster quality by the silhouette 

of cohesion (Chang et al., 2012; Ay & Kisi, 2014; Shamitha & Ilango, 2019). A 

silhouette score of < 0.6 is observed when k=4 for the non-monsoon and monsoon 

seasons (Figure 5.2 & Figure 5.3).  

 

 

Figure 5.2 Seasonal identification of optimum number of clusters Elbow method 
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Figure 5.3 Cluster silhouette plot for non-monsoon and monsoon season 

 

Figure 5.4 Clusters identified along the study area for non-monsoon (a) and 

monsoon (b) seasons 

As presented in Figure 5.4, Allahabad, Maighat, Mirzapur, Shahzadpur, Sultanpur, and 

Varanasi are the stations located along the downstream side of the study area that falls 

in C1. The agricultural, barren land and built-up are identified as primary land use along 

these clusters. Built-up areas were discovered in a few pockets away from the 

monitoring stations along this cluster. Allahabad is one of the most populous districts 

along C1 and is located at the confluence of three rivers: The Ganga, the Yamuna, and 

the Saraswati. Heavy metal pollution and sediments above acceptable concentrations 
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have been identified along these rivers. Sultanpur is another urban settlement along the 

river bank which receives a considerable quantity of untreated domestic, urban sewage 

and agricultural runoff from the industries like sugar mills, distilleries, paper/pulp and 

agrochemicals etc (Singh et al. 2004; Iqbal et al. 2019). As a result, a thorough run-off 

analysis would be required to determine the precise pollution contributions from these 

land use. 

Stations along the C2 and C4 clusters exhibit spatial variations during the non-monsoon 

and monsoon seasons. During the non-monsoon season, Basti, Birdghat, Balrampur, 

Ayodhya, Turtipar, and Eliginbridge, located on the study area's extreme eastern side, 

are falls in C2 and Lucknow, Raebareli, Bhitaura and Kanpur for the monsoon season. 

This spatial shift during the monsoon season along the clusters indicates the higher 

contribution of NPS pollutants along these stretches. C1 and C3 are the clusters that 

displayed no spatial variations along the study area. Located on the extreme eastern side 

of the study area, Maejja, Dudhi, and Chopan fall in C3 during the non-monsoon and 

monsoon seasons. Besides agricultural land, thick vegetation is another important land 

use identified along these clusters. C4 is situated along the upstream side and spreads 

from the west to the eastern side of the study area. Lucknow, Raebareli, Kanpur, 

Ankinghat and Bhitaura in non-monsoon and Ankinghat, Basti, Birdghat, Balrampur, 

Turtipar, Ayodhya and Elginbridge in the monsoon season are the stations comprised 

along this cluster. A robust spatial distribution of agricultural land use and the barren 

area is identified as a primary land use along all these clusters. The list of different 

clusters and spatial distribution during the non-monsoon and monsoon seasons are 

discussed in (Table 5.3 & Figure 5.5). For better understanding of WQPs, the 

spatiotemporal patterns that exist in the individual clusters are analysed using Box and 

Whisker plots for different seasons.  

Table 5.3 Spatiotemporal cluster identified for non-monsoon and monsoon season 

Station name Lat Long Cluster non-monsoon Cluster monsoon 

Ankinghat 26.9066 80.0727 C4 C4 

Ayodhya 26.8133 82.2069 C2 C4 

Balampur 27.4369 82.2286 C2 C4 

Basti 26.7827 82.7147 C2 C4 
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Bhitaura 26.028 80.8477 C4 C2 

Birdghat 26.7213 83.3502 C2 C4 

Allahabad 25.3983 81.9122 C1 C1 

Chopan 24.5258 83.0461 C3 C3 

Duddhi 24.7263 83.2719 C3 C3 

Elginbridge 27.0933 81.4844 C2 C4 

Kanpur 26.4647 80.3794 C4 C2 

Lucknow 26.8602 80.9425 C4 C2 

Maighat 25.6383 82.8625 C1 C1 

Maeja Road 25.233 82.038 C3 C3 

Mirzapur 25.158 82.5461 C1 C1 

Raubareli 26.2411 81.2055 C4 C2 

Shahzadpur 25.6613 81.435 C1 C1 

Sultanpur 26.2872 82.1255 C1 C1 

Turtipar 26.1419 83.8376 C2 C4 

Varanasi 25.3247 83.0363 C1 C1 

 

Figure 5.5 Geographical location of clusters for non-monsoon and monsoon 

seasons 

Many sections of the Ganga basin have high EC values surpassing the allowable limit 

of 3000 μS/cm (CWC and NRSC 2014). The reported value for this study ranges 

between 68-4460 μmhos/cm, thus, 75% of observations are not achieving the desired 

limit of EC in both seasons. Significantly lower values are observed in the monsoon 
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season for C1 and C3, which could be due to dilution (Tibebe et al. 2019). Whereas the 

observed desired limit of TDS is satisfied for Class A, C and E along the study area. 

From the graph (Figure 5.6), we can also see a similar trend during the monsoon season.  

 

Figure 5.6 Spatiotemporal pattern for EC and TDS along different clusters 

The average minimum and maximum temperature of the whole basin are published as 

18.44°C and 32.05°C, respectively (CWC and NRSC 2014). Tropical and subtropical 

temperature zones predominate across the Ganga basin. The tropical temperature zone 

in the basin has a mean annual temperature of more than 24°C and a mean January 

temperature of more than 18°C. In contrast, the subtropical temperature zone has a 

mean annual temperature of 17°C - 24°C and a mean January temperature of more than 

10°C - 18°C. As per observation, about 25-75% of data are falling in the range of 18-

32°C for the non-monsoon season (Figure 5.7). Of the four clusters, C1 displays a 

different trend than other clusters. C1 has a minimum and mean value of 18 and 23°C, 
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respectively, with no outliers. Clusters 2, 3 and 4 have a similar trend with minimum 

and maximum values of 26-32°C, respectively. During the monsoon season, all the 

clusters show a similar trend with a mean value of 25-27°C. The non-monsoon season 

has a higher mean value than the monsoon season. Temp fluctuations are usually 

attributed to waste discharge from thermal industries and organic waste discharges. 

Many researchers have identified the correlation between the quantity of water and 

rainfall with temperature (Ay & Kisi, 2014; Sandoval et al., 2014; Álvarez-Cabria et 

al., 2016). The studies conducted by the CWC using IMD gridded data have identified, 

for the past the 35 years (1969-2004), the average annual mean temperature of the 

Ganga basin was 24.82°C, with a high of 32.05°C in 1987 and an average yearly lowest 

temperature of 18.44°C, but the annual minimum temperature in 1971 was 17.68°C 

(CWC and NRSC 2014). Temperature is an essential factor that affects physical, 

chemical and biological parameters (Chang et al., 2015). We have identified a strong 

correlation of temperature with EC, pH, DO, SiO2 and Ca along the study area. 

As per IS specification, the desirable limit for pH is 6.5-8.5 for non-monsoon and 

monsoon seasons. In our study, a similar trend is experienced in both seasons, as shown 

in Figure 5.7 for non-monsoon and monsoon seasons ranged from 7.0-8.7, and around 

25-75% of data falls within the desirable range with a mean value of 8-8.1, maximum 

values in all clusters exceeding 8.5, which is undesirable. pH plays a critical role in 

water chemistry and is an essential measurement concerning water quality. pH more 

than 7 represents the presence of more free hydroxyl ions in water. Moreover, the higher 

pH level can be attributed to the increase in temperature.  



