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ABSTRACT 

Wetlands are essential ecosystems that play a significant role in mitigating the impacts 

of climate change. Wetlands store large amounts of carbon and help to regulate the 

climate by reducing the amount of carbon dioxide in the atmosphere. They also help to 

reduce the impacts of extreme weather events, such as floods and hurricanes, by 

absorbing and retaining water. However, wetlands are also vulnerable to the effects of 

natural and anthropogenic factors, which can alter their hydrology and lead to the loss 

of wetland habitats. It is crucial to protect and preserve wetlands to maintain their vital 

role in mitigating the impacts of climate change. The wetland functions, commodities, 

and services are lost due to upland land use activities. Hence, accurate and up-to-date 

information on the upland regions around wetlands is essential. The present research 

considers the Vembanad Lake System (VLS) in Kerala, India, which is specifically 

affected by challenging issues to its health and survival. The study area faces threats 

like encroachment and climate change resulting in floods and alteration in the 

precipitation patterns. Further, the lake system is endangered by the deteriorating 

quality of incoming water. Thus, the overall spatio-temporal analysis is critical in 

protecting and managing water resources in the study region. 

Anthropogenic activities result in a massive Land Use and Land Cover (LULC) change, 

and it has become a prominent issue for decision planners and conservationists due to 

inappropriate growth and its effect on natural ecosystems. As a result, the change in 

LULC for the short term, i.e., within a decade, is carried out using three Machine 

Learning (ML) approaches, Random Forest (RF), Classification And Regression Trees 

(CART), and Support Vector Machine (SVM), on the Google Earth Engine (GEE) 

platform. When comparing the three techniques, SVM performed poorly at an average 

accuracy of around 82.5%, CART being the next at 87.5%, and the RF model being 

good at an average of 89.5%. The RF outperformed the SVM and CART in almost 

identical spectral classes, such as barren land and built-up areas. As a result, RF-

classified LULC is considered to predict the Spatio-temporal distribution of LULC 

transition analysis for 2035 and 2050. This analysis was conducted in Idrisi TerrSet 

software using the Cellular Automata (CA) - Markov chain analysis. The model's 

efficiency is evaluated by comparing the projected 2019 image to the actual 2019 
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classified image. The model efficiency obtained was good, with more than 94.5% 

accuracy for the classes except for barren land, which might have resulted from the 

recent natural calamities and the accelerated anthropogenic activity in the study area. 

Floods have claimed the lives of countless people and caused significant property 

damage, putting their livelihoods in jeopardy. The study area faced adverse 

mishappening during the 2018, 2019, and 2021 floods due to the torrential rainfall 

events. Estimations of flood-inundated areas are prepared from 2018, 2035, and 2050 

LULC maps. The extent of flood inundation during the 2018 floods and the possible 

flood inundation region for the projected LULC in 2035 and 2050 are determined. From 

the analysis of the 2018 classified image, 14.7 km2 of built-up area was found inundated 

during the year 2018 floods. The scenario of the 2018 flood event is used to quantify 

the flood that may occur and inundate the projected LULC 2035 and 2050 scenarios. It 

is found that the flood will affect about 19.87 km2 and 23.32 km2 of the built-up region, 

majorly for the 2035 and 2050 projected scenarios, respectively. The goal of this 

research is to construct effective decision tree-based ML models such as Adaptive 

Boosting (AdaBoost), RF, Gradient Boosting Machines (GBM), and Extreme Gradient 

Boosting (XGBoost) for integrating data, processing and generating flood susceptibility 

maps. Eighteen conditioning parameters, including seven categorical and eleven 

numerical data, are used for flood modelling using ML. These seven categorical data 

are converted into 50 numerical data, resulting in a total input data of 61. The Recursive 

Feature Elimination (RFE) is utilized as the feature selection technique, and 22 layers 

are chosen to feed into the ML models to generate the flood susceptibility maps. The 

efficiencies of the models are evaluated using Receiver Operating Characteristic – Area 

Under Curve (ROC-AUC), F1 score, Accuracy, and Kappa. According to the results 

obtained, all four ML models demonstrated fairly good performance. However, 

XGBoost fared well in terms of the model's metrics. The ROC-AUC values of 

XGBoost, GBM, and AdaBoost for the testing dataset are 0.90, whereas 0.89 for RF. 

The accuracy varied significantly among the four models, with XGBoost scoring 0.92, 

followed by GBM (0.88), RF (0.87), and AdaBoost (0.87). The resulting flood 

susceptibility map can be utilized for early mitigation actions during future floods and 

for land use planners and emergency managers, assisting in reducing flood risk in 

regions prone to this hazard. 
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Water quality is one of the essential parameters of environmental monitoring; even a 

slight variation in its characteristics may significantly influence the ecosystem. The 

water quality of Vembanad Lake is affected by anthropogenic effects such as industrial 

effluents and tourism. The optical parameters representing water quality, such as diffuse 

attenuation (Kd), turbidity, Suspended Particulate Matter (SPM), and Chlorophyll-a 

(Chl-a), are considered in this study to evaluate the water quality of the Vembanad 

Lake. As this lake is regarded as of ecological importance by the Ramsar Convention 

and has faced severe concerns over recent years, there was a substantial change in the 

water quality during the lockdowns of the COVID-19 pandemic. This research aimed 

to examine the change in water quality using optical data from Sentinel-2 satellites in 

the ACOLITE processing software from 2016 to 2021. The analyses showed a 2.5% 

decrease in the values of Kd, whereas SPM and turbidity show a reduction of about 4.3% 

from the year 2016 to 2021. The flood and the COVID lockdown had an impact on the 

improvement in the quality of water from 2018 to 2021. The findings indicated that the 

reduction in industrial activities and tourism had a more significant effect on the 

improvement in the water quality of the lake. There was no substantial change in the 

Chl-a until 2020, whereas an average decrease of 12% in Chl-a values was observed 

throughout 2021. This decrease can be attributed to the reduction in the lake's 

Hydrological Residence Time (HRT).  

The outcome of this research depicts augmentation of the change in the LULC pattern 

and its prediction, future flood-inundation regions, flood susceptibility mapping, and 

the lake's water quality. The findings of this research work will be a valuable reference 

to help the government and Non-Government Organisations (NGOs) during strategic 

planning. 

Keywords: Google Earth Engine; Machine Learning; Kerala floods; LULC prediction; 

CA-Markov chain analysis; Flood susceptibility mapping; Optical property; ACOLITE 

processing; Chlorophyll-a. 
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CHAPTER 1 

1 INTRODUCTION 

1.1 GENERAL 

Climate plays a critical function in sustaining the ecosystem; climate change and global 

warming threaten humanity's social and economic structure (Kocsis et al. 2020). 

Climate change has garnered international attention as it influences every facet of 

society. It is reasonable to anticipate that climate change, in addition to its inherent 

variability, will impact meteorological parameters, which will in turn, cause changes in 

the global and regional hydrological cycle (Mohammed and Scholz 2019). These shifts 

can affect the region's ability to maintain its ecology and water resources. It is becoming 

one of the most significant obstacles to attaining food, energy, and water security on a 

global scale, and the effect is greatest in developing nations owing to their weak 

adaptive ability and inadequate natural resource management (Adhikari et al. 2015). It 

also significantly affects earth systems, resulting in unexpected weather phenomena 

such as precipitation and high temperatures that are more frequent (Gebrechorkos et al. 

2020). This causes environmental issues, such as localized downpours, flooding, 

droughts, and heat waves, which may result in numerous fatalities. The increase in the 

occurrence and intensity of severe events is one of the most significant effects of global 

warming. According to Wang et al. (2019), the direct influence of climate change on 

the hydrological cycle is owing to an increase in temperature and its high variability 

and a shift in rainfall at various scales. One of the major causes of climate change is the 

rapid change in land use and land cover (LULC), industrialization, and urbanization. 

Over the last few decades, economic prosperity and population growth have resulted in 

unplanned urbanization and industrialization to meet livelihood and job needs (Jose and 

Dwarakish 2020). Wetlands can reduce greenhouse gas (GHG) production by 

controlling processes like decomposition because of their dense vegetation, algal 

activity, and soil composition. The impact of climate change on wetland ecosystems 

could be irreversible, but wetland ecosystems can help mitigate the effects of climate 

change. 
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1.2 IMPORTANCE OF WETLANDS 

Wetlands are important in providing beneficial activities for humans and wildlife. They 

provide a large volume of food that attracts a large volume of animal species, remain a 

“Biological supermarket”, and help improve the ground and surface water quality, as 

well as release the vegetative matter into the rivers; this helps in feeding the fish. They 

help to rejuvenate the river that got polluted and helps in balancing the ecosystem 

(Figure 1.1). Wetlands filter out the sedimentation, decompose the vegetative matter 

and purify the water. They also help to recycle nutrients balancing the nutrient cycle 

and creating a productive ecosystem. Wetlands are recognized globally as important 

ecological infrastructure because they offer many critical ecosystem services to people. 

Due to their significance, many wetlands have been exploited or utilized in an 

unsustainable manner, resulting in rapid worldwide wetland reductions (Mitsch and 

Gosselink 2000; Rebelo et al. 2017; Russi et al. 2013; Simonit and Perrings 2011). 

According to scientific estimates, 64% of the world's wetlands have vanished since 

1900 (Wetlands International 2014). Thus in the 1970s, the international treaty called 

the “Convention on Wetlands of International Importance”, popularly known as the 

“Ramsar Convention of 1971”, has globally come into force for the conservation and 

wise use of wet or watery lands (Tatu and Anderson 2017). This intergovernmental 

treaty defines the term wetlands as “areas of marsh, fen, peatland or water, whether 

natural or artificial; standing or flowing; fresh, brackish or salt, including areas of 

marine water, the depth of which at low tide does not exceed six meters” (Navid 1989). 

As a result of the inclusion of the word "water" in the definition, the Ramsar Convention 

of 1971's definition of the wetland is almost all-encompassing. All lakes, rivers, 

subterranean aquifers, swamps and marshes, wet grasslands, peatlands, oases, estuaries, 

deltas and tidal flats, mangroves, and other coastal habitats, coral reefs, and artificial 

wetlands are included. The terms "wetlands" and "waterbodies" are interchangeable, 

with the exception that in marine/coastal regions, the word "wetland" refers to only 

those places where the depth of the water does not exceed 6 m at low tide. The 6 m 

depth restriction was most likely devised to represent the approximate greatest depth to 

which sea ducks descend to feed (Anderson and Davis 2013). 
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Figure 1.1 Functioning of wetlands 

(Source: Wetlands International (2011)) 

Countries that have accepted the Ramsar Convention must undertake planning to 

encourage the sustainable use of wetlands and create management and conservation 

strategies (Bott 1994). Even though 169 nations have signed this agreement, there are 

still negative tendencies; wetlands are being destroyed or degraded, and wetland species 

populations are diminishing. Furthermore, the Convention on Biological Diversity 

(CBD 1992) requires contracting parties to rehabilitate and repair damaged ecosystems 

and manage biological resources critical to biological diversity protection (Glowka et 

al. 1994). On a worldwide scale, wetland surface area is almost twice that of lakes and 

reservoirs (Lehner and Döll 2004), and their size is anticipated to fluctuate seasonally 

(Papa et al. 2010). Wetland responses are therefore an important part of sustainable 

water resource management, and their involvement in regional water balances and 

ecosystem preservation must be assessed and understood.  

Sustainable Development Goals (SDG) are defined by United Nations under goal 6 as 

“clean water and sanitation” to ensure clean water is accessible for all as it is a basic 

human need. SDG 6.6 states, "By 2020, protect and restore water-related ecosystems, 

including mountains, forests, wetlands, rivers, aquifers and lakes”. The goal is expected 

to be met by 2030, which can be achieved effectively by regularly monitoring and 

assessing the changes in the lake due to anthropogenic and other external factors. Due 

to the remoteness and vastness of many wetlands, frequent data gathering to understand 
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their eco-hydrology is extremely costly and impossible (Finlayson 2003). The threat 

posed by humans to wetland ecosystems is global (Mitsch and Gosselink 2000). Due to 

the fast growth in world population and the need for natural resources for food, fuel, 

and fodder, there has been a significant degradation and reduction in all kinds of 

wetlands during the last few decades (Brij and Krishnamurthy 1993). Wetlands are used 

as cesspools for the disposal of solid waste as well as the discharge of wastewater. The 

loss is significantly greater in certain areas since wetlands’ degradation and loss are 

global issues. 

1.3 LAND USE AND LAND COVER  

1.3.1 Impacts of change in land use and land cover 

The natural and anthropogenic activities worldwide influence the land cover, modifying 

its landscapes and the subsequent dynamics of natural processes (Silva et al. 2020). 

Monitoring and assessing urban growth aid in planning and utilizing natural resources 

for the near future (Mandal et al. 2023). Anthropogenic processes have altered almost 

half of the Earth’s land surfaces (Tayyebi and Pijanowski 2014). These changes are 

called Land Use and Land Cover Changes (LULCC). The enormous need increased the 

demand for critical infrastructures such as water supplies, sewage services, and 

recreational activities. It also causes road congestion, pollution, climate change–related 

problems, urban floods, and Urban Heat Island (UHI) impacts (Jose and Dwarakish 

2022; Saxena et al. 2021). As a result, LULC change is regarded as a critical 

environmental issue of global significance. Major causes of biodiversity loss and 

related habitat loss are human-induced effects (Elias et al. 2021), such as urbanization, 

erosion, overgrazing, and land degradation (Abijith et al. 2021). Besides, nature also 

contributes to this alteration (Halmy et al. 2015a; Lambin 1997). The complex 

interaction of the factors like policy management, human needs, environment, culture, 

and economics results in changing LULC (AlDousari et al. 2023). Alteration in the 

LULC can significantly alter the water quality as its need increases in urban and 

agricultural activities resulting in nitrates and phosphates in the freshwater (Álvarez-

Cabria et al. 2016; Krishnaraj and Deka 2020). 

Rapid urbanization in different parts of cities has been a severe threat to developing 

countries such as India, Indonesia, Malaysia, and Sri Lanka. India is the most populous 
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country in the world, with 1.38 billion people. The Composite Water Management 

Index (CWMI) report released by the National Institution for Transforming India 

(NITI) Aayog in August 2019 under the Government of India (GOI) stated that many 

cities in India, such as Delhi, Bengaluru, and Chennai, may face “Day Zero” in the 

upcoming years (Abijith et al. 2020). Due to the country’s rapid population growth and 

subsequent urbanization, policies for planning, analysing, and tracking land use 

transitions are required to meet the people’s basic needs (Darem et al. 2023). As a result, 

enormous areas of forest cover are being converted to other land uses, causing severe 

soil erosion. Rapid soil erosion will lead to catastrophic floods and landslides affecting 

downstream residents. Thus, a sustainable LULC is critical for long-term livelihood 

and environmental improvement (Mishra et al. 2020). 

1.3.2 Cellular Automata–Markov chain analysis 

As the population grows, so does the need for land. As the demand for land increases, 

it eventually increases in urban (Kumar and Agrawal 2023). This further increases 

urban areas on LULC, causing a disturbance in the ecosystem and affecting 

sustainability (Aburas et al. 2018). Thus, the Cellular Automata (CA)–Markov chain 

model is used to understand the factors affecting the spatio-temporal distribution of 

LULC and to predict future LULC changes. It is one of the most widely used models 

to predict LULC change (Ozturk 2015). This model was created using Idrisi TerrSet’s 

Land Change Modeller (LCM). To forecast the change in LULC, this hybrid model 

combines the CA with the Markov chain model (Aburas et al. 2018). As the Markov 

chain model is stochastic, it predicts one cell transformation to another, i.e., the 

transition probability of the cell. However, the disadvantage of the Markov chain model 

is that it does not consider the effect of the neighbouring cells over the other. Thus, it 

lacks spatial modelling capability (Ozturk 2015). CA model considers only the 

neighbouring cell of interest to estimate the future. Thus, both models combined to 

make the CA–Markov model to analyse the spatio-temporal changes in the land cover. 

It takes two time periods of LULC (i.e., earlier and later dates) as the input to analyse 

the change in trend. This software aids in analysing and developing models in the event 

of stable land cover as opposed to a rapidly changing environment. LCM facilitates the 

comparison of LULC categories and the net change observed by every class and the 
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contributor to the net change observed by every other LULC category (Hamad et al. 

2018a). Predicting LULC transition has been used in several applications, including 

environmental planning by modelling rural development and urban growth, identifying 

conservation target areas and establishing alternate conservation strategies, analysing 

the dynamics of changing agriculture, and simulating rangeland dynamics under 

various climate change scenarios (Halmy et al. 2015a). 

1.4 FLOODS 

1.4.1 Impact of Flood 

Floods are a common natural disaster that has a massive influence on natural and human 

ecosystems all over the globe. It results from unfavourable climatic, hydrological, and 

physical factors. At the lower magnitudes, it is advantageous to ecosystems in several 

ways, such as providing water and nutrients to riparian corridors, removing 

contaminants from floodplain zones, recharging the groundwater table, and improving 

soil fertility (Abijith et al. 2020; Kraus et al. 2019; Lyubimova et al. 2016; Mahato et 

al. 2021; Zhang et al. 2017). When the flood tolerance limit is surpassed, it will create 

colossal damage to lives, agricultural activities, residential areas, properties, highways, 

and natural habitats (George et al. 2022; Pradhan and Youssef 2011). Because of the 

large amounts of property damage and economic loss associated with flooding, flood is 

classified as a major natural hazard (Papaioannou et al. 2015). Floods cause tens of 

thousands of deaths and millions of dollars in damage to the economy each year (Aerts 

et al. 2018; Pham et al. 2021). Over the last two decades, the frequency of floods has 

increased globally (Alfieri et al. 2017). Floods are typically classified into five kinds 

based on their location, cause, and influencing factors: urban drainage, riverine 

flooding, ground failures, fluctuating lake levels, and coastal flooding and erosion 

(Karamouz and Zahmatkesh 2016; Wright 2008). According to several studies, floods 

affect roughly 200 million people worldwide yearly (Bui et al. 2019; Towfiqul Islam et 

al. 2021). Between 1995 and 2015, the United Nations Office for Disaster Risk 

Reduction (UNDRR) stated that 150,061 flood occurrences occurred globally, 

accounting for 11.1% of global damage (Chakrabortty et al. 2022). Flood-induced 

hazards are likely to increase as the processes in the hydrological cycle get altered 

because of climate change leading to the risk to lives and properties around the globe. 
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Moreover, owing to the change in climate, increase in population, and unsustainable 

land use development, it is expected that the flood occurrence rates and severity may 

increase by 2050, potentially causing a massive loss of about ≈1 trillion USD 

(Alexander et al. 2019; Ali et al. 2019; Bubeck and Thieken 2018; Koc and Işık 2021; 

Tehrany et al. 2019). The increased urbanization causes the surface to be sealed, 

resulting in less water seepage into the subsurface. Furthermore, the construction of 

dykes leads to the loss of natural storage by blocking off the river from the floodplain, 

putting strain on the ecosystem and perhaps leading to a catastrophe and deterioration 

(Abijith et al. 2020). The deterioration of the environment is the reduction of its 

resources, such as air, water, and soil, as well as the destruction of ecosystems, habitats, 

and natural balance (Parthasarathy et al. 2022). Landslides and flash floods are difficult 

to anticipate and manage, but well-planned mitigation measures may greatly minimize 

the danger to lives and property (Pal et al. 2018). Natural catastrophes are becoming 

more frequent and intense on the earth's surface, causing significant economic damage 

to property and services (Mohanty et al. 2019). 

1.4.2 Floods in Indian Scenario 

Floods are the most common among all other natural calamities in India. Over 40 

million hectares of land are at risk of flooding in one-eighth of the country's 

geographical region (Chowdhuri et al. 2020). India has several perennial and non-

perennial rivers, and its climate is impacted by monsoons, despite being a subtropical 

country (Abijith and Saravanan 2022; Chakrabortty et al. 2022; Kumar and 

Bhattacharjya 2020). The seasonal and temporal variation in the rainfall patterns causes 

floods during the monsoon seasons (Rakesh Kumar et al. 2005). Furthermore, siltation 

on riverbeds, inadequate capacity on riverbanks to sustain large flows, changes in the 

river's course, dam failure, inadequate drainage in flood-prone locations, and glacial 

outbursts are all sensitive elements contribute to flood occurrence (Witzany et al. 2008). 

Due to its monsoonal rainfall variance, large sediment flow, and other factors, India 

ranks second in floods, only after Bangladesh (Sarkar and Mondal 2020). According to 

the World Resources Institute (WRI), India tops the list (Figure 1.2), with 4.84 million 

people affected by river floods yearly (Luo et al. 2015). Due to their geomorphological 

positions and climatic circumstances, several states, including Assam, West Bengal, 
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Uttar Pradesh, Bihar, and Kerala, are regularly flooded (Bhattacharjee and Behera 

2017). 

 

Figure 1.2 Annual expected population affected by floods 

(Source: WRI India) 

According to the Flood Damage Statistics (2018), 347,581 crore rupees of crops, 

houses, and public utilities were damaged by floods and extreme rainfall in India from 

1953 to 2016. Eastern and Western Ghats in South India are among the most affected 

regions due to floods during the Northeast and Southwest monsoon periods. In August 

2018 flood that occurred in the Indian state of Kerala took away the lives of 504 people, 

and almost 23 million people got affected due to the flood. Subsequently, during the 

monsoon seasons of 2019, 2020, and 2021, the state has also seen significant flooding. 

Hence, there is a need for Flood Susceptibility Modelling (FSM) to understand the areas 

that are inundated frequently during above-average rainfall. To make flood 

management easier, there is a significant necessity for regular flood power estimations 

(Abijith et al. 2021; George et al. 2021; Madsen et al. 2014). Most researchers 

emphasize peak discharge in analysing floods' effectiveness, frequency, and amplitude 

(Abrishamchi et al. 2011; Cameron et al. 2000; Das 2019; Elias et al. 2022). However, 

multiple elements such as flow competency, stream power, sequence of events, channel 
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geometry, and others influence the geomorphic efficacy of an intense flood (Flax et al. 

2002; Tang et al. 2021a). The consideration of these factors helps in better prediction 

of susceptibilities and consequently reduces the fatalities and major economic losses. 

1.5 WATER QUALITY ANALYSIS 

1.5.1 Importance of Water  

Water is essential in many facets of life, and its quality is deteriorating due to increased 

pollution caused by urbanization, industrialization, and population growth. It is 

necessary to identify water constituents causing pollution to preserve the water quality. 

Water quality is a key indicator of environmental health since even small changes in 

their properties may have far-reaching consequences for the ecosystem (Bhuyan et al. 

2020). More than 40% of the world's population lives near lakes, rivers, or coastal 

waters, which is still increasing. Continuous water quality monitoring may provide light 

on the human-induced pressures and stresses on an ecosystem. Assessing the change in 

water quality is often time-consuming and requires on-field measurements, laboratory 

and temporal statistical analysis. The projected effect of water shortage and water 

quality would be the major concern in this twenty-first century, especially in developing 

countries (Krishnaraj and Honnasiddaiah 2022; UN WWDR 2022). The International 

Water Management Institute (IWMI 2014) reports that more than a quarter of the 

world's population does not have access to fresh water. Therefore, over 3 million 

people, primarily children, suffer yearly from polluted water. Providing people in 

underdeveloped countries with easy access to freshwater improves their literacy, 

equality, and health; it also helps them minimize hunger and boosts their economies 

(Hope 2011). In-situ ways of water monitoring are limited, and implementation is 

resource-intensive, requiring time, labour, and funds (Andres et al. 2018). Remote 

Sensing techniques overcome these obstacles due to their synoptic coverage, allowing 

the monitoring of waterbodies with high temporal accuracy (Antonini et al. 2017; Codd 

et al. 2005; Gholizadeh et al. 2016; Krishnaraj and Honnasiddaiah 2022). 

Anthropogenic causes such as increased water consumption and climate change will 

exacerbate water shortages, jeopardizing the accomplishment of the majority of the 

Millennium Development Goals (Ahmed et al. 2020; Schewe et al. 2014). 
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Cyanobacterial Harmful Algal Blooms (cHABs) have a severe social and ecological 

effect (Carmichael and Boyer 2016; Falconer 1999).  

1.5.2 Influencing factors of water quality 

The optical property is analysed to detect the change in the lake's water quality pattern. 

The biophysical property such as Chl-a, an indicator of phytoplankton biomass, is 

commonly used to assess the quality of the wetlands. Knowledge about these enables 

us to improve the monitoring of these unique areas, which are otherwise non-accessible 

using site visits. This can be studied by analysing the optical properties of the water. 

Morel and Prieur (1977) classified waterbodies into two cases. Case 1 waters have 

optical qualities predominantly determined by phytoplankton and related Coloured 

Dissolved Organic Matter (CDOM) and detritus by-products. Case 2 waters are those 

whose optical properties are considerably impacted by other constituents such as 

mineral particles, CDOM, or microbubbles, the quantities of which do not fluctuate 

with the abundance of phytoplankton. Two significant factors exist in the irradiance 

over water as measured by multispectral imagery. They are (i) the water itself, owing 

to sunlight's interaction with optically active components such as clear water, CDOM, 

Non-Algal Particles (NAP), phytoplankton, and suspended sediments; and (ii) the 

atmosphere, which is mainly composed of molecules and gases; it thus accounts for 

roughly ninety percentage of the signal (IOCCG 2010; Pereira-Sandoval et al. 2019). 

The duration of the water spent in any linked network segment is known as the 

Hydrological Residence Time (HRT). The residency time of a body of water increases 

with the duration it spends in a particular system (such as a river, lake, pond, etc.). 

Numerous hydrological domains, such as water quality analysis, stratification, wetland 

ecology, age dating, water mixing and circulation, microbiological pollutants, etc., have 

significant applications for HRT (Avtar et al. 2020; Leray et al. 2016; Zwart et al. 2017). 

Chlorophyll-a (Chl-a), for example, was linked to the HRT, as León et al. (2016) 

reported. Stumpner et al. (2020) found that Chl-a concentrations are highest in areas 

with long HRT (15-60 days) and lowest in areas with short HRT (1-14 days). 

1.6 ROLE OF GEOSPATIAL TECHNOLOGY 

Geospatial technology is a significant finding of humanity that has evolved since 

prehistoric times. The main types of geospatial technology involve remote sensing, 



11 

 

Geographical Information System (GIS), and Global Positioning System (GPS). 

Geospatial technology benefits the user by offering greater synoptic coverage of the 

area of interest and remains a viable technique for evaluating multi-temporal satellite 

data to estimate periodical changes (Saravanan et al. 2015). Remote Sensing 

applications are critical in monitoring hazard-related activities in real-time. Because of 

its very long spectral bands and high spatial resolutions, remote sensing imagery may 

detect even minor changes in land use. GIS is a computer system that captures, stores, 

queries, analyses, and displays geographic data for inventory and decision-making 

purposes. Using GIS, all hazard-related data may be converted into visual information 

as a map (Thomas et al. 2007). These satellite imageries have attracted much interest 

in mapping the vulnerabilities due to the eagle-eye perspective in conjunction with a 

multispectral and temporal resolution (Sudha Rani et al. 2015). With remote sensing 

and GIS, better forecasting of disaster-prone areas and security measures may be 

accomplished (Lawal et al. 2011). The primary goal of GIS is to make it helpful to the 

general public so that their participation may improve the requirements of investors. 

This is referred to as Participatory GIS (PGIS). Including commercial and open-source 

software in this technology enables the user to access a specific degree of programming 

interface (Jankowski 2009). 

1.6.1 Google Earth Engine 

Google Earth Engine (GEE) is a multi-petabyte geospatial data collection co-located 

with high-performance and intrinsically parallel computation service. In recent years, 

it has been in the remote sensing big data processing spotlight. GEE is an Interactive 

Development Environment (IDE) to enable rapid visualization and analysis controlled 

through an Application Program Interface (API) accessed via the internet. It contains 

large publicly available satellite and aerial imagery datasets in both optical and non-

optical wavelengths. It comprises the most freely available remote sensing imagery of 

the entire Landsat archives, Sentinel-1 and Sentinel-2 (Gorelick et al. 2017). The major 

advantage of GEE is that it provides large data sets, including land cover, environmental 

variables, weather, and climate forecast, which is already pre-processed to access the 

data. Besides, the raw data is also pre-processed, cloud removed, and mosaicked in the 

GEE to reduce computational time. The client libraries handle the Earth engine code 
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editor via JavaScript and Python (Gomes et al. 2020). GEE utilizes the parallel 

processing technique using MapReduce architecture. It is a method to process a large 

amount of data into several smaller chunks in several machines. Thus, the data 

processed as several chunks were recompiled for the result. As the data can be accessed 

through the API, it is less labour-intensive and requires less storage space to save the 

data. It possesses simple yet effective architecture which does not require high-power 

computing machines (Noi Phan et al. 2020). Thus, the use of GEE has significantly 

increased within the remote sensing community (Tamiminia et al. 2020). 

1.6.2 Application in LULC 

Remote Sensing is an excellent tool for regularly monitoring and assessing the LULC 

change in the natural ecosystem and landforms' evolution by analysing the 

geomorphological changes. Likewise, it has played a major role in studying geography, 

geology, and the environment for researchers and scientists (Ghosh et al. 2017). It is 

also more cost-effective and less time-consuming than the traditional method. It has 

very long spectral bands, and good spatial resolution helps distinguish a significant 

change in land cover (Abijith et al. 2020). One of the most extensively utilized sources 

for analysis is satellite images. In 1972, Earth Resources Technology Satellite (ERTS)-

1 was launched and renamed “Landsat” in 1975. Landsat has launched nine series of 

satellites and contains data contiguity for almost 50 years. As of now, Landsat-7, 8, and 

9 are functional. This series of satellites has become one of the important long-term 

freely available data for the civilian purpose and has been used widely in fields like 

coastal monitoring (Parthasarathy et al. 2022), LULC (Shi and Yang 2015), vegetation 

phenology (Senf et al. 2017), and hydrology (Abijith et al. 2020). Thus, Landsat offers 

a deeper understanding of LULC changes for better decision-making and resource 

management. Several methods for detecting change using remotely sensed data have 

been established during the last three decades (Hua et al. 2014; Jat et al. 2017; Rienow 

and Goetzke 2015; Saxena and Jat 2020; Serasinghe Pathiranage et al. 2018). 

1.6.3 Application in Flood Analysis 

Flood inundation and spatially distributed hydrological processes in urban 

environments can be difficult to model using hydraulic and hydrological-based models, 

typically data-scarce and ungauged, especially in highly varied urbanized areas (Darabi 
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et al. 2022). Remote Sensing and GIS are excellent tools for computing massive 

amounts of geographical data for spatial management and analysis (Yang et al. 2020; 

Zhang et al. 2019b; a). New flood prediction models have been developed due to recent 

advances in GIS and remote sensing techniques. Its application is not only limited to 

flood analysis but also helps analyse landslides, forest fires, and cyclones (Pal et al. 

2017). The Synthetic Aperture Radar (SAR) in remote sensing is a primary tool for 

real-time assessment of flooded areas as it can penetrate the cloud, haze, and rain 

(Jacinth Jennifer et al. 2020). In contrast, traditional ground and aerial surveys are time-

consuming and require skilled labourers for flood mapping. On the other hand, ground 

surveys may also pose a great threat to human life during extreme events (Rahman and 

Thakur 2018). Besides its penetration capacity, the most important advantage of 

employing SAR data is that land and water contrast can be easily identified (Dewan et 

al. 2006). 

1.6.4 Remote Sensing of water quality 

Remote Sensing observations help us better understand ecological processes, severe 

weather events, and natural hazards. This could be because the technology is getting 

better, and therefore more data becomes accessible, which can enhance research and 

environmental monitoring products systematically. The remote sensing approach 

identifies differences in the spectral characteristics backscattered from water and also 

aids in relating observed variations to a water quality parameter using empirical or 

analytical models. It has been utilized to reflect the spatial pattern and temporal changes 

in water quality components due to spatial and temporal coverage benefits. Evaluating 

the quality of waterbodies in inaccessible regions is one of the benefits of remote 

sensing (Ansper and Alikas 2019). Satellite remote sensing is a key tool to analyse 

wetland changes by continuous monitoring of phytoplankton and cyanobacterial 

pigments such as Chl-a and phycocyanin (PC), SPM, CDOM, and the diffuse 

attenuation coefficient (Kd) (Bhuyan et al. 2020; Caballero et al. 2020, 2022; 

Vanhellemont and Ruddick 2016b). The optimum wavelength for sensing a water 

quality parameter is determined by the tested material, its concentration, and the 

sensor's features (Yang et al. 2022). Various space-borne sensors at different 

wavelengths can monitor water quality due to high-frequency data collection and 
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synoptic coverage. SAR is useful in estimating surface temperature and water salinity 

in the microwave region. However, water quality retrieval has been effectively and 

extensively employed in the visible and infrared domains of remotely sensed data 

(Zhang et al. 2003). Optical satellite data can be used to manage water resources, 

especially during and after a natural disaster, by measuring the influence on the 

environment and comprehending the processes that could enable sustainable 

development in data-scarce areas. The presence of certain substances in surface water 

can considerably alter the features backscattering of surface water. 

1.7 SCOPE OF THE WORK 

Wetlands face issues such as siltation, pollution, cultural eutrophication, choking of 

open waterways by abundant hydrophytic vegetation, encroachment of waterways and 

basins for commercial agriculture, and deterioration caused by filling, dredging, and 

draining. This is despite the fact that wetlands provide a variety of ecological and 

socioeconomic services that benefit humanity. As a result, wetland protection is critical. 

Current data on the upland areas around wetlands is crucial because land use activities 

on uplands result in the loss of wetland functions, commodities, and services. This 

research has explored the efficiency of different Machine Learning (ML) algorithms in 

classifying LULC and FSM applications. The study area considered for the research is 

Vembanad Lake System (VLS) in Kerala, India. Major cities in the state of Kerala 

border the wetland of VLS. Hence, change in the LULC is predicted to analyse the 

urbanization trends through CA-Markov analysis with the help of various driving 

variables. The region has also experienced repeated flooding in the last five years, 

making it more vulnerable to flooding. Thus, the FSM is formulated using eighteen 

variables to understand the region prone to flooding. In addition, the number of regions 

submerged in various land use classes has also been identified to understand the amount 

of flood inundation in the region. The optical characteristic of the lake was studied from 

2016 to 2021 using Sentinel-2 satellite images. This aids in investigating changes in the 

optical water quality parameters such as SPM, turbidity, Kd, and Chl-a in the lake during 

floods and changes during the COVID-19 lockdowns. 

1.8 ORGANIZATION OF THE THESIS 

The structure of this thesis is comprised of seven chapters. 
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Chapter 1: This chapter provides an introduction to the topic of wetlands and a brief 

overview of LULC, floods, water quality analysis, and remote sensing applications 

related to these analyses. The chapter also delves into the scope of work. 

Chapter 2: This chapter extensively deals with the literature review to cover the entire 

research domain. A bibliographic analysis of the relevant past research on this topic 

and the key texts underpinning this research are discussed. 

Chapter 3: This chapter provides supporting information about the study area, such as 

its location, geographical extent, physical characteristics, and history of disastrous 

floods. 

Chapter 4: This chapter provides an in-depth description of the methodology and data 

used for LULC analysis and prediction, followed by its outcomes. 

Chapter 5: This chapter examines the methodology and outcomes of flood delineation 

from previously inundated regions, possible future flood inundation regions, and Flood 

Susceptibility Modelling. 

Chapter 6: This chapter examines the methodology and results of the optical 

characteristics of water to determine Spatio-temporal variations in water quality. 

Chapter 7: The summary of the findings and conclusions drawn from the study are 

presented in this last chapter. It also comprises the limitations of the study and future 

scope. 
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CHAPTER 2 

2 LITERATURE REVIEW 

2.1 GENERAL 

Detecting a water body beneath vegetation is a significant challenge in remote sensing 

of wetlands. For the ability to map flooded vegetation, several satellite systems have 

been examined. Satellite-based optical and radar land surface imagery are two common 

data sources with distinct strengths and weaknesses. Numerous inundation 

classification procedures identify open waterbodies but ignore flooded vegetation 

because the vegetation cover tends to dominate the spectral signal in optical imagery 

(Soti et al. 2009). Optical imagery has been used to map flood-affected vegetation; the 

algorithms heavily rely on in-situ data and are often calibrated using single occurrences 

in time (Ordoyne and Friedl 2008). Radar images, on the other hand, are preferred since 

they can see through cloud cover. Typically, radar systems assess reflectance at a 

particular wavelength, and each wavelength has a special success rate for identifying 

floods under various kinds of vegetation (Whitcomb et al. 2009). Using the double-

bounce phenomenon, longer wavelengths have been utilized to identify flooded forests 

since they can penetrate canopies more deeply (Hess et al. 2003). Thus, development 

in earth observation technology leads many studies using remote sensing to assess 

wetland regions (Farda et al. 2016; Ji et al. 2015; Ordoyne and Friedl 2008; Rebelo et 

al. 2009; Soti et al. 2009; Di Vittorio and Georgakakos 2018). 

2.2 LULC ANALYSIS 

Significant changes have occurred in the LULC of India during the last 140 years, such 

as the decline in forest cover, change in farmland, and rise in urbanization. According 

to UN predictions, major cities will encompass 60% of the world's rural communities 

by 2050 (Parvinnezhad et al. 2020) due to inadequate planning and development, 

resulting in unplanned urban expansion. The intricacies of future agricultural output, 

accompanying LULC change, and environmental effects may be investigated using 

spatial modelling (Abijith et al. 2022). Anthropogenic and environmental processes 

relating to temporal dynamics and potential changes in the land cover must be properly 

understood. The development of remote sensing has resulted in various land use studies, 
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such as the evolution of LULC in a global context and assessing the transition of diverse 

land types (Abijith and Saravanan 2022). 

A case study was conducted by Rebelo et al. (2009) in Muthurajawela Marsh in Sri 

Lanka and Lake Chilwa in Malawi, South Africa. A decadal analysis of the shift in land 

use was carried out and disclosed that wetland loss and degradation occurred due to 

land use and population changes. The specific reasons for wetland conversion may be 

determined via remote sensing and modelling of change in land use; in this case, the 

growth of settlements was brought on by the abandonment of paddy fields and the 

eradication of coastal vegetation. The research results in South Africa, especially using 

wetland inventory data for planning and management reasons, have shown the 

relationship between wetland conditions and human livelihoods. To gather information 

on the distribution, size, and condition of wetlands worldwide, the research addressed 

the results of wetland management. 

For residential and other anthropogenic uses, urban development is transforming and 

replacing many natural land covers (Kleemann et al. 2017; Rawat and Kumar 2015; 

Wu et al. 2006). LULCC is key to modifying the global environment, which 

significantly influences diversity, biological cycles, and ecosystem dynamics (Halmy 

et al. 2015a; Schwalm et al. 2017). These modifications immediately degrade the 

landscape and impact the land surface, resulting in greenhouse gas emissions, 

biodiversity loss, degraded soil resources, and a shift in the global climate system 

(Hamad et al. 2018b; a; Liu et al. 2020b). To model future LULCC in this situation, it 

is essential to pinpoint the causes of these changes (Giri et al. 2003; Ruben et al. 2020).  