94 

 

 

Figure 5.7 Spatiotemporal pattern for Temp and pH along different clusters 

As per IS 2296:1992, the maximum BOD value for other criteria should be less than 3 

mg/l, while the measured value is 0.2-16.0 mg/l (CWC and NRSC 2014). The DO level 

in water is greatly affected by the content of BOD, and higher BOD values can be 

related to the lower DO range of the water. About 40-75% of data crosses BOD's 

desired limits. A high BOD value indicates the faecal contamination from urban land 

use discharges into the river (Shukla et al. 2014). BOD is a crucial indicator in 

estimating the amount of organic matter in river water quality. BOD in monsoon season 

shows lower values than a non-monsoon season, as this could be due to the dilution of 

effluents in monsoon season (Sundaray et al. 2006). The COD along the study area 

showed a higher mean value at C2 in both seasons. The higher COD values, commonly 

observed in the basin with top agricultural practices, could be attributed to the use of 

chemical fertilizers (Shukla et al. 2014) and indicates the pollution strength due to 
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industrial and sewage waste through industrial, agricultural and urban run-off. 

Spatiotemporal patterns of BOD, COD and DO are presented in Figure 5.8.  

 

Figure 5.8 Spatiotemporal pattern for BOD, COD and DO along different clusters 

The DO on the other hand is ranged between 1.50-10.0 mg/l in both seasons. A lower 

value of DO is observed along all the clusters during the non-monsoon and monsoon 

seasons, specifically >2 mg/l along C2 in the non-monsoon season. Typically, DO 

values are lower in the non-monsoon season when water temperatures are high 

compared to the monsoon season. Additionally, lower DO values indicate high organic 
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point sources and NPS, such as sewage from urban areas, industrial effluents, and 

agricultural run-off. Moreover, a high photosynthesis rate can also directly correlate 

with low DO. Concentrations below 4.0 mg/l will also adversely affect aquatic life 

(Tibebe et al. 2019). 

5.2.3 Data reduction and Feature selection 

The study examined and eliminated features with low variance and high correlation in 

this section. Specifically, the eigenvectors with the lowest eigenvalues in the dataset 

contained the least information about the data's variance and were thus eliminated. 

Eventually, three PCs with eigenvalue >1 are loaded (Singh et al., 2004; Razmkhah et 

al., 2010) (listed in Table 5.4) and are validated separately for different seasons using 

the explained variance ratio, which is presented in Figure 5.9. 

Table 5.4 Loading of 20 WQPs on three significant PCs for non-monsoon and 

monsoon season 

Variables 
Non-monsoon Season Monsoon Season 

PC1 PC2 PC3 PC1 PC2 PC3 

EC 0.402 0.858* -0.033 -0.977* -0.463 0.020 

pH 0.786* -0.686 0.385 -0.782* 0.403 0.226 

TDS  -0.324 -0.354 -0.085 0.989* -0.180 -0.316 

Temp  0.789* -0.321 -0.385 0.633 0.056 -0.316 

Ca  -0.196 -0.785 -0.628 0.624 0.491 -0.605 

Cl  0.639 -0.451 0.393 -0.184 0.456 0.464 

CO3  -0.485 -0.623 -0.279 0.766* 0.184 -0.017 

F  -0.104 0.492 0.611 0.554 -0.624 0.597 

HCO3  -0.048 0.458 0.573 0.392 -0.605 0.486 

K  -0.035 -0.312 -0.355 0.922* -0.267 -0.155 

Mg  0.361 -0.544 0.229 0.115 0.616 0.057 

Na  0.240 -0.965* 0.532 -0.561 0.754* 0.453 

NH3-N  0.531 0.623 -0.346 -0.338 -0.118 -0.482 

NO2+NO3  -0.927* 0.316 0.654 0.893* -0.652 0.650 

P-Tot  0.398 0.978* -0.191 0.900* -0.592 -0.111 
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SiO2  0.293 -0.463 0.066 -0.234  0.937* 0.020 

SO4  0.264 0.903* 0.054 -0.453 -0.524 0.068 

BOD 0.752* 0.492 -0.295 -0.803* -0.086 -0.382 

COD  0.821* -0.517 -0.645 0.902* 0.001 -0.425 

DO  -0.727* -0.965* -0.253 -0.921* -0.639 -0.231 

Eigenvalue 5.641 4.777 1.1711 6.999 4.322 1.425 

Variance% 36.14 28.85 10.7 44.220 27.330 9.020 

Cumulative % 36.14 64.99 75.69 44.220 71.550 80.570 

Above 0.70 PC scores are marked as bold* 

 

Figure 5.9 Explained variance ratio for non-monsoon (a) and monsoon (b) seasons 

PC1 explained 36.14% of the data variance during the non-monsoon season. A positive 

loading (>0.70) was observed for pH, Temp, BOD and COD and (-ve >0.70) for 

NO2+NO3 and DO. The high -ve loading of NO2+NO3 and P-Tot indicates less 

contribution of agriculture and urban runoff in the non-monsoon season. Temp and DO 

show a moderate inverse proportion to each other. The moderate to high BOD and COD 

indicates the discharge of industrial and domestic point source of pollution. Aside from 

PC1, PC2 also resulted in a variance of 28.85%, which is significant. The higher 

positive contribution of EC, P-Tot, and SO4 (0.858, 0.978, and 0.903, respectively) 

indicate a robust anthropogenic activity in the form of point source and NPS pollution 

along the basin. In comparison, PC3 explained 10.7% of the variance with no 

significant associations with any parameters. Nevertheless, the loading of PC1 and PC2 

shows a moderate to high negative loading of DO during the non-monsoon season. 
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Further investigation may be necessary to determine the origin and thresholds of these 

pollutants to implement the most effective management strategy. The moderate to high 

levels of pH, BOD, COD and NO2+NO3, EC, P-Tot, and SO4 along PC1 and PC2 also 

indicate anthropogenic factors interventions. However, a similar trend was observed 

during the monsoon season, with total variance exceeding that of the non-monsoon 

season (80.57%). PC1, PC2, and PC3 explained 44.220%, 27.33%, and 9.020% of the 

total variance. TDS, CO3, K, P-Tot, NO2+NO3 and COD have higher significant 

contributions (> 0.70) for PC1. Specifically, we have observed a TDS score of 0.989, 

which is higher during the monsoon season and has a lower value during the summer 

(-0.32). The higher TDS levels in the river can harm agricultural, industrial, and 

domestic water users. During the monsoon season, however, many WQPs were 

discovered to have positive scores. Across PC2, a moderate to high connection with Na 

and SiO2, scoring 0.754 and 0.937, respectively, is observed. The primary source of this 

could be the run-off from various LULCs. When the WQPs were compared seasonally, 

the monsoon season had a more significant impact. Furthermore, the scores obtained 

indicate a substantial influence of natural and anthropogenic interventions.  

As a result, this study successfully applied PCA to withdraw redundant variables from 

the data without compromising much information. Furthermore, the complex 20 

stations X 20 WQPs dataset is reduced to a lesser dimension of 20 stations X 3 PCs. 

Thus, dominant WQPs for 2005-2018 along MGB are identified using PCA. Based on 

the results and data availability, the WQPs EC, pH, Temp, TDS, NO2+NO3, P-Tot, 

BOD, COD and DO are chosen for further examination.  

5.3 EVALUATION OF WATER POLLUTION DUE TO ANTHROPOGENIC 

CHANGES 

5.3.1 Land use land cover and change analysis 

The final results of LULC are chosen based on the highest accuracies obtained from 

three algorithms, RF, SVM, and CART, for seasons from 2005 to 2018 (Figure 5.10). 