2.2.1 Bibliographic analysis on LULCs 

The Web of Science (WoS) database search is used for bibliographic analysis, and the 

keyword “LULC Change” is used to find the number of journals published in the 

database pertaining to the study of the LULC change. According to the database, a total 

of 188 countries have published a total of 35,101 articles as of January 2023. Figure 2.1 

shows that the number of articles published each year increases steadily, showing more 

studies being carried out to study the change in LULC in recent years. In 2021, a 

maximum of 3924 articles has been published, accounting for 11.17% of the total 

articles published. 
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Figure 2.2 depicts the number of articles published in the first 25 countries in WoS. The 

United States published 10,790 articles, accounting for 30.74% of all published articles. 

They were followed by China, Germany, England, Canada, and so forth. India ranks 

eighth with 1617 published articles, accounting for 4.6% of the total articles in the 

LULC change in the WoS database. 

 

Figure 2.1 Number of articles published each year on the keyword LULCC 

 

Figure 2.2 Number of articles from countries using the keywords LULCC 

2.2.2 Review on LULCC 

LULCC modelling is crucial for understanding the LULCC process and its alterations 

in urbanized regions in the future (Ruben et al. 2020). It was found that GEE aids in the 
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study of LULC shift in a cost-effective and time-consuming manner, and it is 

commonly used in the literature (Agarwal and Nagendra 2019; Gomes et al. 2020; Noi 

Phan et al. 2020; Sidhu et al. 2018; Tamiminia et al. 2020; Tassi and Vizzari 2020; 

Xing et al. 2021). Several models, including analytical equation-based, statistical, 

evolutionary, cellular, Markov, hybrid, expert, and multi-agent models, are used for 

LULCC analysis and predictions. These models concentrate on analysing the causes 

and effects of LULCC (Aitkenhead and Aalders 2009; Hyandye et al. 2015; Shamsi 

2010; Singh et al. 2015; Stefanov et al. 2001; Subedi et al. 2013; Verburg et al. 2004; 

Yang et al. 2012). Various researchers used CA – Markov chain model to determine 

the future land cover change and their land-use patterns for decision-making (Aburas 

et al. 2018; Ansari and Golabi 2019; Bose and Chowdhury 2020; Faichia et al. 2020; 

Fu et al. 2018; Ghosh et al. 2017; Gidey et al. 2017; Halmy et al. 2015b; Hamad et al. 

2018a; Leta et al. 2021; Ozturk 2015). Table 2.1 summarizes some of the findings of 

the past study on the LULC and its future predictions. The classifier package in GEE 

allows the use of four ML algorithms, i.e. RF, SVM, CART and NB. The studies also 

shows that the ML algorithms RF, CART and SVM performed well when compared to 

the other models. They also need fewer input compared to the other models (Darem et 

al. 2023; Pan et al. 2022). 
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Table 2.1 Review of literature on LULCC 

Author(s) Study area Data used Model used for 

classification 

Model used for 

forecasting 

LULC 

Key Conclusion 

Pijanowski 

et al. (2002) 

Michigan’s 

Grand Traverse 

Bay Watershed. 

Michigan Resource 

Information System, 

agricultural density, 

distance to road, 

lakeshore distance, 

county road distance, 

river distance, urban 

distance, quality views, 

and residential street 

distance. 

- 

Land 

Transformative 

model with ANN 

Each contribution of the predictor 

variable was investigated and found 

to differ across regional scales. 

Quality views were the most 

powerful predictive variable at the 

lowest scales. They also analysed 

multi-scale implications of land use 

change, demonstrating the relative 

influences of site and situation 

factors at various scales. 

Rienow and 

Goetzke 

(2015) 

Federal state of 

North Rhine-

Westphalia. 

LULC, elevation, slope, 

socio-economic 

variables, population 

density, distance related 

SVM and 

Binomial 

Logistic 

CA-based 

SLEUTH model 

Compared to the BLR model, the 

SVM technique requires fewer input 

features and works robust. Only 

when the BLR model is connected 
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variables such as 

distance from airport, 

highway, city, and river. 

Regression 

(BLR) 

can the effective direction of those 

chosen driving factors be 

understood. 

Jat et al. 

(2017) 

Ajmer city of 

Rajasthan, 

India. 

Survey Of India (SOI) 

Toposheet, GeoEye. 

Maximum 

Likelihood 

Classifier 

method 

CA-based 

SLEUTH model 

The model's findings also suggested 

that SLEUTH cannot account for 

small unit-size development, such 

as the fragmented growth seen in 

rural regions that are typical in 

developing nations. 

Ansari and 

Golabi 

(2019) 

Meighan 

Wetland in 

Iran. 

Landsat images, 

Toposheet, elevation, 

and slope. 

Maximum 

Likelihood 

Classifier 

method 

LCM in Idrisi 

TerrSet 

The total model effectiveness in 

predicting future LULC images was 

nearly 80%. Due to the accessibility, 

most land transformations occurred 

due to human interventions. 

Bose and 

Chowdhury 

(2020) 

Siliguri in West 

Bengal, India. 

Landsat images, 

elevation, distance to 

road, stream, school, 

and railways. 

Maximum 

Likelihood 

Classifier 

method 

Multi-layer 

Perceptron (MLP) 

using LCM in 

Idrisi TerrSet 

The Markov chain model simulates 

potential LULC scenarios. 

However, it occasionally falls short 

in terms of anticipating the spatial 
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manifest. It is also crucial to note 

that urban growth is dynamic, 

making it extremely challenging to 

predict the future precisely. 

Liu et al. 

(2020a) 

Gannan 

Prefecture in 

Northeastern 

Tibetan 

Plateau, China. 

Landsat images, 

elevation, slope, aspect, 

population density, 

GDP, temperature, 

annual rainfall, 

vegetation, and soil 

type. 

RF and CART 

algorithm 

Land use transfer 

matrix 

The performance of RF and CART 

are equally good. Due to the fragile 

biological environment, lack of 

investment, and lack of 

transportation, factor detection 

revealed that natural causes had a 

bigger impact on LULC changes in 

Gannan Prefecture than 

anthropogenic factors.  

Silva et al. 

(2020) 

Taperoa River 

basin in 

Northeastern 

Brazil. 

Landsat images, 

elevation, slope, 

economic indicators, 

distance to roads, urban 

centre, and river 

Maxver 

classification 

MLP using LCM 

in Idrisi TerrSet 

After 10,000 iterations, the MLP 

neural network used for the dynamic 

modelling of the land cover 

provided extremely good results 

with good accuracy. 
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Tassi and 

Vizzari 

(2020) 

Trasimeno 

Lake, in 

Umbria, 

Central Italy. 

Landsat, Sentinel-2, 

PlanetScope satellite 

images, 

Simple Non-

Iterative 

Clustering 

algorithm, RF, 

and SVM 

classifier 

 Developed and tested an Object-

Oriented classification strategy that 

combines the Simple Non-Iterative 

Clustering algorithm to find spatial 

clusters, the Gray-Level Co-

occurrence Matrix (GLCM) to 

produce cluster textural indices, and 

two ML algorithms, RF and SVM, 

to do the final classification. 

Abijith and 

Saravanan 

(2021) 

Northern Tamil 

Nadu coast, 

India 

Landsat images, 

elevation, slope, and 

built-up maps 

RF algorithm CA-Markov 

analysis using 

LCM in Idrisi 

TerrSet 

The magnitude and direction of 

possible change on the spatial and 

quantitative effects of urban sprawl 

are the primary components of the 

model simulation. Rapid 

industrialization and transition are 

important determinants of how land 

use will develop. Climate factors 
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indirectly influence changes in 

LULC. 
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2.3 FLOOD ANALYSIS 

Remote Sensing and GIS development in the past few decades has helped researchers 

gain much attention to mapping the vulnerabilities. They are an excellent tool for 

computing detailed geographical data for spatial management and analysis (Yang et al. 

2020; Zhang et al. 2019b; a). The continuous development of computational models 

and the ease with which they can be integrated with remote sensing and GIS techniques 

has improved the forecasting of extreme flood scenarios and the model's dependability 

at the time of action (Costache et al. 2021). Longer execution times and a high 

processing load are two drawbacks of using ML algorithms (Aydin and Iban 2023). As 

the ML models are robust, these drawbacks may be eliminated by lowering the number 

of independent elements (Jacinth Jennifer and Saravanan 2022). Recursive Feature 

Elimination (RFE) technique helps select a subset of important characteristics from a 

larger dataset based on pre-defined criteria like classification performance and 

eliminating inconsistent data (Gholami et al. 2012), which is very important in ML 

applications. A better feature selection method should always deliver advantages such 

as better data understanding, a better classifier model, improved generalization, and the 

detection of irrelevant features. It should also aid in comprehending the relationship 

between features and target variables, lowering the computational requirements for 

solving a specific problem, efficient dimensionality reduction in high-dimensional 

datasets where the number of data points is less than the number of features, and 

improving the predictor performance used to complete a specific task in terms of cost 

and time (Chen and Jeong 2007).  

2.3.1 Bibliographic Analysis on Flood Modelling 

The WoS database search is used for bibliographic analysis, and the keyword “Flood 

Susceptibility” is used to find the number of journals published in the database 

pertaining to the study of flood modelling. According to the database, 117 countries 

have published 1711 articles till January 2023. The publications started increasing 

exponentially after 2019 and recorded the maximum number of publications in 2021, 

having 260 journals (Figure 2.3). In particular, the keywords “Flood Susceptibility” and 

“Machine Learning” have only 253 articles out of 1711 regarding flood susceptibility. 

The flood susceptibility using ML emerged after 2018 and started increasing rapidly, 



27 

 

with a maximum of 84 journals published in 2021, accounting for 33.2% of the journals 

published on the said topic (Figure 2.4). 

 

Figure 2.3 Number of articles published each year on the keyword Flood 

Susceptibility 

 

Figure 2.4 Number of articles published each year on the keywords Flood 

Susceptibility and Machine Learning 
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Figure 2.5 Number of articles from countries using the keyword Flood 

Susceptibility 

 

Figure 2.6 Number of articles from countries using the keywords Flood 

Susceptibility and Machine Learning 

Figure 2.5 shows that the USA, China, and India published 320, 253, and 214 articles, 

respectively, leading the lists of articles published on flood susceptibility. Iran, 

Vietnam, and India have published a maximum of 91, 72, and 69 articles regarding 

flood susceptibility using ML (Figure 2.6). According to the analysis, many flood-

related studies have been published in India. The reason is due to numerous events of 
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floods affecting India greatly. As a result, research into the nature and magnitude of 

floods has increased in the near past (Ward et al. 2013; Winsemius et al. 2013). 

2.3.2 Review on Flood Susceptibility 

The modelling approaches can be broadly classified into four basic groups based on the 

available research on flood susceptibility models. They are (i) hydrological models, 

including Hydrologic Engineering Centre-River Analysis System (HEC-RAS) (Jha and 

Afreen 2020), Hydrologic Engineering Centre’s Hydrologic Modelling System (HEC-

HMS) (Romali et al. 2018; Sarchani et al. 2021), Soil and Water Assessment Tool 

(SWAT) (Sufiyan and Magaji 2019; Yu et al. 2018), HYDROTEL (Aissia et al. 2012), 

HSAMI (Gbambie et al. 2017), Hydrologiska Byråns Vattenbalansavdelning model 

(HBV-light) (Sarchani et al. 2021). (ii) data-driven and statistical approaches such as 

Monte Carlo (Garrote et al. 2021), Evident Belief Function (EBF) (Chowdhuri et al. 

2020), Frequency Ratio (FR) (Sarkar and Mondal 2020), Weight of Evidence (WoE) 

(Rahmati et al. 2015a). (iii) Multi-criteria decision-making models such as Technique 

for Order Preference by Similarity to Ideal Solution (TOPSIS) (Rafiei-Sardooi et al. 

2021), Vlsekriterijumska Optimizacija I Kompromisno Resenje (VIKOR) (Malekian 

and Azarnivand 2016), Simple Additive Weighting (SAW) (Nawindah 2017), 

Analytical Hierarchical Process (AHP) (Patrikaki et al. 2018; Rahmati et al. 2015b), 

Analytical Network Process (Yariyan et al. 2020), Fuzzy-AHP (Ekmekcioğlu et al. 

2021). (iv) ML approaches such as Artificial Neural Network (ANN) (Chakrabortty et 

al. 2022; Kia et al. 2012), Adaptive Boosting (AdaBoost) (Mahdizadeh Gharakhanlou 

and Perez 2023), Decision Trees (Sachdeva and Kumar 2022), Classification And 

Regression Trees (CART) (Rahman et al. 2021), Random Forest (RF) (Tang et al. 

2021a), Logistic Regression (LR) (Chowdhuri et al. 2020), boosted trees (Lee et al. 

2017), Support Vector Machine (SVM) (Saha et al. 2021; Towfiqul Islam et al. 2021), 

Naïve Bayes (NB) (Tang et al. 2021b), Multi-Layer Perceptron Neural Network 

(MLPNN) (Darabi et al. 2022), Extreme Gradient Boosting (XGBoost) (Nguyen et al. 

2021), Gradient Boosting Machines (GBM) (Felix and Sasipraba 2019), and Deep 

Learning Neural Network (DLNN) (Li and Hong 2023; Panahi et al. 2021). ML models 

are rapidly being created and employed in flood susceptibility because of their high 

performance, accuracy, and predictive potential, and also to overcome the challenges 
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faced in mountainous regions (Hasan et al. 2023; Shahabi et al. 2021). ML techniques 

are gaining popularity because they can forecast flood variation from past flood 

information, eliminating the requirement for sophisticated mathematical formulations 

of physical processes and basin behaviour (Mosavi et al. 2018). It is less expensive to 

compute and less complicated than physical and traditional models (Jacinth Jennifer 

and Saravanan 2022; Jose et al. 2022). Another effective method for measuring a 

specific region's flood susceptibility is combining many algorithms to generate 

ensemble models (Abedi et al. 2022). 

In recent years, ML algorithms have emerged as serious challengers to traditional 

statistical models in susceptibility analysis. Because of their capacity to extract 

correlations rapidly utilizing previous occurrences and topography, ML techniques in 

flood susceptibility assessment are becoming more popular. The functional link 

between the major factors may be crucial in predicting floods and other natural 

disasters. ML models have been investigated because they can detect flood-prone areas 

based on previous events without necessarily knowing the physical mechanisms that 

generate them. Table 2.2 summarizes some of the findings of past studies on flood 

susceptibility and the performance of various ML models in identifying likely flooding 

zones. The review of literatures shows that the ensemble based models such as RF, 

GBM, XGBoost and AdaBoost performs comparatively better than the other ML 

algorithms. 
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Table 2.2 Review of literature on Flood Susceptibility using Machine Learning 

Author(s) Study area Parameters ML model used Key Conclusion from the 

Literature 

Chen et al. 

(2020) 

Quannan 

County in 

Jiangxi 

Province, 

China 

Aspect, slope angle, 

curvature, STI, SPI, TWI, 

elevation, LULC, NDVI, 

distance to rivers, rainfall, 

soil, and lithology 

NB, Alternating Decision Tree 

(ADTree), and RF 

The RF model has been recognized 

as the best appropriate ensemble 

approach. The ADTree and NBTree 

models are essentially two base 

classifiers with little generalization. 

Their performance is strongly related 

to the characteristics of the initial 

datasets. 

Chowdhuri et 

al. (2020) 

Koiya river 

basin, India 

LULC, soil, rainfall, NDVI, 

distance to river, elevation, 

TWI, and SPI. 

EBF, LR, and ensemble of EBF 

and LR (EBF-LR) model 

The results demonstrate that the 

ensemble EBF-LR method is the 

best, with a 91.56% success rate for 

the flood susceptibility model and an 

88.20% prediction rate for the flood 

susceptibility map. 
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Abedi et al. 

(2021) 

Basca 

Chiojdului 

River Basin, 

Romania 

Aspect, LULC, soil, 

lithology, slope, TWI, TPI, 

profile curvature, 

convergence index, and 

SPI. 

CART, RF, Boosted Regression 

Tree (BRT), and XGBoost 

According to all models, the slope is 

the most crucial element influencing 

the likelihood of flash floods. The 

accuracy of all tree-based ensemble 

models was approximately the same, 

but the RF model gained out because 

it only needs a limited number of 

tuning hyperparameters, whereas 

other models, especially the 

XGBoost, need many more. 

Chakrabortty 

et al. (2021) 

Kangsabati 

River Basin, 

India 

Aspect, elevation, slope, 

plan curvature, profile 

curvature, TRI, TWI, SPI, 

distance to river, drainage 

density, distance to stream, 

rainfall, LULC, and 

geology 

ANN and DLNN Regions with lower altitudes and 

slopes are more prone to flash floods 

with shorter durations, and the 

distance to river appears to have a 

significant role in the spatial 

distribution of flooding. PSO 

displayed the best performance of 
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these three models, with an AUC 

value of 0.942. 

Costache et 

al. (2021) 

Izvorul 

Dorului, 

Romania 

Slope angle, aspect, 

convergence index, profile 

curvature, plan curvature, 

topographic position index 

(TPI), TWI, LULC, 

lithology, and soil map 

Fuzzy logic algorithm with the 

following four ML models: 

CART, DLNN, XGBoost, and 

NB. 

Lithology has a significant impact on 

the water runoff-infiltration process. 

Its value in predicting flash floods is 

larger than other predictors. The 

optimal model in terms of success 

rate is Fuzzy-XGBoost (AUC - 

0.886), whereas the optimal model in 

terms of prediction rate is Fuzzy-

DLNN (AUC - 0.84). 

Darabi et al. 

(2021) 

Amol City, 

Iran 

Elevation, slope, distance 

from river, distance from 

channel, Curve Number, 

and Precipitation. 

Standalone MLPNN, BRT, RF, 

Hybrid Multi-Boosting 

Multilayer Perceptron Neural 

Network (MultiB-MLPNN) 

This study combined the multi-

boosting method with the MLPNN 

model to develop a unique 

hybridized model (MultiB-MLPNN) 

for mapping urban flood 

susceptibility. MultiB-MLPNN 

outperformed RF and BRT. 
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Mirzaei et al. 

(2021) 

Talar 

watershed, 

Iran 

Elevation, slope, profile 

curvature, TWI, distance 

from rivers, NDVI, plan 

curvature, rainfall, LULC, 

SPI, and lithology 

XGBoost, Frequency Ratio (FR), 

RF, and Generalized Additive 

Model (GAM) 

This study compares the 

performance of the FR, RF, GAM, 

and XGBoost. The RF model and 

XGBoost perform the best, with 

Area Under Curve (AUC) of 0.985 

and 0.980, respectively. It was 

observed that GBM lacks a strong 

regulatory parameter and is 

susceptible to overfitting. 

Pham et al. 

(2021) 

Nghe An 

Province, 

Vietnam 

Slope, elevation, aspect, 

curvature, river density, 

distance from rivers, flow 

direction, geology, soil, and 

LULC 

Three ensemble models based on 

the Best First Decision Tree 

(BFT) are the Bagging (BBFT), 

Decorate (DBFT), and Random 

Subspace (RSS-BFT) ensemble 

learning 

techniques 

The ensemble BBFT, DBFT, and 

RSSBFT models outperformed the 

single BFT model regarding future 

flood likelihood. The efficacy of the 

ensemble modelling approach was 

proved when the single BFT model's 

high-level training performance 

declined significantly in the 

validation phase to levels 
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substantially lower than those of the 

three ensemble models. Although 

DBFT is not as popular as Bagging 

and RSS, this ensemble learning 

technique demonstrated its efficacy 

for predicting flash flood 

susceptibility.  