The selected image is classified by defining the region of interest (ROI) with points and 

polygons. Each class had approximately 80-90 ROIs considered for calibration and 60-

70 ROIs for validation. Waterbody, built-up, barren land, agriculture and thick 

vegetation are the five classes selected in this study. The class water includes open 
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bodies of water, rivers, and ponds, while built-up land includes industrial, residential, 

and commercial developments, as well as roads, railways, and pavements. The bare 

land, open land, and quarries classes are all included in the barren land class. The class 

agriculture primarily considers cropland and plantations, whereas the class thick 

vegetation primarily considers reserve forests. Overall classification accuracy of 85.6-

91% was attained with Kappa statistics of 0.89, suggesting an acceptable relationship 

between LULC and reference GCPs is observed (Kulithalai Shiyam Sundar and Deka 

2021). Besides, the change analysis is also done for the year 2005-2009, 2009-2015, 

and 2015-2018 to identify the pattern. During the non-monsoon season, the built-up 

class increased by 7.5% from 2005 to 2018 (Table 5.5).  
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Figure 5.10 LULC classification non-monsoon and monsoon season 

The thick vegetation has a coverage of 2.1% in the non-monsoon season in 2005, which 

was reduced to 1.9% in 2009, then to 1.4 and 1.3% in 2015 and 2018, respectively. In 

contrast, the agricultural land has increased from 54.6% to 58.1% from 2005-2018. On 

the other hand, water bodies decreased from 1.8% in 2005 to 1.3% in 2018. The findings 

suggest that except for agricultural lands and built-up areas, the other 3 LULCs chosen 

in this study have shown a decreasing trend.  

Table 5.5 Non-monsoon Season % change in LULC from 2005-2018 

LULC Types 2005% 2009% 2015% 2018% 

% 

Change 

2005-

2009  

% 

Change 

2009-

2015  

% 

Change 

2015-

2018  

Water bodies 1.8 1.7 1.1 1.3 -0.1 -0.6 -0.2 

Build-up 14.3 19.9 21.2 21.8 5.6 1.3 0.6 

Thick vegetation 2.1 1.9 1.4 1.3 -0.2 -0.5 -0.1 

Agriculture Land 54.6 56.0 57.9 58.1 1.4 1.9 0.2 

Barren Land 27.2 20.6 18.3 17.6 -6.6 -2.3 -0.7 
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Table 5.6 Monsoon Season % change in LULC from 2005-2018 

LULC Types 2005% 2009% 2015% 2018% 

% 

Change 

2005-

2009  

% 

Change 

2009-

2015  

% 

Change 

2015-

2018  

Water bodies 1.9 1.7 1.7 1.9 -0.2 0.0 0.2 

Build-up 14.2 19.2 20.9 21.3 5.0 1.7 0.4 

Thick vegetation 2.7 2.2 1.7 1.4 -0.5 -0.5 -0.3 

Agriculture Land 55.0 56.7 57.0 58.0 1.7 0.3 1.0 

Barren Land 26.2 20.3 19.5 17.4 -5.9 -0.8 -2.1 

During the monsoon season, there is a slightly higher percentage of dense vegetation 

and waterbodies. In 2005-2009, 2009-2015, and 2015-2018, build-up land use changed 

by 5%, 1.8%, and 0.4%, respectively (Table 5.6). Similarly, higher percentage changes 

in barren land are observed, with the highest being around -5.9% from 2005 to 2009 

(Figure 5.11).  

 

Figure 5.11 LULC area in percentage from 2005-2018 for monsoon (a) and non-

monsoon (b) season 

5.3.2 Effects of land use land cover pattern on different scales among clusters 

The connections between LULC metrics and WQPs are investigated using stacked 

ensemble modelling (SEM), Redundancy Analysis (RDA) and Correlation analysis. 

The LULC and WQPs are modelled along each cluster to identify the feature of 
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importance, and finally, SEM was created based on the features that had been identified. 

Each cluster is studied seasonally among different scales, as discussed in the following 

section.   

5.3.2.1 Effect of LULC on WQPs along Cluster1 Non-monsoon and monsoon 

season at different scale 

Along C1, predictors explained more than 53% of the alterations in WQPs during the 

monsoon seasons and 29% during the non-monsoon season for the watershed scale. 

Contributors of LULC showed varying patterns on the catchment to reach and riparian 

scale. The predictors described 58% and 54% variation at the reach scale throughout 

the monsoon and non-monsoon seasons (Table 5.7). However, when the scale was 

reduced to riparian, this increased to 65% and 60% in monsoon and non-monsoon 

seasons, respectively (Table 5.7). Besides that, the explanatory ability decreased as the 

scale was increased to the catchment. A similar trend is observed in Pearson's 

correlation analysed at different scales (P < 0.05) (Figure 5.12 for C1). This suggests 

that predictors have a more significant impact along the river's banks. 
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Figure 5.12 The correlation coefficient between WQPs and LULC along C1 at 

different scale for the monsoon season 

Referring to RDA results in Figure 5.13, a strong relationship between build-up area 

and P-Tot on the riparian scale, agriculture with temperature, and BOD with COD can 

be seen. We can also observe that the relationship between predictor variables and 

response variables varies with scale. However, thick vegetation at all scales has not 

been associated with WQPs at any scale. 
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Figure 5.13 Association between WQPs and LULC at different scales as per RDA 

for C1 in monsoon season 

Agriculture and barren LU were more likely to produce NPS pollution along this cluster 

than other classes. Though the contribution of built-up land ranks second (Table 5.7), 

which is consistent with the results of LULC classification and correlation analysis, as 

well as the results published in the Water Resource Information System (WRIS) (WRIS 

2022). C1 includes Allahabad, Maighat, Mirzapur, Shahzadpur, Sultanpur and 

Varanasi. Due to urban pockets receiving a considerable quantity of treated and 

untreated wastewater directly into the river course, major cities such as Allahabad and 

Varanasi contributed to high levels of BOD. They were designated as unfit for outdoor 

bathing (Dutta et al., 2020), which can be true when referring to the riparian scale RDA. 

Due to the river's proximity to the highly urbanised city of Allahabad, significant 

deterioration in water quality was observed at several locations (WRIS 2022). In 

addition, the monitoring stations Ankinghat (Kanpur), Chhatnag (Allahabad), and 

Varanasi are located in the Gangetic plains, which are characterised by high 

anthropogenic activity (Kumar Shukla et al. 2018). Besides that, the major agriculture 

and barren land dominant watersheds are Maighat, Mirzapur, Shahzadpur, and 

Sultanpur may also be associated with high NPS loading. Moreover, it indicates the role 

of significant point source pollutants in the river stretch along C1.  



106 

 

During the non-monsoon season (Figure 5.14), a higher contribution of P-Tot is 

observed along different scales, and thick vegetation, on the other hand, has no 

association with any WQPs. This result demonstrate direct sewage disposal from the 

build-up area along the basin (Álvarez-cabria et al. 2016). Because of the impervious 

surfaces of metropolitan environments, even moderate rain events can create a wide 

range of pollutants. Moreover, the contributions of different LULCs along different 

scales can also be seen based on their length.  

DO and agricultural land observed a strong association along the riparian scale. 