Saha et al. 

(2021) 

Koiya River 

basin, India 

LULC, soil type, rainfall, 

NDVI, distance to river, 

elevation, TWI, and SPI. 

HyperPipes (HP), Support Vector 

Regression (SVR); and the novel 

ensemble of HP-SVR 

The ensemble model of HP-SVR is 

the ideal model for assessing flood 

susceptibility spatial prediction 

analysis, followed by HP and SVR. 

Shahabi et al. 

(2021) 

Haraz 

watershed in 

Iran 

 Slope, elevation, curvature, 

TWI, SPI, distance to river, 

river density, rainfall, 

lithology, land use, and 

NDVI. 

Deep Belief Network with Back 

Propagation algorithm optimized 

by the Genetic Algorithm 

(DBPGA), LR, Logistic Model 

Trees, Bayesian logistic 

regression, Alternating Decision 

Tree, NB, and Reduced Error 

The slope angle is the most crucial 

component, even if all 11 flood 

conditioning parameters impact 

flood occurrence. DBPGA has the 

potential for usage in other flash-

flood-prone areas. 
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Pruning Tree, Adaptive Neuro-

Fuzzy Inference System (ANFIS) 

–BAT Algorithm, ANFIS - 

Imperialistic Competitive, 

ANFIS – Invasive Weed 

Optimization, ANFIS – Firefly. 

Towfiqul 

Islam et al. 

(2021) 

Teesta sub-

catchment of 

the northern 

region of 

Bangladesh 

Elevation, curvature, 

aspect, slope, TRI, TWI, 

SPI, STI, LULC, distance 

to the river, soil type, and 

rainfall 

Dagging and RSS coupled with 

ANN, RF, and SVM 

The Dagging model had the greatest 

adaptability and predictive powers, 

followed by the RF, ANN, SVM, and 

RS models. Compared to other 

methods, the Dagging model 

performs best (AUC = 0.863-

training stage; AUC = 0.873-

validating stage). However, the 

standard of all models for mapping 

flood susceptibility was satisfactory 

and dependable. 
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Saravanan 

and Abijith 

(2022) 

The northern 

coastal area of 

Tamil Nadu, 

India 

Slope, aspect, elevation, 

plan curvature, profile 

curvature, SPI, TWI, STI, 

TRI, rainfall, distance to 

road, distance to stream, 

distance to coast, LULC, 

soil, geology, 

geomorphology, wind, and 

NDVI 

GBM, XGBoost, RTF, SVM, and 

NB 

The study compared different 

algorithms to improve the capability 

of the individual methods due to the 

need for an accurate and reliable 

method to detect flood-prone areas. 

According to the investigation 

results, GBM and XGBoost 

outperforms the other three models. 
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2.4 ANALYSIS OF THE OPTICAL STUDY OF THE LAKE 

Data on water quality at various spatio-temporal scales is required to manage 

contaminated sites and control environmental pollution. In reality, assessing river 

water's physical, chemical, and biological characteristics at more precise spatio-

temporal scales is essential for effectively managing wastewater facilities and sectoral 

riverine water supplies. The proper treatment of the waterbodies can be suggested after 

examining spatio-temporal variations in the water quality of the study. Numerous 

studies have demonstrated that anthropogenic activities are one of the main causes of 

pollution in all areas of the environment (Abraham and Kundapura 2022; Caballero et 

al. 2020; Carmichael and Boyer 2016; Hassan et al. 2016; Krishnaraj and Deka 2020; 

Krishnaraj and Honnasiddaiah 2022). The inland and coastal water quality are 

monitored using data products generated by different remote sensing sensors. The 

particles in the water column influence its IOPs, which remote sensing sensors may 

measure because they tend to alter the spectral composition of the water column, 

according to the principle regulating optical remote sensing (Balasubramanian et al. 

2020; Mabit et al. 2022; Toming et al. 2017). It is very hard to get spatial and temporal 

fluctuations of quality indices in large waterbodies using in situ data collections, which 

can only reflect point assessments of the quality of water conditions in time and space. 

As well as, in situ data collection is costly, labour-intensive, and time-consuming. Due 

to the topographic situations, the regions may be inaccessible for data collection. Thus, 

remote sensing as an effective tool can overcome these limitations (Gholizadeh et al. 

2016; Xing et al. 2021). Remote Sensing has demonstrated a potent ability to track and 

assess the calibre of inland waterways for more than 4 decades (Jafar-Sidik et al. 2017). 

To obtain strong correlations between water column reflection (or emission) and 

physical and biogeochemical constituents, such as transparency, chlorophyll 

concentration (phytoplankton), organic matter, and mineral-suspended sediments in 

various waterbodies, many researchers frequently use the visible and near-infrared 

bands of the solar spectrum (mostly from the blue to near-infrared region) (Ritchie et 

al. 2003). During the lockdown imposed by COVID-19, water and air pollution 

significantly decreased (Ma et al. 2020; Ogen 2020; Venter et al. 2020). All industrial 

and human mobility is prohibited for many weeks, and it is believed that environmental 
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contamination would also diminish. As anticipated, the level of carbon emissions has 

sharply decreased in a short period of time (Yunus et al. 2020). 

2.4.1 Bibliographic analysis on Optical study of water 

The WoS database search is used for bibliographic analysis, and the keyword “Remote 

Sensing”, “SPM”, and “Turbidity” are used to find the number of journals published in 

the database pertaining to the study of optical properties of the water. According to the 

database, 194 countries have published 63,624 articles till January 2023. The number 

of papers published on this topic has increased exponentially since 2006 and recorded 

the maximum number of publications in 2021, having 4258 journals in that year (Figure 

2.7). Figure 2.8 shows that USA, China, and England have published 12529, 9325, and 

3659 papers on water quality using remote sensing techniques. India has published 3394 

articles ranking fourth in the list. In particular, the keyword “ACOLITE Processing” is 

used to refine the journals published in the database pertaining to the ACOLITE 

software. Only 30 countries have published 61 papers on this topic, with a maximum 

of 15 articles published in 2021 (Figure 2.9). Spain, USA, and Belgium have published 

a maximum of 10, 10, and 9 articles, respectively (Figure 2.10). India ranks 10th in the 

list, with only 4 articles published on this topic. 

 

Figure 2.7 Number of articles published each year on the keywords Remote 

Sensing and SPM and Turbidity 
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Figure 2.8 Number of articles from countries using the keywords Remote 

Sensing and SPM and Turbidity 

 

Figure 2.9 Number of articles published each year on the keyword ACOLITE 
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Figure 2.10 Number of articles from countries using the keyword ACOLITE 

2.4.2 Review of the Optical studies of the water 

Remote Sensing techniques provide a better understanding of the spatiotemporal 

patterns of WQ at finer scales. It uses various optical characteristics of surface water 

by altering the reflected energy spectrum or by having it emit heat radiation. The 

amounts of optically active water constituents may be inferred from satellite images by 

analysing the received radiance at the sensor at various wavelengths. Various physical 

parameters are analysed using NDVI, Fraction of absorbed Photosynthetically Active 

Radiation (FPAR), Normalized Difference Water Index (NDWI), and the 

Photochemical Reflectance Index (PRI) are widely used for the analysis of biophysical 

parameters on the lakes and waterbodies (Barducci et al. 2009). The evolution of 

atmospheric correction algorithms by comparing the in situ data and deriving the 

relationship between the water constituents and the reflectance of various spectral bands 

and their combinations has gained huge popularity (Nechad et al. 2010). Some of the 

widely used atmospheric correction processors include Atmospheric correction for OLI 

‘lite’ (ACOLITE) (Caballero et al. 2020; Vanhellemont and Ruddick 2016a), Case 2 

Regional Coast Colour (C2RCC) (Nazirova et al. 2021; Pereira-Sandoval et al. 2019), 

Case 2 Regional Coast Colour for Complex waters (C2RCCCX) (Pereira-Sandoval et 

al. 2019), Case 2 extreme (C2X) (Mabit et al. 2022), Image correction for atmospheric 

effects (iCOR) (de Keukelaere et al. 2020), Polynomial-based algorithm applied to 

MERIS (Polymer) (Pereira-Sandoval et al. 2019), Level 2 data processing algorithm 

(l2gen) (Warren et al. 2019) and Sentinel-2 Correction (Sen2Cor) (Louis et al. 2018). 
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Table 2.3 summarizes some of the findings of the past study on the optical properties 

of water. The review of literatures shows that the ACOLITE software performs better 

in the eutrophic waterbodies.
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Table 2.3 Review of literature on Optical studies of water 

Author(s) Parameter used Satellite 

data 

Software used Key Conclusion 

Kari et al. 

(2016) 

SPM and turbidity MERIS ACOLITE Despite the significant yearly and regional fluctuation in SPM 

within the two studied sub-regions of the Baltic Sea, the link 

between the significant environmental and optical variables 

remains mostly stable. Regarding SPM concentration for the 

Baltic Sea, the validation datasets were demonstrated to be 

representative. It is suggested that remote sensing data be used to 

monitor the Baltic Sea, particularly in coastal waters regularly. 

Toming et al. 

(2017) 

Chl-a, SPM, and 

CDOM 

Sentinel-

3A 

CR2CC The study demonstrated the critical requirement for creating a 

C2RCC processor specialized in the Baltic Sea. The existing one 

works rather well when there are no cyanobacterial blooms but 

fails when there are blooms since the IOP and other products do 

not correlate with in situ measurements. On the other hand, the 

consistency of in situ data utilized in the calibration and validation 

of satellite data products has to be improved. 
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Pereira-

Sandoval et 

al. (2019) 

Chl-a, Secchi disk 

depth (Zsd), CDOM 

and SPM 

Sentinel-2 ACOLITE, 

C2RCC, 

C2RCCCX, 

iCOR, Sen2Cor 

and PolyMER 

According to a performance assessment based on water types, 

single bands categorization, in situ Chl-a concentration ranges, 

and Zsd, the atmospheric correction processors perform better for 

relatively diverse waters. Compared to oligotrophic waters, 

ACOLITE, iCOR, and Sen2Cor performed better in meso- and 

hyper-eutrophic waters. 

Avtar et al. 

(2020) 

Chl-a and SPM Landsat-8 

and 

Sentinel-2 

ACOLITE The increased Chl-a shows an enhanced HRT in the lakes of 

Wuhan. It is also possible that a prolonged HRT might lead the 

surface phytoplankton to settle down, explaining the declining 

trend followed by the increase. Throughout the lockdown, there 

were no appreciable changes in the Chl-a concentration in 

Vembanad Lake, India. One explanation is that, unlike the lakes 

in Wuhan, the Vembanad Lake is not closed. It might be that the 

HRT is insufficient to increase primary production in the 

Vembanad Lake due to the flow from the rivers (without 

pollution) and tidal action. During the lockdown, SPM levels 

significantly dropped in both Vembanad and Wuhan Lake. 
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Bhuyan et al. 

(2020) 

Chl-a, CDOM, 

turbidity, and Sea 

Surface 

Temperature (SST) 

Landsat-

8/OLI 

ACOLITE The extremely changeable water quality in the region is a result 

of various factors, the two most significant of which are local 

runoff and precipitation levels. Microbial activity, and 

anthropogenic causes, in addition to high temperatures and 

irradiance, impact the CDOM concentration. Chl-a concentration 

showed a direct one-to-one relationship with the runoff in the area 

where the curve mostly followed the runoff curve. This can be 

mostly attributed to the increased nutrient availability in the 

estuary during periods of high runoff, which in turn impacts the 

Chl-a cycle found in the natural environment of the estuary. 

However, because several other factors impact turbidity, there 

was no correlation between it and the region's runoff in the 

instance of that variable. 

Garg et al. 

(2020) 

NDVI and NDWI Sentinel-2 - The reflectance in the visible range increases when turbidity 

increases and vice versa. Due to interference from the bottom, the 

blue and green bands could not depict the spatial heterogeneity in 

the turbidity variation. However, even in these bands, there was a 

modest decrease in turbidity or reflectance in the deep water. Red 
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and NIR bands were shown to be more sensitive to turbidity 

estimates. 

Yunus et al. 

(2020) 

SPM Landsat-8 ACOLITE This study found that when industries and boating were shut down 

during the lockdown, SPM levels dropped. The SPM readings 

decreased in 18 of 20 zones in the lake on average by 15.9%. 

According to the results, pollution from industry and tourists had 

a bigger impact than non-industrial sources. 

Kulk et al. 

(2021) 

Chl-a, SPM, 

CDOM, turbidity, 

and Forel-Ule 

classification 

Sentinel-2 

and 

Landsat-8 

ACOLITE The aquatic environment in the lake may have benefited from the 

observed drop in TSM and CDOM by lowering turbidity and 

improving light penetration, which may have increased 

phytoplankton photosynthesis. No obvious variations in Chl-a 

during the lockdown, indicating that other variables were much 

more crucial in regulating phytoplankton development in Lake. 

Caballero et 

al. (2022)  

Turbidity and Chl-a Sentinel-

2A/B and 

Landsat-8 

OC3 and 

ACOLITE 

The turbidity and Chl-a products employed were proxies for the 

biogeochemical characteristics in the coastal waters, despite the 

fact that satellite products were not validated with local in situ 

data to address their quality and uncertainty. These procedures, 
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which provide a universal application, are proving reliable and 

consistent in investigating turbidity and TSM. 

Mabit et al. 

(2022) 

CDOM and SPM Landsat-8 

and 

Sentinel-2 

C2RCC, C2X, 

SeaDAS, iCOR 

and ACOLITE 

The CDOM red/green algorithms in ACOLITE perform better, 

with the point distributions indicating the quasi-null systematic 

error retrieval. Even while C2RCC provides the most precise 

absolute data for remote sensing reflectance, ACOLITE produces 

the best results for CDOM estimates. 

 

 



48 

 

2.5 RESEARCH GAP 

Understanding the influence of LULC and changes aids in the investigation of the cause 

of the floods and their magnitude. The prediction of LULC is based on historical LULC 

maps and other driving factors. The study area encompasses significant districts in the 

state of Kerala which has a very high population density and experiencing rapid growth. 

Due to the increasing occurrences of disaster-related events, the inhabitants of the 

region are being significantly impacted. Therefore, it is crucial to conduct an analysis 

of the alterations in LULC and to forecast the future. Thus, the LULCC and prediction 

play a larger role in understanding changing trends in land cover and help to understand 

the rate of change in different land use types in the region. Integrating the predicted 

LULC and the extreme flood scenario will provide insight into the likely inundation 

region in different land use types and predict the likely magnitude of the flood in the 

region. 

Many studies have been conducted to identify flood inundation zones in the Vembanad 

Lake System (VLS) and other areas of Kerala. However, no study has previously 

carried out FSM to demarcate the flood prone regions in VLS. Due to heavy monsoon 

precipitation, this region has been continuously affected by numerous flooding events 

over the past half a decade. This flooding is also caused by unplanned urbanization and 

poor drainage in cities. The FSM aids in analysing the flood vulnerability region and 

the steps that must be taken to reduce future flooding. It also aids in taking the necessary 

precautions during a flood to prevent loss of life. 

The construction of the Thannermukkom barrage in 1976 created several water quality 

problems, such as reducing the flushing action in the lake, thereby causing a proliferated 

growth of weeds and water hyacinth in the water body. Considering the fragile 

ecosystem of the wetland, deterioration of water quality and consequent damage to 

aquatic organisms, and the shrinkage of Vembanad Lake, this wetland system was 

included in the National Lake Conservation Plan by the National River Conservation 

Authority, chaired by the Prime Minister under the Ministry of Environment and Forest 

(MoEF) in 2003. The sewage effluents and the heavy load of organic material released 

from the neighbouring areas are responsible for decreased dissolved oxygen content in 

the water body. Few studies on the lake suggested that the lake's water quality has 

improved during the COVID-19 lockdown. However, no studies have considered the 
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spatio-temporal variation in water quality during and after the floods in the lake. This 

aids in understanding the change in lake water quality over time and its effects on 

various events such as floods and COVID lockdowns. 

Based on the research gaps, the following research questions have been formulated. 

 How will LULC patterns in VLS evolve over the period of time, and what are the 

key driving factors influencing these changes? 

 How can remote sensing techniques effectively integrate the accuracy and 

timeliness of flood inundation mapping? 

 What would be the impact of a flood of equivalent intensity on the LULC in 

future? 

 What are the data-driven techniques that can be leveraged to develop an 

accurate flood susceptibility mapping? 

 What are the effects of rapid evolution and frequent flooding on the water quality 

in Vembanad Lake? 

Thus, these research questions are formulated as the objectives of the study. 

2.6 RESEARCH OBJECTIVES 

The objectives of this study are formulated based on a comprehensive review of the 

existing literature and identification of research gaps. These objectives aim to establish 

a solution for the current research work. 

 Land Use and Land Cover Change  

 To map the Land Use and Land Cover Change (LULCC) using Machine 

Learning techniques like Random Forest (RF), Support Vector Machine (SVM), 

and Classification And Regression Trees (CART) in Google Earth Engine 

(GEE). 

 To develop the future trends of the LULC change from the best working model 

using CA-Markov analysis. 

 Flood Modelling 

 To delineate the frequently flooded areas in Vembanad Lake System (VLS) 

using SAR images and determine the degree of flooding in each LULC class 

during the 2018 floods. 

 To quantify the possible flood inundation region in the future LULCs of 2035 

and 2050 based on the severity of the 2018 flood. 
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 Geospatial analysis of flood susceptibility modelling using the decision tree-

based machine learning algorithms 

 Water quality analysis 

 To retrieve and analyse the optical properties of water in the Vembanad Lake 

from the satellite optical images such as Diffuse attenuation coefficient (Kd), 

Suspended Particulate Matter (SPM) concentration, Turbidity, Chlorophyll-a 

(Chl-a) concentration. 

In order to bridge the literature gap, the above objectives for this research are mapped 

in Figure 2.11 in a nutshell. The likely outcomes of the study include three vital results. 

They are possible flood inundation regions in the future LULCs, Flood Susceptibility 

Modelling for the VLS, and changes in the optical properties of the lake due to floods 

and COVID lockdowns. This research will examine the quantitative and qualitative 

hydrological aspects of the waterbody (VLS), such as the extent of the region inundated 

by the floods, their susceptibility, and the quality of the water that is ultimately drained 

into the lake system, respectively. Various software has been used to carry out the 

analysis, such as GEE, Idrisi TerrSet, ArcGIS, R program, Python, ACOLITE, and 

SeaDAS. 

 

Figure 2.11 Mapping of the objectives 
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CHAPTER 3 

3 STUDY AREA 

3.1 GENERAL 

The study area is the Vembanad Lake System (VLS) in the state of Kerala, located in 

the extreme south-western part of India. The VLS comprises of Vembanad wetland and 

six watersheds. These six watersheds drain into the Vembanad wetland, which is 

connected to the Arabian Sea in the west. The wetland covers an area of 1512 km2, 

making it India's second-largest wetland system. This lake faces several problems that 

threaten its health and survival. Some of the main issues include: 

 Encroachment and land reclamation: Vembanad wetland has been facing a rapid 

loss of habitat due to encroachment by human settlements and agricultural 

activities.  

 Climate change: Climate change is also affecting the wetland, causing changes in 

precipitation patterns and rising sea levels that can alter its hydrology and lead to 

heavy flooding resulting loss of habitats. 