Compared to different scales along the reach scale, a high to moderate association 

between P-Tot-built-up and DO-barren land is observed. The association of different 

LULCs on WQPs shows seasonal variation in C1. It is clear from the RDA that thick 

vegetation plays a vital role in improving the water quality along C1 in both seasons 

(Mello et al. 2018). Moreover, some of LULC and its association with WQPs point out 

that the variation in WQPs is irrespective of LULC present there. This could be 

attributed to studies indicating that sewage accounts for 70% of GRB pollution, 

industrial waste accounts for 20%, and NPS such as garbage in the river, open 

defecation, and agricultural run-off account for 10% (Namami Gange 2020). 
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Figure 5.14 Association between WQPs and LULC at different scales as per RDA 

for C1 in non-monsoon season 

5.3.2.2 Effect of LULC on WQPs along Cluster 2 Non-monsoon and Monsoon 

season at different scale 

Ayodhya, Balrampur, Basti, Birdghat, Elginbridge and Turtipar are the monitoring 

stations present in C2, and agricultural land, barren land, and thick vegetation are the 

significant land use present along this cluster. The RDA results along the catchment, 

reach, and riparian scale indicated the association of EC, COD, Temp, TDS, P-Tot and 

DO with agriculture land use. At the same time, thick vegetation and waterbodies are 

not associated with any WQPs. The predictors during the monsoon season RDA 

explained 40% of the variance in WQPs, whereas it decreased by 5% during the non-

monsoon season for watershed scale. At the reach scale, the predictors explained 69% 
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and 54% during the monsoon and non-monsoon seasons, respectively, but on an 

increased scale, i.e., riparian, this became 68% and 52% in the respective seasons 

(Table 5.7). This could be attributed to the higher agricultural practices along the banks 

of the river. Besides that, traditional farming tends to increase the risk of soil erosion, 

and high nutrient usage could indeed result in NPS pollution through stream water due 

to surface runoff (Shi et al. 2017). As observed in C1, dense vegetation does not affect 

WQPs and can be seen as cleaner along this cluster. From  Table 5.7, we could see 

higher explained variance at the reach scale, with agriculture and barren land use being 

the most associated with WQPs. 

5.3.2.3 Effect of LULC on WQPs along Cluster 3 Non-monsoon and Monsoon 

season at different scale 

The stations along cluster C3 are Dudhi, Chopan and Maeja, no difference in scale 

effect during the non-monsoon and monsoon seasons is observed here. EC, pH, TDS 

and Temp had high loading along RDA1 and slightly less in RDA2. During the non-

monsoon season, 34.56% variance is explained by RDA1 and 20% more in the 

monsoon season (Table 5.7). This indicates the impact of NPS of pollution on water 

quality degradation is higher than the point source in the non-monsoon season. The 

relationship between LULC and WQPs has shown a similar trend as in other clusters, 

though much less variation is explained here. This could be attributed to the presence 

of denser vegetation than in other clusters. Although, during the monsoon and non-

monsoon seasons thick vegetation, barren, and agriculture land have explained better 

variations at reach and riparian scales. This cluster includes the stations Dudhi, Chopan, 

and Majea, which have a high percentage of deciduous forest, degraded/scrubs, which 

are classified as thick vegetation here, and barren land. Vegetation contributes 

substantially to NPS nutrient trapping, and vegetation cover is inversely linked with 

most WQPs, presumably due to reduced soil erosion (Shi et al. 2017). As a result, the 

WQP loading at RDA1 and 2 could be traced to a point source pollution. 
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5.3.2.4 Effect of LULC on WQPs along Cluster 4 Non-monsoon and Monsoon 

season at different scale 

During the non-monsoon season, the catchment scale explains approximately 67% of 

the variance, while the reach and riparian scales explain 68%. Agricultural and barren 

land is the most contributing land use along this cluster (Table 5.7). The total explained 

variance remains constant at the reach and riparian scales during both seasons but is 

greater during the non-monsoon season. The influence of Lucknow and Kanpur along 

this cluster during the non-monsoon season (Figure 5.4) could be linked to higher 

pollution loading during the non-monsoon season. Domestic and municipal sewage 

run-off from agricultural lands and industrial effluents from distilleries, agrochemicals, 

sugar mills, paper/pulp, etc., are left untreated and discharged directly into the river 

from Lucknow (Singh et al. 2004). 

On the other hand, Kanpur is a prominent city well-known for its textile and leather 

industries. As these industries are on the river's bank, their effluent reaches GRB. The 

RDA results (Figure 5.15 & Figure 5.16) show that land uses like agriculture, built-up 

areas, and barren land significantly impact water quality degradation. In contrast, as 

discussed in other clusters, thick vegetation with less loading controls water quality 

degradation.  
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Figure 5.15 Association between WQPs and LULC at different scales as per RDA 

for C4 in Non-monsoon season 
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Figure 5.16 Association between WQPs and LULC at different scales as per RDA 

for C4 in Monsoon season 

The study then uses an SEM regression algorithm to assess the predictive capability of 

various LULCs with WQPs.
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Table 5.7 Multi-scale explanations (in %) for different LULC classes on WQPs 

Clusters Season 
Scale/LULC 

Classes  
Waterbody 

Build-

Up 

Land 

Thick 

vegetation  

Agriculture 

Land 

Barren 

Land 
Total 

C1 

Non-Monsoon 

Watershed 0.96 1.89 2.2 13.5 10.46 29.0 

Reach 2.03 10.05 3.9 19.5 18.52 54.0 

Riparian 1.12 10.53 4.23 20.73 23.39 60.0 

Monsoon 

Watershed 1.05 10.45 2.43 21.93 17.14 53.0 

Reach 2.4 10.02 2.93 24.37 18.28 58.0 

Riparian 2.56 10.05 6.03 26.32 20.04 65.0 

C2 

Non-Monsoon 

Watershed 1.57 5.73 3.5 13.15 11.05 35.0 

Reach 1.82 5.13 4.2 24.82 18.03 54.0 

Riparian 1.52 4.28 4.05 24.79 17.36 52.0 

Monsoon 

Watershed 2.57 6.73 4.5 14.15 12.05 40.0 

Reach 2.82 7.26 5.28 32.61 21.03 69.0 

Riparian 1.52 4.28 4.05 24.79 17.36 68.0 

C3 Non-Monsoon 
Watershed 2.45 1.19 11.86 9.51 9.59 34.6 

Reach 2.45 0.93 30.59 16.7 19.33 70.0 
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Riparian 2.45 0.93 33.59 16.7 19.33 73.0 

Monsoon 

Watershed 2.45 1.19 21.86 10.51 18.59 54.6 

Reach 2.45 0.93 31.78 17.84 19 72.0 

Riparian 2.45 0.93 33.59 16.7 19.33 75.0 

C4 

Non-Monsoon 

Watershed 2.78 10.58 1.56 30.3 21.78 67.0 

Reach 1.23 7.58 1.69 34.5 23 68.0 

Riparian 1.56 8.93 1.72 36.78 19.01 68.0 

Monsoon 

Watershed 2.78 7.64 3.63 26.99 19.96 61.0 

Reach 1.26 6.8 1.6 23.34 21 54.0 

Riparian 1.58 7.53 1.1 23.78 20.01 54.0 

60% and above values are marked in bold 
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5.3.2.5 Stacked Regression Models to Predict water quality of LULC along 

different clusters  

Although the SEM's predictive powers (Table 5.8) vary significantly (R2 = 0.12 to 

0.96), the model validation performance was good, with a slight difference between 

predicted and measured values. Except for C1, the best models for EC were identified 

at the riparian scale, with a predictive score of 0.6 to 0.95 at other clusters, with C4 

being the highest. EC is critical for determining the water quality of a specific area. As 

conductivity measures dissolved ionic concentration, it is a baseline for measuring other 

WQPs (Ahmad et al. 2021). A substantial distinction in the conductivity value indicates 

a change in water quality, the presence of contaminants, or some pollution source 

impacts the area. Agriculture and build-up land are essential predictors of EC, and the 

abundance of these land use in these clusters indicates a surge (Mello et al. 2020). pH 

has an excellent predictive score along the watershed scale for the monsoon season, 

along the riparian scale for the non-monsoon season, and also the highest (R2 = 0.83) 

for C1 along the riparian scale for the monsoon season. Point source pollution is a 

prevalent cause that can increase or decrease pH based on the chemicals present. 