 Water pollution: The wetland is subjected to high pollution levels from agricultural 

runoff, sewage, and industrial discharge, which negatively impacts the health of its 

flora and fauna. 

These problems must be addressed to conserve and protect the Vembanad wetland and 

its unique biodiversity. The following sections narrate the geographical extent, climate, 

geology, and geomorphology. Also, the explanation about the 2018, 2019, and 2021 

Kerala floods which are considered for analysis in the present research for arriving at 

flood inundation and region of flood susceptibility, are provided. 

3.2 GEOGRAPHICAL EXTENT AND CLIMATE 

The field of study comprises six river watersheds, including Periyar, Muvattupuzha, 

Meenachil, Manimala, Pamba, and Achencoil, draining into the Vembanad wetland 

(Figure 3.1). Also, these are the main rivers in the central part of Kerala that originates 

from the Western Ghats and joins the Vembanad wetland. The VLS spreads across six 

districts: Ernakulam, Idukki, Kottayam, Alappuzha, Pathanamthitta, and Kollam, and 

is located between the latitude of 9° 1' 9" N to 10° 20' 22" N and longitude of 76° 16' 

47" E and 77° 24' 43" E, comprising an area of 12,183 km2. Of this, 398.12 km2 is 
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below the MSL, and 763.23 km2 is below 1 m of MSL. And these are the prominent 

regions affected by the floods. The eastern part of the study area consists of the Western 

Ghats, whereas the Arabian Sea binds the western part. Figure 3.2 shows the keymap 

of the study area. The lake is considered of international importance under the Ramsar 

Convention of Wetlands. 

  

Figure 3.1 Study area 

The state has a wet and maritime tropical climate with an average of 150 rainy days 

yearly during the monsoon season. It has a higher mean annual temperature in the 

coastal lowlands of about 25°C-27.5°C than the eastern highlands that range from 

20°C-22.5°C. An average rainfall of 3000 mm/yr is received from the southwest and 

northeast monsoons, of which 65% accounts for the former (Figure 3.3). When the 

monsoon hits the Western Ghats situated on the eastern side of the study area, the state 

of Kerala receives the first rainfall in India. From July to September, heavy rainfall is 

common in the study area. Whereas between September and November, the Northeast 

winter monsoon arrives, bringing cool winds. According to the 2011 census, India has 

a population density of approximately 382 people/km2 and is found to be increasing. 

Kerala is a state in the Indian sub-continent with a population density of 859 

people/km2. A disaster affecting the state can result in huge disturbances in its socio-
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economic status. Thus to overcome the disaster, resilient cities with critical 

infrastructure should be embedded in order to provide fast recovery and normal 

functioning of the affected communities (Andrić and Lu 2017).  

 

Figure 3.2 Keymap of the study area 

The region around the VLS faced repeated flooding during 2018, 2019, and 2021 due 

to the unprecedented rainfall and the runoff generated from the rivers resulting in heavy 

flooding across the state. This resulted in considerable damage to the buildings and 

infrastructure in the state. Lots of agricultural lands flooded completely, causing lots of 

damage to the resources. The state took quite a lot of damage due to this unprecedented 

rainfall. 
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Figure 3.3 Average rainfall of Kerala 

(Data Source: CWC (2018)) 

3.3 GEOLOGY AND GEOMORPHOLOGY 

The study region lies along the windward slopes of the Western Ghats, covering the 

range of highlands with geomorphic features such as denudational hills, dissected 

middle plateaus, lateritic plateaus, valleys, narrow flood plains, and river channels. The 

physiographical features of the district constitute low-lying plains, mid-land plateaus, 

and hill range with a slope gradient of 10-80%. Most of the study area comprises 

vegetation and forest, accounting for approximately 75% of the total area. The 

geological forms present in the study area are the Archaean basement complex, which 

is dominated by low-grade metamorphic and gneiss rocks. The area forms a part of the 

Precambrian metamorphic shield of South India, comprising rocks of the Wayanad, 

Khondalite, Charnockite, and Migmatite Groups. The geology of the study is 

characterized by charnockites, charnockitic gneisses, garnet biotite gneiss, hornblende 

biotite gneiss, pink granite gneiss, and pyroxene-bearing granulite in the Western Ghats 

and central areas of the study. The sedimentary deposits of the Neogene and Quaternary 

periods dominate the western sections of the sample. Alluvial deposits from the recent 

past can be found along the coast. The uplands have soils of the Ultisols order, and the 

soil is under an iso-hyperthermic temperature regime that varies from summer to winter 

with a variability of ±5 °C. 
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3.4 2018 KERALA FLOODS 

Kerala experienced heavy rainfall in August 2018, which was about 164% higher than 

the average rainfall of the state in that month. In 2018, the intensity of rain started 

gradually from June, 15% excess than the average rainfall accounting for 749.6 mm. In 

July, an 18% excess than the average rainfall of about 857.4 mm was received. Whereas 

the first 20 days of August received a rainfall of 758.6 mm instead of the average 287.6 

mm of rain, which is 164% excess than the average rainfall of the month. As the rainfall 

exceeded and continued in June, all the reservoirs were filling fast. A severe spell of 

rain was experienced on the days of 8th and 9th August 2018 in the Malappuram, 

Wayanad, Idukki, and Palakkad districts, leading to floods in Wayanad and Idukki 

districts. Several reservoirs reached their Full Reservoir Level (FRL) due to the runoff 

from all the catchments. Again, another severe spell of rain occurred from 14th August 

and continued for a week till 19th August, as the state recorded 758.6 mm of rainfall in 

the first 20 days of August. Among which, 415 mm of rain occurred on 15-17 August 

2018, leading to severe flooding in 13 out of the 14 districts in Kerala. In addition to 

the high intensity of the rain, the dams in FRL opened, leading to massive flooding in 

the region. According to the report submitted by CWC (2018), dams in Kerala did not 

add to or reduce the amount of flood in the state. Due to the above-average rainfall in 

the previous months, the dams were already to the FRL or close to the FRL by 14th 

August 2018. Even if the dams were less than the FRL, the situation would not be 

different, as the rainfall was so intense for 3 days and even the 4th day in some locations. 

It is observed that all parts of Kerala except Kasaragod and Thiruvananthapuram, 

situated in the extreme north and south of Kerala state, respectively, received unusually 

heavy rainfall, of which 50% of precipitation was observed in just 20 days, leaving the 

scene to the worst case. As the Idukki dam opened, Cheruthoni town was the first to be 

severely flooded. The Periyar and Pamba Rivers were flooded with Peerumade as the 

eye centre. The Periyar River flooded regions like Cheruthoni town and Kanjikuzhy 

upstream and Aluva, North Paravoor, Vypin, and Kochi downstream. The Pamba River 

flooded Ranny, Chengannur, Thiruvalla, Mavellikara, and Alappuzha. The Kuttanad 

region in the Alappuzha district below the MSL is more prone to flood even during 

slightly heavy precipitation. The Kakki reservoir in the River Kakki, a tributary of River 

Pamba, was already full with the massive spell in July. Most of the Kuttanad was 
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inundated with floodwater during the release of water from the reservoir. The Pamba 

River basin has a control structure, namely the Kakki dam, whereas the other rivers, 

like Achencoil, Meenachil, and Manimala Rivers, do not have any dams to control the 

flow of the river. To control further inundation in the Kuttanad region, the Thottapally 

barrage spillway at the Vembanad Lake is the only way to discharge the waters from 

the above four rivers. This Thottapally spillway has a discharging capacity of only 

about 630 cumecs, which takes a long time for the water to be discharged, and 

meanwhile can inundate the Kuttanad region. Therefore, opening the Kakki dam also 

remained challenging for the officials. As the region of Kuttanad was facing severe 

inundation, any further release would have affected it in the worst way. On the other 

hand, the Kakki reservoir was also at its FRL anticipating a possible future flood. If 

Kuttanad had not flooded before the second spell, the water level could have been 

brought down in the reservoir, saving the region from the extreme flood. 

The total runoff generated from 14th - 19th August 2018 rainfall in Pamba, Manimala, 

Achencoil, and Meenachil was about 1.63 BCM. The Vembanad Lake has a carrying 

capacity of only about 600 MCM, and the Thaneermukkom barrage exists across the 

lake. The Thaneermukkom and the Thottappally barrages have a discharge capacity of 

about 1706 cumecs and 630 cumecs, respectively. Thus, from the 1.63 BCM runoff, 

only 605 MCM runoff could be drained out from the Vembanad Lake remaining 1 BCM 

runoff was stored in the lake, creating the rise in water level. Thus, the severe river 

runoff accumulated water in the Vembanad Lake, shrinking its capacity. The reduced 

discharge in the Thottappally barrage worsened the flooding in the Kuttanad region. 

This was why the low-lying region near the Vembanad Lake, such as the districts of 

Kottayam, Alappuzha, and Pathanamthitta, were flooded. 

3.5 2019 KERALA FLOODS 

Three active spells—one in July, one in August, and one in September—occurred in 

2019 following their commencement, with the strongest spell occurring between the 

sixth and eleventh of August. After a somewhat drier than typical June and July, it is 

highly uncommon that the State got more than 150 mm of rain on one day, namely on 

August 8, which resulted in floods in various sections of the state. The daily rainfall 

deviation across Kerala exceeds 998% of normal as of August 8, 2019. While the 2018 
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floods saw scattered rainfall with less cumulative rainfall that fell fairly equally over a 

24-hour period, A few places in Kerala, most notably Kozhikode, Malappuram, and 

Idukki, have had rainfall surpassing 50 mm/2 h, according to 2 hours of cumulative 

rainfall reported on August 8, 2019. The region affected by this occurrence was bigger 

than that commonly affected by cloudbursts or Mini Cloud Burst (MCB) events, 

typically occurring in fifty to hundred square kilometres. A Mesoscale Cloudburst 

(MsCB) is a geographically dispersed collection of pixels with high rainfall values. This 

Mesoscale convective storm delivered rainfall so strong that it earned the nickname 

"mini cloudburst", in contrast to the typical systems developing near India's west coast. 

In Kerala's documented meteorological history during the monsoon season in August, 

this occurrence may be the first of its sort. After this MsCB occurrence, numerous areas 

of Malappuram and Kozhikode experienced flash floods (Vijaykumar et al. 2021). 

3.6 2021 KERALA FLOODS 

Kerala has witnessed high-intensity floods due to the incessant rains over October. The 

state was hit by torrential monsoon rains in September that contributed to the floods. 

Due to the excessive rainfall, rivers and other water bodies overflowed, resulting in 

extensive flooding and landslides. Hundreds of thousands of people were forced to flee 

their homes due to the flood, and they had to be rescued and relocated to relief camps. 

Residents in parts of the coastal state of Kerala were cut off as the rain began to intensify 

on 15th October 2021. Kottayam and Idukki, which received 180 mm and 300 mm of 

rain over two days, are the most severely impacted areas. The MsCB that occurred in 

Kerala during the floods of 2021 resembled that of the floods of 2019. The year 2021 

was the wettest in Kerala in the last six decades, with the state receiving 110% more 

rain than usual from the northwest monsoon. Pathanamthitta district in Kerala 

experienced a maximum of 186% rainfall during the northwest monsoon season. 

During the north-west monsoon season, excess rainfall was also recorded in the 

following places: Kannur (143%), Alappuzha (57%), Ernakulam (102%), Idukki 

(119%), Kasaragod (141%), Kollam (100%), Kottayam (119%), Kozhikode (135%), 

Malappuram (76%), Palakkad (104%), Thiruvananthapuram (80%), Thrissur (90%), 

and Wayanad (80%). Roads are washed away, homes are damaged, and trees are 
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uprooted due to the state-wide landslides sparked by the heavy rains. The flooding has 

cut off a number of villages in hilly areas. 
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CHAPTER 4 

4 CLASSIFICATION AND PREDICTION OF LULC IN THE VEMBANAD 

LAKE SYSTEM 

4.1 GENERAL 

The intensified population movement from rural areas and smaller towns to larger 

cities, often in developing nations, is the main cause of population acceleration. This 

migration is motivated by the greater quality of life and work prospects (Güneralp and 

Seto 2008). Even though this phenomenon appears normal, studies have shown that 

population growth will have numerous adverse effects, particularly on the environment 

and natural surroundings, without proper planning and management. This will result in 

a decline in the quality of infrastructure, a reduction in agricultural productivity, and a 

loss of land use due to microclimatic changes and environmental pollution (Parry et al. 

2018). The effects of industrialization-related urbanization have a dynamic relationship 

between urban development and the environment (Wahap and Shafri 2020). 

This chapter explains the classification of LULC in the GEE platform using three 

nonparametric classification ML algorithms: (i) Random Forest (RF); (ii) Support 

Vector Machine (SVM), and (iii) Classification And Regression Trees (CART). This 

analysis is carried out to understand the performance of the models using the same 

collection of training and validation points. Further, using the CA – Markov chain 

model, the future Spatio-temporal LULC transition analysis was forecasted, and the 

changes in LULC for the years 2035 and 2050 were comprehended. 

4.2 MATERIALS AND METHODS 

4.2.1 Machine Learning Models 

In recent years, ML techniques for high-precision classification have developed in 

remote sensing. LULC is categorized using three ML techniques in the GEE 

environment: RF, SVM, and CART. These techniques are explained in detail as 

follows. 
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4.2.1.1 Random Forest classifier 

An RF classifier is a multi-decision tree ensemble classifier that creates many decision 

trees using a random selection of training samples and variables. In recent years, these 

ensemble-learning approaches have been frequently applied in remote sensing 

applications. It was introduced by Breiman (2001), who combined the output of 

individual decision trees as a non-parametric classifier. So no statistical assumptions 

must be made before the data distribution. RF trees are different from Decision Trees 

in the way of selecting each node of a subgroup among the input variables in a random 

manner and are built without pruning (Pelletier et al. 2016). Hence, this is a recursive 

process until the samples are similar or the splitting no longer enriches the model in 

each subgroup. Random-decision Forests control the over-fitting of a training set. 

A set of predictive variables is chosen individually and influences the response of each 

tree; it has the same distribution for all of the trees in the forest and is a subset of the 

original dataset's predictor values (Tang et al. 2020; Wang et al. 2015; Zhu and Zhang 

2022). Kim and Kim (2020) explained the RF method in four steps: (a) N bootstrap 

samples are extracted, i.e., they are chosen at random while accounting for overlap in 

the training dataset; (b) Each bootstrap sample is being used to train a decision tree, and 

d features are chosen at random, with no duplicate data allowed at any node. The tree 

nodes are separated in order to create the optimal partition based on an objective 

function such as information gain; (c) repeat the steps n times; (d) get all predictions 

out of each decision tree and assign the class using dominant votes. The ensemble of 

simple trees determines the reaction, the most common class. The average of the 

findings is utilized in a regression procedure to estimate the dependent variable. The 

usage of tree ensembles might result in a significant improvement in prediction 

accuracy (Band et al. 2020). It makes no assumptions about the connections between 

the dependent and independent variables, and it is an appropriate tool for analysing 

hierarchical and non-linear interactions in huge datasets (Lee et al. 2017; Zhu and 

Zhang 2022). The RF algorithm is based on tree-structured classifiers and has been 

expressed as follows: 

( , ), 1,2,....ih x k k n   (4.1) 

Where ik represents conditioning factors, and 1, 2…n are input vectors x. 
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4.2.1.2 Classification And Regression Trees (CART) 

Classification And Regression Trees (CART) is a simple binary decision tree classifier 

developed by Breiman et al. (1984). A sequence of nodes linked to one another, each 

node is divided into two branches, ultimately these branches leading to leaf nodes 

representing class labels in classification trees and continuous variables in regression 

trees. The node splitting continues until a threshold condition is reached. Using the Gini 

Impurity Index, CART determines which input features will provide the best split at 

each node. Despite a general tendency to overfitting, it is one of the most extensively 

used LULC classifiers because of its classification accuracy and performance. 

Compared to multilayer neural networks, the fundamental advantage of this 

architecture is that classification choices can be considered a white box system with 

understood and interpreted input-output relations (Mather and Tso 2016). CART uses 

the cross-validation technique for pruning, which eliminates branches, and their 

removal will not affect the results beyond a certain threshold. This may result in a fall 

in accuracy for training data classification and the loss of certain information, but it also 

improves accuracy for unknown data for testing (Shao and Lunetta 2012). 

4.2.1.3 Support Vector Machine 

Support Vector Machine (SVM), introduced by Cortes and Vapnik (1995), is based on 

statistical learning theory. By minimizing the empirical risk and confidence interval of 

learning derived from the systemic risk minimization hypothesis, it aimed to achieve 

strong generalization capability. It is an efficient and robust algorithm for both 

classification and regression. The SVM concept uses the support vectors at the class 

domain's edges to create hyperplanes between classes in feature space. The model seeks 

an optimal hyperplane to separate the classes at maximum margins (Shi and Yang 

2015). SVM was designed to handle linearly separable classes by bilinear classification, 

but hyperplane may not be located between the two in most cases. In such cases, the 

model converts the highly inseparable data into a higher dimension or infinite-

dimensional feature space to separate it linearly. Theoretically, the error penalty, which 

allows for misclassification, substantially impacts SVM classification accuracy 

(Ustuner et al. 2015). 
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4.2.2 Data Sources and Preparation 

The data prepared from various sources have shown in Table 4.1. Landsat - 7 and 

Landsat - 8 Top of Atmosphere (TOA) images are used for the classification in the GEE 

environment. The cloud cover is set to less than 30% in the imagery, and the 

classification is predominantly focused on the pre-monsoon season (February – May). 

Landsat - 7 was chosen for 2009, while Landsat - 8 was chosen for 2013, 2015, 2017, 

and 2019. Digital Elevation Model (DEM) is prepared using the ASTER data in the 

ArcGIS environment. Slope and stream networks are derived from the DEM using 

hydrology tools in the ArcGIS environment. OpenStreetMap is an open licensed map 

that creates a free editable map worldwide that allows users to download all the features 

like roads, rivers, and streams to the desired vector file. Hence, the road layer is 

downloaded from OpenStreetMap. The built-up and forest are extracted from the 

classified 2019 land cover using the Raster tool in ArcGIS. Public and Industrial areas 

are prepared from google earth pro, comprising schools, grounds, hospitals, hotels, 

religious places, industrial and commercial places, railway stations, bus stations, 

airports, and other frequently accessible places by the public like markets, theatres, etc. 

The population density map is derived from the Census of India (2011). According to 

the Census of India (2011), the Kerala state has the highest population density in the 

country. In the GEE environment, mean annual rainfall is collected from Climate 

Hazards Group InfraRed Precipitation with Station data (CHIRPS). All the data are 

converted to the Projected Coordinate System WGS 1984 UTM Zone 43N and fed into 

the CA-Markov model. 

Table 4.1 Data Sources for LULCC Modelling 

Sl. 

No 
Parameter Data Source 

Software 

used 

Resolution 

(m) 

Feature 

type 

1 LULC 

Landsat - 7 & 8 

Path: 143 

and144; Row: 53 

and 54 

GEE 30 - 

2 DEM ASTER ArcGIS 30 - 

3 Slope ASTER ArcGIS 30 - 
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4 Road OpenStreetMap ArcGIS - Line 

5 Built-up LULC ArcGIS 30 - 

6 Stream ASTER ArcGIS - Line 

7 
Public and 

Industrial areas 
Google data 

Google Earth 

Engine 
- Point 

4.2.3 Land Use and Land Cover classification 

GEE helps analyse the data at a planetary scale and helps the researchers and developers 

detect changes in the map trends and quantify differences on the Earth's surface. 