Furthermore, the contaminants emitted by agricultural runoff, domestic sewage, or 

industrial runoff could cause a significant change in pH levels due to the land use 

present within the catchment. The TDS model exhibited varied scale effects during both 

seasons, with the highest being explained at riparian for C4 (R2= 0.85), a dominant 

agriculture region during the monsoon season. The presence of severe anthropogenic 

sources along the river's course and runoff with elevated suspended matter could be 

attributed to the high TDS concentration in the rivers. Temp, on the other hand, mostly 

displayed a uniform scale effect, with the riparian scale being most predominant (R2= 

0.36-0.96). The highest prediction capacity is observed for C4 (R2= 0.96) during the 

non-monsoon season. NO2+NO3 is a significant criterion of eutrophic waters, especially 

those contaminated by fertiliser run-off, domestic sewage and animal waste (Álvarez-

cabria et al. 2016; El-Zeiny and El-Kafrawy 2017). It should be noted that along all 

clusters, the riparian scale had a better performance for the the NO2+NO3 model. 

Seasonally speaking, monsoon season had the highest value across all the clusters (C4 

R2= 0.86), which explains the high level of runoff from agricultural land use. The 
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variation at the scale level could be associated with highly increased bacterial activity 

coupled with increased nitrogen content and drainage water with higher levels of 

nutrients (Siqueira et al. 2015; El-Zeiny and El-Kafrawy 2017). Concurrently, P-Tot 

followed a similar pattern, with higher performance (R2 = 0.9 in monsoon and R2 = 0.84 

in non-monsoon) all over the riparian and seasonally higher values in the monsoon 

season. P-Tot, the primary source of urban runoff, had higher R2 estimates along C1 (R2 

= 0.8) and C4 (R2= 0.9) for the riparian scale, which is clustered with significant cities 

as discussed earlier. Unplanned urban growth, intensive farming exercises, and 

deforestation are all associated with higher water quality levels of phosphorus and 

nitrogen (Afed Ullah et al. 2018). BOD is a direct indicator of the level of pollution in 

waterbodies. Seasonally, all the clusters has exbhitted a similar trend for BOD with 

higher R2 at the riparian scale. These levels indicate a significant load of organic matter 

release in segments that receive a large quantity of agricultural as well as sewage waste 

from multiple sources, which were believed to be due to the abundant supply of 

microbes and microbes activity present in the region (El-Zeiny and El-Kafrawy 2017). 

The clusters C1, C2 and C4 had values ranging from R2 of 0.8 to 0.85 for different 

seasons. The majority of COD clusters and all DO clusters had good riparian scale 

performance, with C4 having the highest (R2 = 0.95 for COD and 0.87 for DO) for the 

monsoon season. Moreover, in both cases monsoon season performed better than the 

non-monsoon. Lower values of  DO (<2 mg/L) are reported along Kanpur and 

Lucknow, which fall in C2 and C4. The value of BOD continues to remain reasonably 

stable throughout both seasons within most locations, and the DO values are lower 

during the monsoon season. 

Table 5.8 Coefficient of determination R2 for different scales and seasons 

WQPs 

 

Scale 

 

Monsoon Season Non-Monsoon 

C1 C2 C3 C4 C1 C2 C3 C4 

EC 

 

Watershed 0.8 0.45 0.61 0.85 0.53 0.53 0.55 0.82 

Reach 0.76 0.55 0.64 0.87 0.55 0.55 0.57 0.81 

Riparian 0.55 0.63 0.72 0.95 0.6 0.6 0.61 0.83 

pH 

 

Watershed 0.7 0.6 0.76 0.75 0.72 0.72 0.65 0.76 

Reach 0.72 0.55 0.71 0.72 0.72 0.72 0.75 0.78 
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Riparian 0.83 0.55 0.71 0.64 0.73 0.73 0.77 0.73 

TDS 

 

Watershed 0.82 0.53 0.73 0.81 0.5 0.5 0.46 0.8 

Reach 0.84 0.5 0.74 0.83 0.46 0.46 0.5 0.73 

Riparian 0.68 0.48 0.76 0.85 0.43 0.43 0.55 0.74 

    Temp 

 

Watershed 0.81 0.48 0.36 0.81 0.48 0.48 0.36 0.86 

Reach 0.85 0.55 0.38 0.84 0.55 0.55 0.38 0.87 

Riparian 0.84 0.6 0.45 0.84 0.6 0.6 0.45 0.96 

NO2+NO3 

Watershed 0.46 0.27 0.14 0.81 0.7 0.44 0.27 0.52 

Reach 0.56 0.32 0.12 0.83 0.66 0.46 0.32 0.57 

Riparian 0.75 0.5 0.12 0.86 0.72 0.48 0.43 0.6 

P-Tot 

Watershed 0.75 0.47 0.35 0.85 0.82 0.57 0.32 0.76 

Reach 0.75 0.56 0.37 0.85 0.84 0.58 0.34 0.77 

Riparian 0.8 0.62 0.42 0.9 0.83 0.59 0.35 0.81 

BOD 

Watershed 0.75 0.73 0.55 0.8 0.72 0.72 0.52 0.75 

Reach 0.78 0.74 0.56 0.85 0.73 0.73 0.54 0.76 

Riparian 0.88 0.85 0.58 0.88 0.8 0.8 0.55 0.77 

COD 

Watershed 0.72 0.54 0.45 0.94 0.81 0.51 0.32 0.63 

Reach 0.6 0.63 0.46 0.95 0.62 0.62 0.32 0.74 

Riparian 0.69 0.7 0.47 0.95 0.65 0.65 0.33 0.74 

DO 

Watershed 0.85 0.78 0.37 0.87 0.75 0.75 0.45 0.81 

Reach 0.85 0.79 0.56 0.8 0.77 0.77 0.56 0.81 

Riparian 0.87 0.82 0.57 0.87 0.82 0.82 0.57 0.84 

Above 0.80 R2 scores are marked as bold 

Overall, the RDA and SEM results indicate that agricultural land, barren land, and 

human settlement close to the river bank are going to have a serious influence on WQPs. 

The majority of forest tracts in the basin have been seriously hampered due to over-

exploitation. As an outcome, the GRB forest ecosystem is under severe stress 

(Consortium of 7 IITs 2012). The root cause of riparian biodiversity degradation is both 

natural and anthropogenic. Construction works, the agricultural land expansion for 

food, and grazing pressure is some of the major concerns. Most WQPs are not 

connected with the thick vegetation class, presumably due to less soil erosion (Singh 
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and Mishra 2014). Riparian vegetation restoration is critical for maintaining and 

improving stream water quality because the vegetation cover along this stretch of the 

river reduces pollution load. Agricultural land use significantly impacts the sediment 

and nutrient levels in the waterbody. Rising inflows of organic manure, inorganic 

fertiliser, and pesticides are the key variables affecting water quality in agricultural 

areas (Ding et al. 2016). The results show that the impact of LULC patterns on WQPs 

varies with season and spatial scale. This implies that water quality management is 

primarily a regional problem. As a result, water quality management and land use 

planning must take a multi-scale approach. 

5.4 MAPPING THE CONCENTRATION OF WQPS USING LANDSAT-8 

AND MACHINE LEARNING ALGORITHMS 

Remote sensing has long been recognised as having the potential to supplement 

traditional lake monitoring methods after taking into account the failure of conventional 

insitu data and the analysis to explain the water quality problem on a finer 

spatiotemporal scale. In this part of the study, a machine learning approach for assessing 

spatiotemporal water quality is introduced. 