Landsat - 7 and 8 TOA reflectance images are available in the environment, where they 

are calibrated using Chander et al. (2009) proposed rescaling parameters. The images 

before and after the specified duration considered in the research were used to replace 

and supplement the images obscured by clouds and fog, and most pixel image 

composites were created. In the GEE, median ee.Reducer function determines the 

median value of each pixel in an image collection for a specified timeline to reduce the 

collection to a single image for each year. For a specific year, the best image is obtained 

from the set of images. The obtained image is combined with the Normalized 

Difference Vegetation Index (NDVI) (Figure 4.1), Modified Normalized Water Index 

(MNDWI) (Figure 4.2), Normalized Difference Built-up Index (NDBI) (Figure 4.3), 

and Bare Soil Index (BSI) (Figure 4.4) to further enhance and differentiate the classes 

in the classification on GEE platform. 
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Figure 4.1 NDVI map for LULC classification 

 

Figure 4.2 MNDWI map for LULC classification 
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Figure 4.3 NDBI map for LULC classification 

 

Figure 4.4 BSI map for LULC classification 
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4.2.3.1 Tuning Parameters for Machine Learning Models 

The RF classifier has attracted the interest of the remote sensing community (Abijith 

and Saravanan 2022; Belgiu and Drăgu 2016; Gislason et al. 2006; Hamad et al. 2018a; 

Mahdianpari et al. 2018). RF algorithm in GEE allows the users to set the following 

arguments: number of decision trees to create (ntree), number of variables per split, a 

fraction of input to bag per tree, and maximum number of leaf nodes in each tree. Ntree 

is the essential input (Noi Phan et al. 2020). The RF algorithm is given as input using 

the following code in GEE ee.Classifier.smileRandomForest(numberOfTrees, 

variablesPerSplit, minLeafPopulation, bagFraction, maxNodes, seed) where an empty 

Random Forest classifier is created. 

CART is one of the most widely used supervised ML models for evaluating the 

effectiveness of the detailed and automated LULC classification approach (Pan et al. 

2022; Shetty et al. 2021). The important tuning parameter for CART in GEE is the 

maximum number of leaf nodes in each tree. The CART algorithm is given as the input 

using the code ee.Classifier.smileCart(maxNodes, minLeafPopulation), where an 

empty CART classifier is created. 

The SVM, a novel algorithm based on statistical learning theory, has not been exploited 

much within the remote sensing community (Adam et al. 2014; Adelabu et al. 2014; 

Shi and Yang 2015). SVM provides many tuning parameters in the model, but the most 

important parameters are kernel type, gamma value in the kernel function, and cost (C) 

parameter (Yang 2011). An SVM classifier is created using the code 

ee.Classifier.libsvm(decisionProcedure, svmType, kernelType, shrinking, degree, 

gamma, coef0, cost, nu, terminationEpsilon, lossEpsilon, oneClass) in GEE. As a 

result, we aimed to test, investigate, and compare the performance of these ML 

algorithms in the classification of LULCs. 

4.2.4 Classification Accuracy 

The classification is prepared by giving the Region Of Interest (ROI) for the selected 

image in points and polygons. To provide a better ROI, 15-35 pixels in each sample 

were selected. All three models were given the same collection of training and 

validation points as input to examine their results closely. It is classified into 5 major 

classes: waterbody, built-up, vegetation, barren land, and forest. Every class was trained 
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with 75 - 95 ROI for classification and 60 - 75 ROI for validation. It also ensured that 

the information was normally distributed and spectrally pure. According to Lillesand 

and Kiefer (1979), a minimum of 50 samples per class is required as a rule of thumb. 

Random stratified sampling is used to determine accuracy, with minimal observations 

put in each segment at random. 

Once the classification was done using the above ML techniques, an error matrix was 

generated for each year to identify the accuracy of the classifications. The degree to 

which the results are close to values accepted as true is referred to as accuracy. Thus, 

various matrices such as Overall Accuracy (OA), consumer accuracy, producer 

accuracy, and kappa statistics (Damtea et al. 2020) are identified from the error matrix. 

Consumer accuracy of each class depends on the number of correctly classified pixels 

in the class to the number of pixels belonging to this class in the classification. 

Simultaneously, the producer accuracy depends on the number of correctly classified 

pixels to that of the number of pixels belonging to each class in the reference data. The 

notation is similar to Cohen (1960), and the kappa coefficient κ is estimated. The 

reduction of errors by the classification classes is proportional to the error of the 

completely random class (Forghani et al. 2007; Tassi and Vizzari 2020). The magnitude 

of κ usually lies between -1 to +1. Values above +0.5 indicate it is in good agreement 

with the classification (Taati et al. 2015). The best-performing model is analysed. Then 

the classified model is further future-predicted to analyse the spatio-temporal change in 

the model. 

4.2.5 CA-Markov model 

CA-Markov analysis has been carried out using the Idrisi TerrSet software in the LCM 

module. The LULC map 2009 and 2015 are given as the earlier and later land cover 

images, respectively. The transition probabilities from 2009 to 2015 and the 2015 

LULC base map were used to model the 2019 LULC using the CA-Markov approach. 

CA assesses the contiguity configuration as well as transition probabilities (Hamad et 

al. 2018a). The CA-Markov model, which consists of the basic LULC layer, transition 

potential areas for future change formed by the Markov Chain model, and potential 

transitional layers for LULC, such as road network, built-up regions, and stream 

network, are used to determine the appropriate transition from one class to the other 

(Halmy et al. 2015a).  
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The potential for transition probability is calculated based on the area of each LULC 

class (preferably barren land, forest, and vegetation) that can be converted into the built-

up (Figure 4.5). The transition of these areas was divided into the number of timesteps 

(as an iteration) given by the simulation, which provided the areas to be transitioned 

each iteration. Land suitability maps show the most suitable pixel for each LULC class.  

 

Figure 4.5 Potential for the transition from barren land (1), forest (2), and 

Vegetation (3) to built-up 
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Figure 4.6 Methodology for the classification and prediction of LULC change 

Down-weighted pixels are further apart from the pixel to be converted. These 

neighbourhood rules were defined using the contiguity filter of 5x5 pixels. As a result, 

each cell is surrounded by a 5x5 - matrix space that defines the neighbourhood of each 

land class. The standard contiguity filter is given in the equation (4.2). Assignment of 

the pixels in the future depends on the suitability of the pixel to a specific LULC class. 

This simulation continues till each pixel of the LULC class is iterated. The LULC layer 

of 2009 and 2015 is the input to predict the LULC for 2019. This is performed to prove 
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the model's accuracy under the given conditions. Then the model is further used to 

predict future spatio-temporal LULC changes. The Overall methodology for the study 

is shown in Figure 4.6. 

0 0 1 0 0

0 1 1 1 0

contiguity filter 5 5 = 1 1 1 1 1

0 1 1 1 0

0 0 1 0 0

 
 
 
 
 
 
  

  (4.2) 

4.3 RESULTS AND DISCUSSION 

4.3.1 LULC using GEE 

The LULC for 2009, 2013, 2015, 2017, and 2019 were classified using RF, SVM, and 

CART in GEE, as shown in Figure 4.7, Figure 4.8, and Figure 4.9, respectively. The 

indices help classify the images accurately by different means. The NDVI and MNDWI 

are widely used to extract vegetation, forest, and waterbodies, whereas NDBI and BSI 

aid in the classification of built-up and barren land, respectively (Liu et al. 2020a). 

Previous studies by Cánovas-García et al. (2017); Ghimire et al. (2012); Noi Phan et al. 

(2020) stated the performance of the RF model is good at ntree of 100. However, 

according to the current study, the ntree of 30 functioned better and had greater 

accuracy than the ntree of 100. For 2009, this model accurately categorized the 

waterbody, built-up, and barren land than the forest and vegetation type. Using Landsat 

- 8 images, the differentiation between forest and vegetation was clear and precise. This 

may be attributed to the Landsat - 8's (level 1 products) higher radiometric resolution, 

i.e., twice the predecessor Landsat - 7 (Abuzar et al. 2014; Mancino et al. 2020). Table 

4.2 shows the consumers' and producers’ accuracy for RF classification. The 

consumers' and producers’ accuracy is relatively high for the forest classes, whereas in 

the built-up areas, it is low.
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Figure 4.7 Classification of LULC using RF in GEE  
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Figure 4.8 Classification of LULC using SVM in GEE  
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Figure 4.9 Classification of LULC using CART in GEE 
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Over the image, an SVM model is trained with the same collection of ROI and 

validation points. The importance of the SVM settings significantly impacts 

classification results (Huang et al. 2002; Shi and Yang 2015). The kernel type, cost 

parameter, and gamma value are the critical parameters in the model. Hence kernel type 

is assigned with Radial Basis Function (RBF), cost (C) is assigned with the value of 

100, and gamma value is given as 0.143 (Kavzoglu and Colkesen 2009; Yang 2011). 

Table 4.3 shows the consumers' and producers’ accuracy in SVM. In the built-up and 

barren land classes, the consumers’ accuracy is so low that the former is classified as 

the latter. 

The CART model with the same training and testing samples for the respective years 

performed considerably better than the SVM. The maximum number of leaf nodes is 

set to default. In 2009, the shallow waterbodies on the southern side of the lake were 

misclassified as built-up due to the identical pattern in the Landsat - 7 images. Table 

4.4 reveals that, except for built-up areas, the CART model's consumers' and producers’ 

accuracy is comparable to that of the RF classification all the year. Table 4.5 shows the 

performance of RF, SVM, and CART algorithms for each year. In 2009, both RF and 

CART performed equally well in the classification. Conversely, CART did not perform 

better in the other years, resulting in a modest change in the OA and κ. 
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Table 4.2 Consumers' accuracy and Producers' accuracy using RF for each year of LULC 

LULC 
Consumers' accuracy (%) Producers' accuracy (%) 

2009 2013 2015 2017 2019 2009 2013 2015 2017 2019 

Waterbody 100 88.46 96.51 94.7 100 100 80.7 87.37 96.43 94.8 

Built-up 95 76.66 72.37 89.55 83.33 91.57 92 87.3 80 85.53 

Vegetation 75.6 94.82 93.33 87.18 97.53 97 93.21 96 100 97.53 

Barren land 88.78 92.54 97.8 85.29 85.77 72.04 85.87 81.48 85.29 86 

Forest 89.35 90.14 89.36 91.12 92.65 88.23 94.58 93.82 88.25 91.35 

Table 4.3 Consumers' accuracy and Producers' accuracy using SVM for each year of LULC 

LULC 
Consumers' accuracy (%) Producers' accuracy (%) 

2009 2013 2015 2017 2019 2009 2013 2015 2017 2019 

Waterbody 100 82 94 87.5 94.66 100 71.92 98.36 97 92.2 

Built-up 90.18 63.8 91.17 89.65 82.09 83.13 92 58.49 64.67 68 

Vegetation 76.86 80 92.1 95.77 76.95 94 89 90.3 92 75.76 

Barren land 81.82 84.3 55.81 60.19 74 67.74 53.22 80.57 89.17 88 

Forest 83.85 83.34 79.41 87.39 84.14 89.55 86.11 84.25 81.88 83.6 
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Table 4.4 Consumers' accuracy and Producers' accuracy using CART for each year of LULC 

LULC 
Consumers' accuracy (%) Producers' accuracy (%) 

2009 2013 2015 2017 2019 2009 2013 2015 2017 2019 

Waterbody 100 76.27 96.51 95.14 100 100 78.95 87.37 91.64 92.2 

Built-up 100 72.88 69.62 92.16 84.4 90.36 86 87.3 75.67 85.53 

Vegetation 76.85 91.67 95.89 83.31 92.59 100 98.21 100 92 92.59 

Barren land 89.04 93.62 90.9 82.13 80 69.89 70.97 74.07 89.64 88 

Forest 85.28 82.66 86.46 84.32 91.22 89.24 82.94 88.89 88.36 89.68 

Table 4.5 Comparison of OA and κ for RF, SVM, and CART models in their respective years 

 RF SVM CART 

Year OA (%) κ (%) OA (%) κ (%) OA (%) κ (%) 

2009 89.47 85.9 86.45 81.77 89.47 85.9 

2013 88.44 84.6 78.22 71.14 83.11 77.52 

2015 89.36 85.63 82.76 77.11 87.94 83.72 

2017 89.89 86.49 84.4 79.65 87.01 84.98 

2019 91.19 88.16 81.69 75.64 89.79 86.28 

Average 89.67 86.16 82.70 77.06 87.46 83.68 
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RF is more suited to multiclass problems to handle small differences in classification. 

The SVM model shows some misclassification in the region around the water bodies. 

During the dry season, the classification is accurate despite RF's outperforming SVM 

in terms of efficiency. When the three approaches were compared, SVM performed 

poorly, with an average OA of about 82.7%; CART came in second with 87.46%, and 

the RF model performed well, with an average OA of 89.67% (Table 4.5). Similarly, 

the average kappa for SVM, CART and RF algorithms are 77.06, 83.68, and 86.16, 

respectively. The RF outperformed the SVM and CART in almost comparable spectral 

classifications, such as barren land and built-up regions. As a result, the RF algorithm-

based classification is used for further analysis. 

Figure 4.10 shows the change in the area of each LULC class from the year 2009 to 

2019. The area of waterbody decreased steadily from 2013 to 2017, but after the 

flooding, the area of waterbody increased significantly (Table 4.6). It has also been 

observed that the vegetation cover declined by 8% between 2017 and 2019. There was 

an increase in the built-up area from the year 2009 to the year 2019. In a decade, the 

built-up area has grown by almost 97%. This alarming change is also the main driver 

for the present research, as the cities of Kerala state exhibit the highest urbanization 

rate. Figure 4.10 shows the increasing trend of barren land between 2009 and 2017, 

whereas the trend shows a rapid shoot-up beyond 2017 till 2019. This may be attributed 

to the combined effect of anthropogenic activities and the state's floods in 2018 and 

2019, which caused landslides in the region. It accounts for a 125% increase in barren 

land from 2009 to 2019, resulting in decreased vegetation and forest cover combined. 

All the above changes in the LULC are predominantly observed in the RF - classified 

image in GEE over a decadal period (2009 - 2019) in the study region. The nature of 

the change of LULC is represented in Figure 4.7, and the changes are quantified in 

Table 4.6. 
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Figure 4.10 Graphical representation of change in the area of LULC from 2009 

to 2019 

The classified image based on the RF algorithm (Figure 4.7) is then used to forecast 

and interpret the LULC change in 2019, 2035, and 2050 using CA-Markov analysis in 

LCM using Idrisi TerrSet software. 

Table 4.6 Change in the area of LULC classes from 2009 to 2019 

Year 
Area (km2) 

Waterbody Built-up Vegetation Barren land Forest 

2009 992.50 280.78 6890.39 358.50 3661.08 

2013 1349.44 382.33 6814.76 376.12 3260.59 

2015 1044.93 449.05 6743.43 396.29 3549.55 

2017 956.43 523.93 7023.94 521.36 3157.59 

2019 1054.38 552.36 6437.12 812.70 3326.70 

4.3.2 Future prediction of LULC using CA-Markov 

Changes in LULC are influenced by various driver variables such as DEM, slope, 

population density, mean annual rainfall, distance from the road, built-up, stream 

network, forest, and Public and Industrial areas. These driver variables are shown in 

Figure 4.11. The DEM and slope reveal that the built-up class has a higher probability 
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in areas with a lower elevation and a lesser degree of slope. Distance from the road, 

distance from the built-up, and distance from the stream are the driver variables that 

signify the likelihood of a rise in the built-up classes that are very close to the road, 

current built-up, and stream, respectively, than those that are farther apart. In this 

analysis, the distance from the road, DEM, slope, and distance from built-up areas are 

generated and used to predict the increase in built-up areas, but the resulting map failed 

to perform better. Including the distance from the stream to the model increased the 

accuracy of the forecasted map for 2019. Thus, it reveals that dwellings in urban areas 

rely heavily on the river valley, as many residents depend on agriculture. In addition, 

to the model, some parameters like distance from the forest and Public and Industrial 

areas, mean annual rainfall and population density made the model still more reliable 

in predicting the future trends of the LULC, and the resultant map shows high accuracy 

in all the classes except barren land.  

The association between the driver variables and the distribution of LULC classes in 

later year image (2015) has been derived by finding Cramer's V. Although it is an 

imprecise fishing tool, higher Cramer's V shows that the variable's possible explanatory 

value is good. However, it does not guarantee good results because it does not account 

for the mathematical constraints of the modelling technique and the relationship's 

complexity. The Cramer's V for the driver variables is given in Table 4.7. V<0.3 shows 

a weak association, V∈ [0.3-0.5] shows a medium association and V>0.5 shows a 

strong association. Mean annual rainfall shows a weak association with the 

classification. Distance from built-up, Public and Industrial areas, forest, and slope 

shows a medium association, whereas DEM, distance from the road, stream, and 

population density, shows potentially high Cramer's V.  

The model's accuracy is evaluated with the crosstab module in the Idrisi TerrSet to 

analyse the agreement of the predicted 2019 image to that of the classified 2019 image. 

The predicted image of 2019 is in very good agreement with the classified image of 

2019, with a kappa value of 84.90%. Hence, Table 4.8 compares the predicted map of 

2019 to the classified map of 2019, and the accuracy for each class in LULC is 

evaluated. The LULC classes have a high correlation, with more than 95% confidence 

precision in the waterbody, built-up area, and forest cover. 
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Figure 4.11 Driver variables for the CA-Markov model 
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Table 4.7 Cramer's V for driver variables 

Driver variable Cramer's V 

DEM 0.58 

Slope 0.37 

Distance from road 0.60 

Distance from built-up 0.43 

Distance from stream 0.56 

Population density 0.61 

Distance from Public and Industrial 

areas 
0.46 

Distance from forest 0.40 

Mean annual rainfall 0.22 

The accuracy of the vegetation cover is 94.63% compared to the barren land, which is 

47.21%, the least accurate compared to the classified 2019 LULC map. The study area 

was one of the most severely damaged and devastated during the 2018 and 2019 Kerala 

floods. These heavy floods caused landslides and erosion along the river banks in the 

Western Ghats section (Jacinth Jennifer and Saravanan 2022). This is one of the key 

explanations for more barren land than predicted by the model and is visible in Figure 

4.12. 

Table 4.8 Accuracy assessment of the predicted 2019 LULC with actual 2019 

LULC 

LULC 
2019 actual 

(km2) 

2019 predicted 

(km2) 
Accuracy (%) 

Waterbody 1054.38 1034.14 98.08 

Built-up 552.36 555.16 99.49 

Vegetation 6437.12 6782.62 94.63 

Barren land 812.70 383.70 47.21 

Forest 3326.70 3427.63 96.97 
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Figure 4.12 Classified and Predicted 2019 LULC 

Table 4.9 Change in the area of the predicted LULC 2019, 2035 and 2050 

 Area (km2) 

Year Waterbody Built-up Vegetation Barren 

land 

Forest 

2019 Predicted 1034.14 555.16 6782.62 383.70 3427.63 

2035 Predicted 1024.66 633.64 6743.83 446.67 3334.45 

2050 Predicted 1018.99 684.01 6665.16 448.84 3366.25 

The change in the area of the predicted LULC of 2019, 2035, and 2050 are shown in 

Figure 4.13. With respect to the 2019 predicted image, there is a gradual growth in 

built-up and barren land in 2035 and 2050 (Table 4.9). The predicted barren land area 

for 2019 is 383.7 km2, whereas the total area of the classified image is 812.7 km2 (Table 

4.6). The forecast shows the annual rise in barren land accounts for 446.67 km2 and 

448.84 km2 for 2035 and 2050, respectively. There is a slight reduction in built-up area 

from 555.16 km2 in predicted 2019 to 552.36 km2 in classified 2019 LULC (Table 4.6). 

The estimated growth in a built-up area for 2035 and 2050 is 633.64 km2 and 684.01 

km2, respectively. The analysis clearly showed a considerable decrease in vegetation 

cover from 2019 to 2050. 
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Figure 4.13 Graphical visualization of change in the area of the actual LULC 

2019 with that of the predicted LULC for 2019, 2035 and 2050 

 

Figure 4.14 Predicted LULC for the years 2019, 2035 and 2050 

Figure 4.14 shows the spatio-temporal prediction of the LULC maps for 2019, 2035, 

and 2050. The map depicts the rise in the built-up area along the streams from 2019 till 

2035; For example, the common specific images show the predicted change in the built-

up region. In 2050, only the density of built-up rises rather than moving spatially. This 

is evident from Table 4.9, wherein the built-up area changes from 555.16 km2 in 2019 

to 633.64 km2 in 2035 and 684.01 km2 in 2050. Thus, the spatio-temporal trend 
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indicates that by 2050, almost 684.01 km2 of land will be converted into a built-up area, 

with a density significantly higher than the current LULC. 

To simulate the transitions, all driving variables were included in this study. Table 4.7 

shows that Cramer’s V for distance to road and population density is above 0.6, 

showing the close reliability of two layers with the transition potential maps. Population 

density has a direct relationship with the LULC change. Also, regions where the rainfall 

is moderate in magnitude, will tend to attract the population to settle down in those 

regions. Distance from Public and Industrial areas showed a significant improvement 

in the model as it is one of the most accessible regions by the people in their daily life, 

such as schools, colleges, and religious places. The elevation and slope are the prime 

topographic factors affecting LULC change. Topography affects the spread and extent 

of urban distribution, forest, and barren land conversion to agricultural land. It is also 

found that deforestation decreases with the increase in the slope. Other driving factors 

like distance from the stream, distance from built-up, and distance from roads also play 

a role in land use change since they make it easier for inhabitants to access basic 

commodities. 

Further, these drivers are not only limited to local-specific issues; rather, they are 

regional, national, and global. The anticipated LULC transition has been impacted by 

more than just the trend of anthropogenic interventions on the land. Natural calamities 

like the 2018 and 2019 floods, which increased the area of barren land, might have 

resulted in variations of LULC. The current pattern of LULC transition is primarily due 

to development practices, and it may lead to land deterioration, pollution, a decline in 

groundwater quality, a perturbed coastal environment, and so on. These predicted maps 

could be seen as a prospectus for stakeholders to understand better the impact of land 

use patterns on land cover. It can help them demonstrate an interest in environmental 

planning and decision-making for potential land use management and sustainable land 

cover utilization. 

4.4 CLOSURE 

GEE is used to classify LULC using three ML techniques: RF, SVM, and CART. The 

ML application in the CA-Markov model of Idrisi TerrSet software was used to analyse 

the spatio-temporal change prediction of the LULC using the LCM module for the years 

2035 and 2050. From the above analyses, it is inferred that the change process in the 
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VLS and the potential future change in LULC is detrimental to the environment in the 

region. When comparing the three techniques, SVM performed poorly at an average 

accuracy of around 82.5%, CART being the next at 87.5%, and the RF model being 

good at an average of 89.5%. The RF outperformed the SVM and CART in almost 

identical spectral classes, such as barren land and built-up areas. As a result, RF-

classified LULC is considered to predict the Spatio-temporal distribution of LULC 

transition analysis for 2035 and 2050. The 2019 prediction is carried out to analyse the 

model's performance. Except for barren land, this model had more than 94% accuracy 

for all LULC classes. The lower prediction accuracy of barren land may be influenced 

by an increase in anthropogenic activities and natural disasters. 

From 2013 to 2017, the waterbody area decreased gradually, but after the floods, the 

same was found to increase considerably in the study. Additionally, it has been noted 

that between 2017 and 2019, the vegetation decreased by 8%. From 2009 to 2019, there 

was an increase in the built-up area. Since cities of Kerala state have the greatest rate 

of urbanization, this is also the key motivation for the research. The urban area has 

increased by about 97% in ten years. The floods that occurred in the state during 2018 

and 2019, which triggered landslides and the combined impact of human activities, 

maybe to account for the rapid growth in barren land in 2019. Between 2009 and 2019, 

the combined effects of landslides and human activities were found to be responsible 

for a 125% rise in bare land, which caused a reduction in both plant cover and forest 

cover.  

The driver variables play an important role in predicting future changes in the LULC. 

From the obtained Cramer’s V values, it is found that population density, distance from 

the road, DEM, and distance from the stream greatly influence the LULC pattern 

change. The other parameters, such as distance from Public and Industrial areas, built-

up, and forest and slope, are moderately associated with the change in land use patterns. 

From the prediction, it is observed that up to 2035, the built-up area along the stream is 

predicted to grow; by 2050, however, the density of built-up areas was predicted to 

increase. Thus, according to the spatio-temporal pattern, over 685 km2 of land will be 

converted to a built-up area by 2050, with much greater built-up density than the present 

scenario. 
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CHAPTER 5 

5 FLOOD ANALYSIS AND SPATIAL MAPPING OF FLOOD SUSCEPTIBILITY 

5.1 GENERAL 

Climate change has added to precipitation uncertainty in many regions of the world and 

occasional urban floods. Flooding, landslides, erosion, and damage to transportation 

amenities are also anticipated because of increased precipitation and the resulting 

stream flows. These urban floods negatively impact the economy, livelihoods, and 

everyday activities. Flooding is a complicated and location-dependent phenomenon that 

has captivated the interest of researchers in trying to investigate, analyse, and able to 

comprehend its causative factors, owing mainly to sizable environmental damage 

caused by urban expansion, riverside floodplain invasion, habitat destruction, as well 

as other factors (Hong et al. 2018). The degradation of the environment is the depletion 

of resources such as air, water, and soil, as well as the destruction of ecosystems, 

habitats, and natural balance. 

Remote Sensing and GIS technology have made it possible to capture, monitor, and 

assess the calamity. The availability of free data in remote sensing has become a 

valuable advantage in assessing the temporal and spatial disturbances caused by 

catastrophes. Optical and microwave sensors play an important role in flood 

management (Jacinth Jennifer et al. 2020). The constant monitoring facility sets the 

way for a warning system and plays an important role in catastrophe preparedness 

efforts. The rapid development and accessibility of SAR data provide the potential for 

expanded study in various fields. Because the SAR can penetrate clouds, continual 

flood occurrence surveillance is possible through SAR (Rahman and Thakur 2018). 

Although satellite-imaging platforms capture permanent surface water extent, 

microwave sensors utilizing SAR can map flooding in small to medium-sized 

catchment areas under all-weather circumstances. 

Furthermore, multi-date images give researchers an additional tool for monitoring 

change or recreating the evolution of earlier flood-affected scenarios (Saravanan and 

Abijith 2022). The present study uses SAR images to evaluate the flood-inundated 

region during the 2018 and 2019 floods. Using the flood-inundated regions obtained 

from the SAR images, and the prepared LULC, each flooded class in the LULC is 
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estimated. Preparing the Flood Susceptibility Map using decision tree-based methods 

and analysing the potential flood vulnerability zones are attempted in the study. 

5.2 MATERIALS AND METHODS 

5.2.1 Processing of SAR imagery 

The flooded regions are delineated using multi-temporal Sentinel - 1 - Level 1 - Ground 

Range Detected (GRD) digital data in Interferometric Wide (IW) Swath mode. The 

Sentinel - 1 mission consists of two polar-orbiting satellites that perform C-band SAR 

imaging at 5.405 GHz. The level-1 GRD product is a SAR dataset detected, multi-

looked, and projected to the ground range using an Earth ellipsoid model. The employed 

terrain height changes in azimuth but remains constant in range. Due to the multi-look 

processing, the resultant output has nearly square spatial resolution and square pixel 

spacing, with decreased speckle. The pixel values represent the observed magnitude, 

but the phase information is lost. Sentinel - 1 mission pioneer applications include 

maritime surveillance, land monitoring, and emergency management (ESA 2000). GEE 

makes it easier to specify various modes of operation for integrating input data and 

efficiently creating composite data, cloud-free, and multi-temporal datasets. To 

determine flood inundation extents, the Flood Mapping Algorithm (FMA) in GEE is 

utilized, which is widely used by various researchers to determine the flooded region 

(Saravanan and Abijith 2022; Tiwari et al. 2020; Zhang et al. 2020). It helps reduce 

time consumption and high processing load as the processing is carried out completely 

in the GEE cloud infrastructure. The image change detection approach has been utilized 

to delineate flooded zones in multi-temporal SAR data. Typically, change detection is 

accomplished by comparing pre or post-disaster reference data with flood images 

(Manavalan 2017).  

The images in Sentinel - 1 suffer from erroneous noise (i.e., rigorous geometric, 

radiometric corrections, thermal, and speckle). Any satellite data requires rigorous pre-

processing before being utilized for any application. Pre-processing comprises (a) 

orbital file correction to remove orbital noise; and (b) thermal noise correction to 

remove noise in data generated by sensors during the data-collecting process aboard the 

satellite. Thermal noise can degrade data quality in areas with low mean signal response 

detected by the SAR system, such as lakes, standing water, rivers, and so on; (c) 

radiometric calibration, which is used to calibrate RADAR reflectivity Digital Number 
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(DN) to backscattering coefficient (physical units) and is primarily used to compare 

SAR images acquired at different times; and (d) Terrain correction, which involves 

converting Sentinel - 1 Single Look Complex (SLC) data from slant range geometry to 

a map coordinate system and correcting distortions such as foreshortening, layover, and 

shadowing effects. After pre-processing Sentinel - 1 VV and VH SAR images, the 

speckle filter of smoothing radius 50 is applied to smoothen the acquired images. The 

filtered image visualized differentiates the water and land before and after the 

occurrence of flood in 2018 (Figure 5.1 and Figure 5.2), 2019 (Figure 5.3 and Figure 

5.4), and 2021 (Figure 5.5 and Figure 5.6). 

 

Figure 5.1 Backscattering of VV Polarization before and after 2018 flood 
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Figure 5.2 Backscattering of VH Polarization before and after 2018 flood 

 

Figure 5.3 Backscattering of VV Polarization before and after 2019 flood 
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Figure 5.4 Backscattering of VH Polarization before and after 2019 flood 

 

Figure 5.5 Backscattering of VV Polarization before and after 2021 flood 
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Figure 5.6 Backscattering of VH Polarization before and after 2021 flood 

The suitable polarization is utilized for the study, and the image ratio technique is 

carried out to delineate the flood inundation region. The 2018 flood-damaged regions 

are validated through the field study. The 2019 and 2021 flood maps are validated with 

the flood hazard maps published by Kerala State Disaster Management Authority 

(KSDMA 2022). Therefore, the accuracy of the output flood-inundated regions 

obtained from the SAR imagery is validated. 

5.2.2 Flood inundation in future LULC 

The study region is frequently prone to flooding, with severe flood events as discussed 

in sections 3.4, 3.5, and 3.6. Apart from these floods, the state of Kerala experienced 

floods in 2020, but the severity of the floods and inundation had no significant impact 

on the socioeconomic system of the state. According to previous flood analysis, the 

extent of inundation and severity was greater in 2018. Hence, the 2018 flood scenario 

is used in the analysis. This section attempts to assess the amount of flood inundation 

that occurred during the 2018 LULC. Furthermore, the possible flood inundation region 

for the same severity as the 2018 Kerala floods using future predicted maps from 2035 

and 2050 is analysed. This is accomplished in ArcGIS software, where the amount of 
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each class in the LULC that will flood during the severe flood scenarios is calculated. 

The four classifications in the LULC, i.e., built-up, vegetation, barren land, and forest, 

are analysed to quantify the flood inundation area. The area inundated during the flood 

in each class is determined by overlaying each class of LULC with the flooded area 

map. The same approach is used to evaluate the extent of land inundated in future 

LULCs, such as 2035 and 2050, if a flood of the same severity occurs again. 

5.2.3 Flood Susceptibility Modelling (FSM) 

Five essential phases are included in FSM such as (1) Flood inventory data, as well as 

non-flood location data; (2) Data gathering and creation of a spatial database for the 

flood conditioning factors; (3) Selection of sensitive parameters for the flood by using 

RFE technique; (4) Establishing the relationship between the flood and the conditioning 

parameters to model the flood susceptibility; (5) Validation of the flood susceptibility 

map. 

5.2.3.1 Flood inventory data 

Flood inventory mapping (Figure 5.7) is prepared by delineating the frequently flooded 

regions from the Sentinel - 1 SAR imagery during 2018, 2019, and 2021 floods, as 

explained in section 5.2.1. The most frequently flooded areas determined are fed into 

the ArcGIS environment to create inputs for the ML models. Thus, the 1500 flood 

points are distributed over the flooded region by establishing spatially balanced points 

throughout the study. 70% (1050 flooded points) of the data are fed into the model for 

training, whereas 30% (450 flooded points) are fed into the model for evaluation. In 

addition, 1500 non-flood points are chosen randomly from the areas that are not prone 

to flood and distributed over the study before being entered into the model in the same 

7:3 ratio. 
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Figure 5.7 Flood Inventory map 

5.2.3.2 Conditioning factors for flood 

The selection of flood conditioning factors directly influences the accuracy of the 

mathematical model. The predisposing parameter selection is preliminarily based on 

the components of the flood, the scale of the analysis, the morphology of the study 

(Jacinth Jennifer and Saravanan 2022; Shahabi et al. 2021), and the knowledge obtained 

from the literature. Hence, eighteen parameters are considered for the susceptibility 

analysis, and the spatial database of these factors is compiled. Those factors are 

elevation, slope, plan curvature (plan_c), profile curvature (prof_c), aspect, LULC, 

Stream Power Index (SPI), Topographic Ruggedness Index (TRI), Topographic 

Wetness Index (TWI), Sediment Transport Index (STI), geology, geomorphology, 

NDVI, rainfall, soil, distance to road, distance to stream, and wind speed. The basic 

parameters such as slope, profile curvature, plan curvature, aspect, SPI, TRI, TWI, and 
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STI are the derivatives of the DEM collected from ASTER with a resolution of 30 m, 

which itself represents the variation in elevation. As an amplifying factor, topography 

greatly impacts flood intensity and determines flood-prone regions. Topographic 

parameters, on the one hand, directly impact flow size and runoff velocity, whereas 

river flood-prone locations, on the other hand, often have low relief and a modest 

topographic slope. The elevation represents altitude with respect to the Mean Sea Level 

(MSL) and ranges from 0 to 2700 m in the study region (Figure 5.8a). The elevation 

has an opposite relationship with flooding; as the elevation increases, the accumulation 

of the flood consecutively decreases. The flood accumulation is higher in the lower 

elevation as low-lying areas are susceptible to flood. Slope can be termed as the angle 

between the ground and a horizontal datum. It implies that gravity has a role in causing 

accelerated runoff (Yang 2017). Floods are more likely to accumulate on gentle slopes, 

as steeper slopes yield faster disposal of floods. The slope in the study region varies 

from 0° to 75° and is categorized into five classes (Figure 5.8b). 

Plan curvature is perpendicular to the maximum slope direction, also known as contour 

curvature. It plays a major role in converging or diverging flow, soil water content, and 

the characteristics of soil (Wilson and Gallant 2000). The sideward convex curvature 

gives the positive value, the sideward concave curvature gives the negative value, and 

the linear surface gives the zero. In the study, the value of plan curvature ranges from - 

27.4 to 22.1 (Figure 5.8c). Profile curvature is parallel to the maximum slope direction, 

i.e., curving downwards to the direction of the slope (Taşoğlu and Abujayyab 2022). It 

has a significant role in accelerating the flood and soil erosion rate. Upwardly concave 

curvature is positive, upwardly convex curvature is negative, and linear curvature is 

zero. The value of profile curvature ranges from - 23 to 21 (Figure 5.8d). Another 

important parameter is the aspect, as rainfall is more likely on windward slopes. The 

intensity of solar radiation, which influences surface vegetation and soil moisture, is 

also related to the aspect. It shows which way the actual slopes are facing. It is classified 

into nine classes, as shown in Figure 5.8e. The SPI measures discharge erosive power 

concerning a particular region within a catchment (Shahabi et al. 2021). It demonstrates 

the flood's abrasive strength. A high SPI number indicates rapid downstream water 

flow, which indicates a lesser risk of flooding, whereas a low value indicates sluggish 

or stationary water, which indicates greater inundation potential (Chowdhuri et al. 
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2020; Tehrany and Kumar 2018). SPI values range from - 3.51 to 17.9 (Figure 5.8f) 

calculated from the equation (5.1). 

tansSPI A    (5.1) 

Where As implies the specific catchment area and β is the slope gradient. 

STI shows the intensity of sediment movement generated by water and depicts the 

effect of topography on erosion. It is a widely used factor in flood susceptibility analysis 

as floods may become more prevalent when sediment transport becomes more dynamic 

(Fang et al. 2021). Its value ranges from 0 to 1610 in the study (Figure 5.9a). The TWI 

is a set of topographic parameters that describe the geographical distribution of wetness, 

aquifer depth, soil humidity, saturation zone, and topographic flow accumulation and 

is employed as an important flood component. TWI reflects the moisture content of the 

soil. Hence a greater number implies saturated terrain, which can lead to floods. Beven 

and Kirkby (1979) first developed the TWI, assuming steady-state conditions and 

uniform soil properties. TWI values vary from 2.1 to 26, indicating that the study has a 

very high TWI value (Figure 5.9b). Thus the STI and TWI values are calculated using 

the equation (5.2) and (5.3) respectively. 
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Where α is the upslope area per unit contour length. 

At the watershed scale, TRI impacts stream energy, surface storage capacity, runoff 

velocity, and routing. It represents the difference in elevation between adjoining cells. 

It gives an objective quantitative measure of topographic variation, and the value ranges 

from 0.0001 to 0.97 in the study (Figure 5.9c). As the study discusses rainfall-induced 

floods, rainfall intensity is an operational parameter. Flooding can be caused by short-

duration heavy rain or long-duration, lower-intensity rain (Shahabi et al. 2021; 

Towfiqul Islam et al. 2021). The ground surface gets saturated in both cases resulting 

in the impermeable surface causing severe flooding. The rainfall is collected from the 

CHIRPS using the GEE platform. The amount of rainfall ranges from 1670 to 4700 

mm/yr in the study, as shown in Figure 5.9d. 
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LULC is one of the critical parameters where the influence of human intervention or 

anthropogenic activities leads to the change in the land cover and, consequently, alters 

the infiltration rate in the area. This is very common in the built-up region resulting in 

low infiltration and generation of surface flow. The forest and the vegetation region 

have an inverse relationship with flooding due to the high infiltration and less flooding 

(Kia et al. 2012). The LULC map is prepared from the Landsat-8 for 2020 in GEE using 

the RF algorithm and classified into five basic classes: waterbody, built-up, vegetation, 

forest, and barren land (Figure 5.9e). The NDVI is a measure for determining the 

greenness of a landmass and the presence of water bodies. NDVI variations over time 

reflect changes in vegetation and surface water cover and can reveal the link between 

floods and vegetation within a watershed. Higher vegetation concentrations are thought 

to reduce the likelihood of floods in the study region. NDVI is derived from the Landsat 

- 8 image by normalizing the spectral reflectance of the near - infrared and red bands 

using the equation (5.4). The value of NDVI ranges from - 1 with the least density of 

vegetation to +1 with a high density of vegetation (Figure 5.9f). 