5.4.1 Feature selection criteria  

Statistical tests were performed on extracted Rrs data to check the inconsistency, and 

outliers were removed or corrected by applying a z-score (Sudheer et al. 2007). To 

identify the best features for modelling, the Pearson correlation matrix (r) between 

Landsat-8 Rrs values on different bands and band ratios with WQPs is investigated at 

various stations. In this study, multi-spectral bands and their combinations with 

correlation (i.e. r ≥ 0.50) were selected to form the input layer (Sharaf El Din et al., 

2017; Hafeez et al., 2019). A maximum of 50% significance level or p<0.05 is 

considered to finalize the input parameters (Nas et al., 2010; Swain & Sahoo, 2017a; 

Abdelmalik, 2018). As presented in Table 5.9, a significant (p<0.05) correlation of 

WQPs with bands B1-B4 except for EC is observed. A similar trend has been 

experienced with other stations as well. However, the rest of the Landsat-8 bands, such 

as Cirrus, thermal infrared 1 (TIR1), and thermal infrared 2 (TIR2), were less correlated 

(i.e. r < 0.50) within the WQPs. The lower r values achieved between TIR1 and TIR2 
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bands and WQPs are due to the fact that these bands are primarily designed to detect 

surface temperatures. Simultaneously, Cirrus is commonly used for cloud detection. 

The study also created many band combinations with significant correlations with 

WQPs to improve the relationship between input and output variables for the machine 

learning algorithm. The criteria for selecting features for different clusters are explained 

below.  

The Pearson correlation technique and the ExtraTreesRegressor based on Gini 

importance have identified the best correlated (above 0.50) with significance (p<0.05) 

bands and band combination for the model input. Around 166 input parameters (not 

presented here), including bands and their different combinations, are identified for 

various stations with WQPs (Temp, EC, pH, SiO2, and DO). A correlation of 0.567-

0.923 is observed on different combinations with a significance of p<0.05. Feature 

importance scores are also identified through ExtraTreeRegressor and are plotted for 

features based on the Gini importance of various combinations. 
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Table 5.9 Pearson correlation between Rrs and WQPs 

   B1  B2  B3  B4  B5  B6  B7 EC pH TDS Temp SiO2 DO 

 B1 1                         

 B2 0.99 1                       

 B3 0.95 0.96 1                     

 B4 0.86 0.89 0.94 1                   

 B5 0.29 0.29 0.36 0.49 1                 

 B6 0.16 0.16 0.16 0.33 0.85 1               

 B7 0.16 0.16 0.14 0.32 0.76 0.98 1             

EC -0.55 -0.54 -0.62 -0.53 -0.10 0.03 0.06 1           

pH 0.53 0.51 0.63 0.51 0.18 0.04 0.01 -0.74 1         

TDS 0.54 0.53 0.60 0.57 0.09 -0.03 -0.05 -1.00 0.73 1       

Temp 0.57 0.56 0.62 0.53 0.28 0.15 0.13 -0.65 0.68 0.63 1     

SiO2 0.53 0.52 0.62 0.51 0.19 0.05 0.01 -0.79 0.87 0.78 0.63 1   

DO 0.57 0.60 0.68 0.74 0.65 0.04 0.01 -0.61 0.89 0.61 0.56 0.77 1 
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5.4.2 Hyperparameter optimization for XGBoost  

The XGBoost models are developed using scikit-learn compatible API. The database 

for the model is first converted into an optimized data structure called Dmatrix, as this 

is the specific format that XGBoost can handle. Hyperparameters of XGBoost are then 

optimized by applying Optuna. Optuna employs a historical record of trial details to 

determine the promising search area in order to optimise the hyperparameters in less 

time. Learning rate, max_depth, l1_reg (L1 regularization term on weights), l2_reg (L2 

regularization term on weights) and n_estimators are the hyperparameters are applied 

in this study. The pruning feature automatically stops the unpromising trails in the early 

stages of training and is also accounted for in the modelling process. One WQPs at a 

time as output is consider here because the best features identified for these were 

different. Although, the same hyperparameters are applied throughout all the stations 

for different WQPs. The optimized hyperparameters identified are displayed in Table 

5.10.  

Table 5.10 Optimized hyperparameters for different WQPs along different 

Clusters in XGBoost 

Clusters WQPs Learning Rate Max_depth l1_reg l2_reg 

C1 

pH 0.237338 4 0.2236841 0.00059588 

Temp 0.205234461 8 0.0115554 2.8569528 

SiO2 0.11117548 7 0.0038749 0.92009494 

DO 0.1492115 8 0.0001574 0.18985823 

TDS 1.05713312 5 1.144E-05 1.65E-05 

C2 

EC 0.0356512 6 0.0001455 1.1245E-05 

pH 0.178377066 7 0.014976 0.00103462 

Temp 0.114854821 7 0.0001023 0.01760738 

SiO2 0.558027582 7 3.582E-05 9.11E-05 

DO 0.267273993 6 0.0034017 0.23174842 

TDS 1.055113332 5 1.914E-05 1.12E-05 

C3 
EC 0.03212539 8 0.0001335 1.3344E-05 

pH 0.54051175 7 0.228148 0.00035278 
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Temp 0.138631144 4 6.56E-05 0.01605706 

TDS 0.030726507 5 4.51E-05 1.51E-04 

SiO2 0.084894633 4 0.0025398 9.96E-01 

DO 0.158258279 4 0.0054742 9.86053923 

C4 

EC 0.831185087 6 0.0001335 1.51E-04 

pH 0.097761003 5 0.005306 0.09855875 

Temp 0.114854821 7 0.0001023 0.01760738 

TDS 1.055113332 5 1.91E-05 1.12E-05 

SiO2 0.558027582 7 3.58E-05 9.11E-05 

DO 0.480724584 5 0.3392282 0.00656407 

5.4.3 Hyperparameter optimization for MLP  

MLPRegressor is a multi-layer perceptron algorithm for regression tasks in scikit-

learn's neural network module. It can train a neural network on input data and predict 

continuous target variables. It can also handle multiple hidden layers and various 

activation functions, allowing for a wide range of modelling capabilities. To optimize 

its hyperparameters, GridSearchCv is applied here. Grid search is a method of 

hyperparameter tuning that generates and assesses a model systematically for each 

combination of algorithm parameters supplied in a grid. The hyperparameters (Table 

5.11) have been used by applying a 3-7 fold cross-validation to optimise the best 

estimator for this investigation. The ratio of train:test was changed from 70-80 until the 

accuracy for both training and testing became the same, or the difference was 

negligible. This procedure for the hyperparameters search is carried out for all the 

clusters by taking one WQPs at a time.  

Table 5.11 Optimized hyperparameters for different WQPs along different 

Clusters in MLP regressor 

Clusters WQPs Activation Hidden Layers Learning Rate Solver 

C1 

EC logistic (50,150) Constant L-BFGS 

pH identity (150,100,50) Constant L-BFGS 

Temp relu (100,50) Constant L-BFGS 

SiO2 relu (150,100,50) Constant L-BFGS 
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DO relu (100,50) Constant L-BFGS 

C2 

EC relu (150,50,100) Constant Adam 

pH relu (100,150,50) Constant L-BFGS 

Temp tanh (100,) Constant L-BFGS 

SiO2 relu (150,50,100) Constant L-BFGS 

DO tanh (150,100,50) Constant L-BFGS 

C3 

EC relu (50,100,150) Constant Adam 

pH relu (100,150,50) Constant L-BFGS 

Temp tanh (100,) Constant L-BFGS 

SiO2 relu (50,100,150) Constant L-BFGS 

DO relu (100,50,150) Constant L-BFGS 

C4 

EC relu (50,150,100) Constant L-BFGS 

pH relu (100,150,50) Constant L-BFGS 

Temp logistic (50,) Constant L-BFGS 

SiO2 relu (100,50,150) Constant L-BFGS 

DO relu (50,150,100) Constant L-BFGS 

5.4.4  Evaluation and Comparisons of Results 

         The entire dataset consists of a ground truth dataset, and the pixel value dataset was 

split randomly into a 70% training set and a 30% test set to develop XGboost and MLP, 

regression models. R2, RMSE and adjusted R for predicted EC, pH, Temp, SiO2 and DO 

were calculated as model evaluation for each cluster separately (Table 5.12 & Table 

5.13). 

Table 5.12 Regression statistics of XGBoost regressor along different cluster 

Clusters WQPs Train R2 Test R2 RMSE RRMSE 

C1 

EC 0.32 0.27 1.23 0.005 

pH 0.94 0.78 0.08 0.010 

Temp 0.88 0.73 0.15 0.007 

SiO2 0.98 0.98 0.01 0.001 

DO 0.98 0.97 0.01 0.001 

C2 EC 0.35 0.33 2.57 0.011 
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pH 0.74 0.74 0.19 0.025 

Temp 0.87 0.89 0.10 0.004 

SiO2 0.96 0.96 0.01 0.001 

DO 0.98 0.927 0.01 0.001 

C3 

EC 0.23 0.21 2.85 0.013 

pH 0.74 0.74 0.26 0.033 

Temp 0.85 0.89 0.08 0.004 

SiO2 0.97 0.97 0.00 0.000 

DO 0.97 0.9 0.01 0.001 

C4 

EC 0.34 0.32 2.58 0.011 

pH 0.81 0.76 0.09 0.012 

Temp 0.87 0.9 0.01 0.000 

SiO2 0.98 0.97 0.00 0.001 

DO 0.97 0.96 0.01 0.001 

 

Table 5.13 Regression statistics of MLP regressor along different clusters 

Clusters WQPs R2 RMSE RRMSE 

C1 

EC 0.37 0.1786 0.00079 

pH 0.89 0.06198 0.00796 

Temp 0.82 0.0812 0.00374 

SiO2 0.93 0.00426 0.00053 

DO 0.93 0.00595 0.00081 

C2 

EC 0.27 0.29654 0.00131 

pH 0.87 0.00535 0.00069 

Temp 0.93 0.00065 0.00003 

SiO2 0.91 0.00472 0.00058 

DO 0.87 0.02724 0.00373 

C3 

EC 0.23 0.13671 0.00060 

pH 0.84 0.0183 0.00230 

Temp 0.95 0.0023 0.00011 
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SiO2 0.97 0.0063 0.00077 

DO 0.81 0.02233 0.00300 

C4 

EC 0.35 0.00001 0.00000 

pH 0.87 0.00509 0.00065 

Temp 0.92 0.00065 0.00003 

SiO2 0.92 0.00472 0.00058 

DO 0.82 0.02724 0.00373 

Except for EC, the R2 values for all WQPs were high and close to 1, showing a 

significant relationship between satellite reflectance data and insitu observations. The 

feature of importance from each WQPs modelling was studied to identify the optimum 

band and combinations. Therefore, it is evident that the developed Landsat-8 based 

water quality modelling could be a highly recommended, cost-effective and time-

saving methods for monitoring optically active and non-active WQPs. A high 

coefficient of determination are observed for WQPs like pH, Temp, SiO2 and DO (R2 

0.74-0.98) with XGBoost and MLP with a p-value <0.005. However, EC performed 

poorly in all the clusters, with R2 ranging from 0.23-0.37 for XGBoost. However, MLP 

produces comparably superior results, with R2 values ranging from 0.81 to 0.97 for C2 

(except for EC), 0.81 of DO in C3 and 0.97 of SiO2 in C3, with the exception of 

C1 which has R2 values of 0.32 and 0.27 in the training and testing phases, respectively. 

The performance evaluation measures and scatter diagrams in the testing phase for 

XGBoost, and MLP for pH, Temp, SiO2 and DO are presented in Figure 5.17, Figure 

5.18, Figure 5.19 and Figure 5.20.   



125 

 

 

 

 

Figure 5.17 Scatter plot, Box and whisker plot for pH 
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Better performance for XGBoost (R2 = 0.88- 0.98) can be observed from the displayed 

scatter plot for all the parameters compared to MLP (R2 = 0.72-0.97).  

 

Figure 5.18 Scatter plot, Box and whisker plot for Temp 

Box plots were created for all WQPs to compare the observed minimum, maximum, 

and mean values with the predicted. A minimal difference in mean value is observed 

across all the clusters for both models. 
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Figure 5.19 Scatter plot, Box and whisker plot for SiO2 
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Figure 5.20 Scatter plot, Box and whisker plot for DO 

5.4.5 Spatial Distribution of WQPs 

From the developed models, spatiotemporal maps were plotted using the developed 

regression model to understand the spatial distribution of different WQPs in all the 

clusters. The 2017 non-monsoon and monsoon season map along C1 and C4 is 

presented here. The spatial pattern proves that land-use modifications and seasonal 

variation primarily regulated the water quality conditions. EC addresses the total 

concentration of water-ionized constituents; a higher conductivity concentration 

reflects higher water pollution. GRB shows high EC concentrations, surpassing the 

allowable limit of 3000 μS/cm across many parts (CWC and NRSC 2014). The typical 

electrical conductivity value is 300 μS/cm (Bhuyan et al. 2018). The concentration of 

EC along different clusters has not shown any seasonal shift for 2017 (Figure 5.21). 

The values are 370-630 μS/cm in non-monsoon and monsoon seasons 230-620 μS/cm. 

Thus, no seasonal trend is observed but showing an increase level in the monsoon 
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season. A lower value of EC is observed in C1 and C3 for the non-monsoon season. 

The permissible limits for drinking water purposes should be 1500 μmhos/cm. Except 

for different ranges of value, no spatial change in the patterns were observed in the non-

monsoon and monsoon seasons. The high concentrations are marked in Lucknow, 

Allahabad Varanasi, and nearby stations fall in C1 and C4. The higher concentrations 

of EC could be accredited to the high degree of anthropogenic activities such as 

agricultural runoff and waste disposal. Inorganic compounds are better conductors than 

organic compounds due to the input of industrial effluents, making conductivity a good 

indicator of inorganic pollution. Therefore, measuring conductivity will provide a good 

indication of the state of inland water. 

As per IS specification, the desirable limit for pH is 6.5– 8.5 mg/l. Generally, the pH 

concentration increases because of the photosynthetic algae activities that consume 

carbon dioxide dissolved in it. Broadly, pH ranges from 6.5 to 9, which is relevant for 

aquatic life. A slight variation in values is observed in both seasons (Figure 5.21). 

Keeping the aquatic ecosystem within this range is important because high and low pH 

can be destructive in nature (Al-Badaii et al. 2013). Downstream of the study area has 

shown high values of TDS for non-monsoon and monsoon seasons, 216.96-285 mg/l 

and 231.281 mg/l, respectively (Figure 5.21). The desired limits of TDS as per IS:2296 

are 500, 1500 and 2100 mg/l for classes A, C and E, respectively. In a few stations, 

along with clusters C1 and C2 the predicted values for 2017 in non-monsoon and 

monsoon seasons are well within limits. The high TDS concentration in the rivers could 

be attributed to extreme anthropogenic activities along the river course and runoff with 

high suspended matter.  



130 

 

 

Figure 5.21 Spatial variation of EC, pH and TDS along the parts of study area 

The temperature of the study area, mainly of the state of Uttar Pradesh (UP), varied 

from 0 to 46°C. In 2014, the average temperature during pre-monsoon and monsoon 

varied from 20°C–25°C upstream, 25°C–27°C in the middle stream and 27°C–30°C in 

downstream and the average temperature in post-monsoon varied from 13°C–15°C in 

upstream, 15°C–18°C in the middle stream and 18°C–20°C in downstream (Khan et al. 

2017). Water temperature is directly linked with toxic absorption, salinity, and DO; 

temperature also influences the rate of photosynthesis by algae and aquatic plants. 

Increasing temperature reduces the DO, bringing harmful effects to aquatic life. The 

higher level of water temperature could be attributed to human activities such as the 
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discharge of industrial effluents, agriculture, and forest harvesting. Nevertheless, the 

favourable loading of temperature is associated with seasonal variation. The inverse 

relationship between temperature and DO is a natural process in water because warm 

water quickly becomes saturated with oxygen and thus holds less DO (Bhat et al. 2014). 

The desired value for DO should be more than 4 mg/l. The observed value for DO in 

the basin lies in the range of 4.3–9.2 mg/l. The DO concentrations above 5 mg/L in 

most locations were ideal for bathing purposes. The increasing value of DO may also 

be attributed to reducing wastes from various NPS. However, the decrease could be 

linked to an increase in water temperature and the biological activity of aquatic 

organisms along the river basin. Most of the stations in C2 and C3 show a clear seasonal 

shift, with the minimum value being 5.50-5.8 and 5.70-5.93 mg/l in non-monsoon and 

monsoon seasons, respectively. The stations Kanpur, Lucknow, and Ankinghat 

followed the same pattern during non-monsoon and monsoon seasons with a range of 

6.12-7.05 mg/l. Although, higher values of DO were observed along some stretches of 

river 7.67-8.30 and 7.30-7.80 in non-monsoon and monsoon seasons, respectively.  
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CHAPTER 6  

6 CONCLUSIONS  

6.1 GENERAL 

In this study, a 14-year (2005-2018, monthly data), 20 water quality variables covering 

20 monitoring stations (67,200 entries) from Ankhinghat to Chopan under the Central 

Water Commission in the Middle Ganga Basin and LULC relationship between them 

are studied to understand the water quality problem using various multivariate 

techniques. The study also tried to illustrate and prove a significant empirical 

relationship between Landsat-8 OLI surface reflectance of 30 m spatial and 16-day 

temporal resolution data with insitu WQPs.  

6.2 CONCLUSIONS 

 To examine the temporal fluctuations of river water quality, the Spearman non-

parametric correlation coefficient test (Spearman r) is used. Temperature with 

the season has the greatest Spearman r (-0.866) with a highly significant p-level 

of (0.0000). The season exhibited a substantial correlation with the parameters 

EC, pH, TDS, T, Ca, HCO3, Mg, NO2+NO3, SiO2, and DO (p < 0. 05). Cl, CO3, 

F, K, Na, NH3-N, P.Tot, SO4, BOD and COD had a non-significant correlation 

with r-value. 

 During both seasons, the K-means cluster analysis classified the monitoring 

stations into four groups based on similar water quality criteria (C1, C2, C3, 

C4). The clusters C2 and C4 showed a seasonal shift when analyzed separately. 

The stations such as Kanpur, Lucknow, Raebareli, Bhitaura, Balrampur, 

Birdghat, Turtipar, Basti, Ayodhya, and Elginbridge fall into these clusters. 

Information like this can reduce the number of river sampling sites while 

retaining as much information as possible. Moreover, breaking down 20 

monitoring stations into 4 clusters further reduced the modelling complexity in 

this study 
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 Most significant WQPs from spatial and seasonal variations from an extensive 

data set are identified using PCA. It is a data reduction procedure and a more 

traditional method of increasing the speed of machine learning algorithms. A 

reduced number of 3 PCs are identified for 20 WQPs in 20 stations with a 

variance of explanation 75.84% and 80.57% in the non-monsoon and monsoon 

seasons. DO, EC, P-Tot, and SO4 are the most dominating parameters with a 

PC score of more than 0.8 in the non-monsoon season; similarly, TDS, K, COD, 

Cl, Na, SiO2 in the monsoon season. A satisfactory result is drawn in PCA, 

which reduces the complexity of the model from 20 stations X 20 WQPs to 20 

stations X 3 PCs. As a result, the monitoring programme can be limited to the 

identified dominant WQPs.    

 The RDA results showed that along most of the clusters, the contributors of 

LULC varied spatially on the catchment scale, although they remained the same 

at the reach and riparian scale. The seasonal comparison indicates that the 

monsoon season has a more significant explanation. It has also been discovered 

that some LULC classes and their associations with WQPs are not associated 

with LULC. The redundancy analysis also revealed that thick vegetation along 

most clusters is essential in keeping water clean, whereas agriculture and urban 

areas degrade water quality.  

 The model's predictive power across different clusters and scales is then 

evaluated using the SEM between LULC classes and WQPs. Overall, the 

riparian scale surpasses the watershed and reach scales regarding prediction 

scores. Since urban and agricultural land use is concentrated in riparian areas, 

future research will focus on the impact of riparian land use on water quality. 

Furthermore, a multi-scale methodology is suggested for better land use 

planning in water quality management along the Middle Ganga Basin. 

Given the laborious, time-consuming, and costly nature of the insitu monitoring 

network. Besides that, the analyses are restricted to a single point in space and time, 

which makes it difficult when these values are critical for watershed assessments 

and management practices. Remote sensing technology has proven to be an 

excellent tool for bridging the gap between accuracy and large-scale analyses. 
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Therefore, the next phase of the study assessed six years of satellite data (2013-

2018) to characterize the trends of dominant physicochemical WQPs such as EC, 

TDS, SiO2 and DO across the four clusters identified in the preceding sections. The 

study also tried to illustrate and prove the presence of a significant empirical 

relationship between Landsat-8 OLI surface reflectance of 30 m spatial and 16-day 

temporal resolution data with insitu WQPs as explained below: 

 The demonstrated regression techniques, namely XGBoost and MLPRegressor, 

have established a substantial spatial and temporal distribution of significant 

WQPs in the water bodies. Thus, it can be proposed as a rapid, inexpensive, and 

convenient method to obtain helpful water quality information from satellite 

data.  

 Pearson's correlation coefficient values were used to assess the strength of the 

relationship between model inputs and outputs. In this context, the multi-

spectral bands correlated (i.e. r ≥ 0.50) with selected WQPs were selected to 

develop a regression equation for water quality retrieval.   

 The study results indicated that the band ratio is more effective than the single 

bands due to the reflectance ratio reducing and eventually eliminating the effect 

of the changes in illumination conditions and the sediment type. Moreover, the 

binary combination factor weakens particle size's impact on reflectance. 

 The applied hyperparameter optimization techniques used on these models have 

helped achieve optimal hyperparameters. Further, it drastically improved the 

model performance XGBoost (R2 = 0.88- 0.98) and MLP (R2 = 0.81-0.97), than 

the model without hyperparameter optimization. 

 According to IS:2296 drinking water standards, the predicted values for 

different WQPs are compared. Along some stretches of GRB, the high critical 

values of WQPs conclude a pressing need to address the river basin to alleviate 

the pollution issues for a sustainable riverine ecosystem. 

 However, the non-availability and presence of cloud cover of Landsat-8, 

especially during the monsoon season, has failed the model to discuss the 

spatiotemporal trend in some stations present in C1. Given this, future work 

concerns might include combining the Landsat-8 with other relevant sensor data 
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or with extremely high spatial, spectral, and temporal resolution datasets. 

However, it will be constructive to develop generalized models for estimating 

different WQPs in the GRB without being entirely dependent on water 

sampling.   

6.3 LIMITATIONS AND FUTURE PERSPECTIVES 

The non-availability and presence of cloud cover of Landsat-8, especially during the 

monsoon season, has failed the model to discuss the spatiotemporal trend in some 

stations present in C1. Future work issues could focus on fusing the Landsat-8 with 

other suitable sensor data with high spatial, spectral, and temporal resolution datasets. 

However, it will be beneficial to develop generalized models for estimating different 

WQPs in the GRB that are not entirely dependent on water sampling. Nevertheless, 

including more predictors to model the relationship between WQPs and LULC classes 

could have given a clear understanding of essential predictors in defining 

spatiotemporal patterns in water quality. Furthermore, the study did not consider the 

influx from the upstream catchment or the Upper Ganga Region due to computational 

constraints and data availability, assuming it was insignificant. 
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