NIR RED

NIR RED

R R
NDVI

R R





   (5.4)  

Distance to the stream determines the effect of flood inundation, as the regions near the 

stream are severely more vulnerable to flooding than those away from the stream. The 

frequency and magnitude of the flood are also very severe near the streams. Hence, the 

Euclidean distance is applied to the streams derived from the DEM and is classified 

into five classes such as <100 m, 100-200 m, 200-300 m, 300-400 m, and >400 m 

(Figure 5.10a). The development of road networks results in an increase in impermeable 

surface, which results in less groundwater recharge and more flow. This causes a 

considerable change in topography, resulting in excessive runoff and flow 

accumulation in low - lying areas adjacent to the roads. The road network is 

downloaded from the OpenStreetMap tool, and the Euclidean distance is applied to 

categorize the distance to the roads into five classes, <100 m, 100-200 m, 200-300 m, 

300-400 m, and >400 m (Figure 5.10b). Due to geological variance, the flood frequency 

of a region has considerable power to modify the stream profile. The rock's permeability 

and infiltration rate has a strong relationship (Chen et al. 2016). As a result, 

impermeable rocks induce surface runoff to the maximum extent, which can cause 
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severe flooding (Das 2019). The major geology in the study comprises charnockite, 

khondalite groups, and peninsular gneiss (Figure 5.10c). Geomorphology is a major 

contributor to flood hazards; it is probably more prevalent than hydrology, although it 

is less crucial (Slater et al. 2015). The combination of tectonics, denudational, and 

fluvial geomorphic processes has sculpted the geomorphology of Kerala's Western 

Ghats (Ramasamy et al. 2020). The geomorphology of the study area comprises mainly 

highly and moderately dissected valleys, pediment pediplain, coastal, deltaic, and flood 

plains (Figure 5.10d). The geology and geomorphology data are collected from the 

Geological Survey of India (GSI). 

Flood susceptibility is determined by topsoil, which plays a major role in floods. Soil 

texture is one of the most important physical qualities influencing water infiltration, 

runoff, and inundation. Soil types determine water storage, drainage, and permeability, 

which causes water inundation (Tehrany and Kumar 2018). The clay, gravelly clay, and 

loamy soil dominate most of the study area (Figure 5.10e). Sandy soil is present near 

the beaches, i.e., along the western part of the study area.  

Wind speed indirectly affects flooding by influencing the rainstorm kinetic energy for 

a short-span high-intensity precipitation event. The percentage of raindrop energy 

produced from wind speed accounted for around one-fourth of overall kinetic rain 

energy on average. Wind speed immediately affects rain energy-related soil processes 

such as surface sealing, runoff, and erosion (Helming 2001). The wind speed data is 

collected from NASA’s POWER data access viewer. The wind speed in the study area 

varies from 4.69 to 6.92 m/s (Figure 5.10f). 
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Figure 5.8 (a) DEM (b) Slope (c) Plan Curvature (d) Profile Curvature (e) Aspect (f) SPI 
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Figure 5.9 (a) STI (b) TWI (c) TRI (d) Rainfall (e) LULC (f) NDVI 
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Figure 5.10 (a) Distance to stream (b) Distance to road (c) Geology (d) Geomorphology (e) Soil (f) Wind 
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5.2.3.3 Recursive Feature Elimination (RFE) 

Bellman (1957) coined the term “Curse of Dimensionality” for the difficulty produced 

by the exponential rise in volume associated with adding more dimensions to Euclidean 

space. In other words, as the number of features grows, the inaccuracy grows as well. 

It refers to the notion that high-dimensional algorithms are more difficult to build and 

have a running time exponentially proportional to the dimensions. Theoretically, a 

larger number of dimensions allows more information to be stored, but in practice, it 

seldom helps since real-world data contains more noise and redundancy. In addition, 

not all of the features are equally important; some are even unrelated to the problem. 

So high-dimensional data processing is a huge challenge for data scientists, and the role 

of feature selection or feature engineering comes in. Feature selection provides an 

efficient way to address difficulties such as overfitting, learning accuracy, 

computational time, and enabling enhanced model learning since ML algorithms are 

especially prone to the curse of dimensionality. As a result, in ML and data mining, 

feature reduction is defined as selecting a subset of relevant features from a dataset to 

utilize in subsequent model formulation (Chen and Jeong 2007; Gholami et al. 2012). 

RFE is a wrapper method of feature selection. In the feature selection phase, this 

approach uses a supervised learning algorithm. It uses the subset evaluation approach 

to rank features. When choosing characteristics, correlation and relationships are 

considered (Khaire and Dhanalakshmi 2022). It removes redundant and weak features 

with the least impact on the training error while keeping the independent and strong 

features to enhance the model's generalization performance. It employs an iterative 

feature ranking technique, an example of backward feature removal. This method began 

by creating a model based on the whole collection of characteristics and then ranking 

each feature according to its relevance. The model is rebuilt, and the feature importance 

is recalculated after removing the least significant feature (Misra and Singh Yadav 

2020). The researcher examines and determines the number of predictor subsets and the 

size of every subset. As a result, the subset size is an RFE tuning parameter. The 

predictors are chosen based on the rankings according to the importance, using the 

subset size that maximizes the performance requirements. The final model is then 

trained using the optimal subset. 
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A representative bagging algorithm, RF (an ensemble approach), has been shown to 

perform well in terms of predicted accuracy (Lee et al. 2017). Hence, RF-based RFE is 

used for the feature selection process in this study. RF model typically employs 

backward selection. Variables are seldom excluded from the prediction equation in RF 

(Degenhardt et al. 2019), as this is the nature of the ensemble models. Increased 

ensemble performance is linked to the variety of constituent models; averaging models 

that are practically the same does not reduce model prediction variance (Darst et al. 

2018). As a result, utilizing a random sample of predictors, RF coerces the trees to 

contain sub-optimal splits of the predictors (Svetnik et al. 2003). The RF algorithm uses 

two approaches to estimate variable importance and calculates criteria weights from the 

training phase. The Mean Decrease in Accuracy (MDA) indicates how much the 

model's accuracy degrades as the value of each variable is modified. The Mean 

Decrease in Gini (MDG) is the average of a variable's total decrease in node impurity 

in each unique decision tree, weighted by the proportion of data reaching that node 

(Jeon and Oh 2020). This study uses the MDA approach in which B represents a tree's 

Out-Of-Bag (OOB) observations, and VI represents the importance of variable Xi in 

tree t. The MDA approach is calculated using the equation (5.5). 
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The model's inputs are the eighteen flood conditioning factors, and the model's output 

is the flood inventory map. These eighteen parameters are categorized into seven 

categorical and eleven numerical data. Each class in the categorical data using one-hot 

encoding is separated into each layer to convert it into numerical data, where the 

number of layers is equal to the sum of the total number of classes in all seven 

categorical data. Seven layers are converted into numerical data as follows. The aspect 

layer consists of nine classes grouped namely a ((-1°)-0°), b (0°-22.5° & 337.5°-360°), 

c (22.5°-67.5°), d (67.5°-112.5°), e (112.5°-157.5°), f (157.5°-202.5°), g (202.5°-

247.5°), h (247.5°-292.5°), and i (292.5°-337.5°). Geology is classified into seven 

layers, namely g1 (khondalite), g2 (migmatite-gneiss complex), g3 (peninsular gneiss), 

g4 (warkhali), g5 (alkali syenite), g6 (granite), and g7 (charnockite). Geomorphology 

is classified into eleven layers such as ge1 (highly dissected denudational hills and 
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valleys), ge2 (moderately dissected denudational hills and valleys), ge3 (low dissected 

denudational hills and valleys), ge4 (pediment pediplain complex), ge5 (flood plain), 

ge6 (coastal plain), ge7 (deltaic plain), ge8 (moderately dissected structural hills), ge9 

(highly dissected structural hills), ge10 (waterbodies), and ge11 (low dissected 

structural hills). Soil is classified into eight classes such as s1 (clay), s2 (gravelly loam), 

s3 (loam), s4 (sandy), s5 (sandy loam), s6 (sandy clay), s7 (rock land), and s8 (gravelly 

clay). LULC is classified into five classes such as l1 (built-up), l2 (vegetation), l3 

(barren land), l4 (forest), and l5 (waterbodies). Distance to the road is classified into 

five classes such as D2R1 (<100 m), D2R2 (100-200 m), D2R3 (200-300 m), D2R4 

(300-400 m), and D2R5 (>400 m).  Distance to stream is also classified into five classes 

based on the proximity distance of <100 m, 100-200 m, 200-300 m, 300-400 m, 

and>400 m as D2S1, D2S2, D2S3, D2S4, and D2S5 respectively. The categorical and 

non-categorical data are shown in Table 5.1. Thus, the layers add up to 61 conditioning 

factors, which are given into the model for feature selection using the RF algorithm. 

Table 5.1 Classes in categorical and non-categorical data 

Data type Parameters No. of Classes 

Categorical data 

Aspect 9 

Geology 7 

Geomorphology 11 

Soil 8 

LULC 5 

Distance to the road 5 

Distance to stream 5 

Non-categorical data 

Elevation 1 

Slope 1 

Plan Curvature 1 

Profile Curvature 1 

Stream Power Index 1 

Topographic Ruggedness 

Index 
1 
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Topographic Wetness 

Index 
1 

Sediment Transport Index 1 

NDVI 1 

Annual Rainfall 1 

Wind 1 

Total input data 61 

5.2.3.4 Machine Learning Models 

The selected feature obtained from the RFE technique is fed into the ML models for 

the FSM. Four standalone ML algorithms are used to model the severity of the flood, 

and the performance of the models is compared. These four models are Adaptive 

Boosting (AdaBoost), Random Forest (RF), Gradient Boosting Machines (GBM), and 

eXtreme Gradient Boosting (XGBoost). The employed algorithm is discussed as 

follows. 

AdaBoost 

AdaBoost, or Adaptive Boosting, is a classifier for ensemble boosting developed by 

Freund and Schapire (1997). In AdaBoost, each sample is assigned a weight that 

influences its likelihood of being included in a base classifier training set (Dou and 

Chen 2017). AdaBoost is comparable to the forward stage-wise multiplicative function 

method, which decreases the failure rate. It trains the classification system repeatedly 

based on the training samples. Each training process focuses on different examples of 

those samples using adaptive weights. This approach differs from other ensemble 

methods, such as bagging, which does not adjust the weights. The main goal of 

AdaBoost is to maximize the distribution and train the data set (t) in each iteration (i) 

to accurately assess the maximum level of unexpected results. AdaBoost initially 

selects a small portion of the training sample D = (xi, yi) where the individual xi instance 

is the vector of character values connected to the area X, and each yi category mark is 

connected to the xi belonging to the Y. Then, consecutively trains the AdaBoost 

predictor by selecting a training set that belongs to a specific prediction of the final 

training set. It assigns a higher weight (w) to incorrectly classified data to ensure these 

results to classify correctly in the next iteration. It also allocates weight to the trained 
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classifier based on its accuracy in each iteration. In addition, a more accurate classifier 

will be optimized for maximum weights. This procedure iterates until the entire training 

data set matches without error or until the maximum number of estimators specified is 

attained. Furthermore, at each stage of classifier training, the algorithm will loop 

through all possible features and assess the error of each feature on each instance. As 

the initial weak classifier, the best feature is selected. The task of the weak learner is to 

identify a weak hypothesis (ht)  : 1, 1ht X    . That is suitable for distribution dt. 

The aim is to set ht to minimize error єt. 

( ( ) )
tt i d t t iPr h x y    (5.6) 
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The final equation for the AdaBoost classifier is shown by modifying the D distribution 

and highlighting the incorrectly classified areas. 
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Where ht is a weak beginner, the coefficient is αt, and the final hypothesis is the outcome 

H(x).  

Random Forest 

RF classifier is explained in detail in section 4.2.1.1 

Gradient Boosting Machines (GBM) 

Friedman (2000) introduced GBM, which can resolve classification and regression 

problems. GBM is based on the concept of combining multiple weak learners to 

increase efficiency (Janizadeh et al. 2021). The main heuristic underlying the strategy 

is to build new base learners that are most correlated with the negative gradient of the 

ensemble's loss function. The important variables in the GBM tree model are the 

number of trees and the learning rate. GBM is based on three elements: a loss function 

that will probably be optimized, a predicted weak learner, and a loss function optimizer 

that acts as an additive function to add weak learners. It also includes three critical 

tuning parameters: ntree, tree depth, and shrinkage (Kuhn and Johnson 2013; Sahin 

2022; Shahzad et al. 2022; Wang et al. 2020). It is difficult to obtain an estimate using 



107 

 

the loss function Ψ(y, f) and weak learner h(x, θ). Therefore, a new function h(x, θt) was 

proposed with a negative gradient   
1

N

t i i
g x


to use alongside the observed data: 
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Where   ,yE y f x    is the expected loss function over the response variable, and 

f(x) is true functional dependence. Thus, the new function is highly correlated with – 

gt(x). This permits the least square minimization of the model by using the algorithm 

(5.10) (Natekin and Knoll 2013). 

 
2

arg min

,
1

( , ) ( ) ( , )
N

t t t i i

i

g x h x
 

   


     (5.10) 

Where ρ is the step size at each iteration. 

Extreme Gradient Boosting (XGBoost) 

Chen and Guestrin (2016) proposed the XGBoost algorithm, which is currently one of 

the most popular and effective decision tree algorithms. It is a highly versatile and 

flexible tool capable of solving most regressions, classifications, and user-defined 

decision variables (Ma et al. 2021). The algorithm employs the CART as the base 

classifier rather than grouping independent trees. It generates a series of subsequent 

decision trees based on the prediction errors or residuals of the previous tree model 

(Krishnaraj and Honnasiddaiah 2022). Thus, the algorithm prioritizes higher 

uncertainty samples and produces the final result (Abedi et al. 2022; El-Magd et al. 

2021; Taghizadeh-Mehrjardi et al. 2020). The XGBoost parameters, such as nrounds, 

help to calculate the maximum number of iterations; max depth, which controls the 

depth of the tree; eta controls the learning rate to capture patterns in data; gamma 

controls regularisation to prevent overfitting; and colsample bytree, which controls the 

number of variables provided for a tree. In the classification task, the tree splitting is 

stopped when the leaf node has a minimum sum of instance weight that is less than min 

child weight; the final tuning parameter subsample controls the number of observations 

provided for a tree (Boehmke and Greenwell 2019). The objective of the XGBoost 

algorithm is to minimize the regularized objective function, which is expressed as 

follows. 
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  ( , ) ( )i i kk
i

L l y y f       (5.11) 

The initial component of Eq. (5.11) represents a loss function that quantifies the 

dissimilarity between the predicted class iy  and the target class iy . The subsequent 

component, as delineated in the equation (5.12), serves as a penalty term that regulates 

the model's complexity to prevent overfitting. 

21
( )

2
f T w      (5.12) 

The formula is expressed as follows: T represents the total number of leaves in the tree, 

w denotes the score assigned to each leaf, and γ and λ represent the degrees of 

regularization. The method employs an iterative strategy to minimize the objective 

function, as specified in the equation (5.13), at each step t. 
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5.2.3.5 Model Validation 

Validation is perhaps the most important phase in any prediction modelling since it 

determines the model's scientific significance. Validation is done by comparing the 

prediction findings to an unknown target, the region that the future flood will impact. 

As a result, a portion of a previous flood is employed to represent the goal pattern. The 

data is divided into two subsets, generating the prediction image and validating the 

prediction outcomes (Meliho et al. 2022). The training and testing samples are used to 

build and validate the results. The prediction rule's performance was evaluated using 

the ROC-AUC curve, sensitivity, specificity, F1 score, and accuracy. The metrics are 

evaluated using the True Positive (TP), False Positive (FP), True Negative (TN), and 

False Negative (FN) scores. The sensitivity, specificity, and accuracy metrics are 

calculated using the equation (5.14), (5.15), and (5.16) respectively (Shahabi et al. 

2021). 

 (   )
TP

Sensitivity True Positive Rate
TP FN




  (5.14) 

 (   )
TN

Specificity True Negative Rate
TN FP




  (5.15) 

TP TN
Accuracy

TP TN FP FN




  
  (5.16) 



109 

 

The ROC curve is a graphical tool for evaluating the performance of a model. The y-

axis represents the true positive rate (sensitivity), while the false positive rate (1-

specificity) is represented by the x-axis (Hanley 1989). For each point on the ROC 

curve, a single decision criterion may be retrieved to forecast the model's accuracy. 

AUC is a quantitative metric for evaluating model performance; the greater the value 

of AUC (i.e., closer to 1) better the model's performance. The overall methodology 

flowchart framed for the study is shown in Figure 5.11. 

 

Figure 5.11 Methodology flowchart for FSM 

5.3 RESULTS AND DISCUSSION 

5.3.1 Delineation of flooded regions 

A correct polarization choice optimizes the discrimination of flooded areas (Klemas 

2015). The results obtained in our polarization configurations and the contributions of 

Conde and De Mata Muñoz (2019); Martinis and Rieke (2015); Matgen et al. (2007) in 
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the comparative studies of polarizations to monitor flood areas reaffirm that the VH 

polarization is more suitable for delineating flooded areas. It generates well-defined and 

correctly defined surfaces, results that VV polarization cannot offer. The roughness and 

heterogeneity of the terrain influence VV polarization. Hence, VH polarization is 

further used to delineate the flooded region. The image ratio technique in VH 

polarization is carried out to delineate the flooded region (Figure 5.12a, 5.13a and 

5.14a) from the non-flooded region. In the figures, the white patches show the flood-

inundated regions, and the remaining portion shows the general terrain of the region. 

 

Figure 5.12 Flooded region for 2018 flood 

 

Figure 5.13 Flooded region for 2019 flood 
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Figure 5.14 Flooded region for 2021 flood 

In the process of the image ratio technique, a threshold of 1.20 is applied to extract the 

flooded region properly. The outputs of the threshold applied image is a binary of 0 and 

1, where 0 represents the non-flooded region (black in the shade), whereas 1 represents 

the flooded region (white patches) in Figure 5.12b, 5.13b and 5.14b. These figures show 

the clear differentiation between the flooded and non-flooded regions in 2018, 2019, 

and 2021 respectively. During the 2018 floods, the region surrounding the VLS 

comprised mainly Cherthala, Kottayam, Alappuzha, Changanassery, Thiruvalla, 

Piravom, and Chengannur are the most flood-affected regions, which comprises 4% of 

the total study area as shown in Figure 5.12b. These are some of the important cities 

situated in the study area and comprise a huge population. During the 2019 floods, the 

region comprising Kottayam, Alappuzha, Changanassery, Thiruvalla, Piravom, and 

Chengannur are affected by the floods, and it comprises 3.21% of the study region, as 

shown in Figure 5.13b. The floods during 2021 comprised major parts of Kottayam, 

Changanassery, Thiruvalla, Chengannur, Alappuzha, and Piravom, where 2.36% of the 

total study area was flooded, as shown in Figure 5.14b. The above analysis shows the 

impact of the 2018, 2019, and 2021 floods on the important urban regions in the study 

area. These flooded areas are combined using GIS software and compiled to create the 

flood inventory mapping, which is used as an input to the FSM in the study. 
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5.3.2 Flood inundation region 

The LULC map created using the RF algorithm for 2019 is used to calculate the amount 

of inundation in the region during the 2018 floods. The area inundated by each LULC 

class for 2018 is determined using the ArcGIS environment. The analysis shows that 

14.7 km2 of the built-up region, 103.4 km2 of vegetation, 14.6 km2 of barren land, and 

10.4 km2 of forest were flood inundated during the 2018 floods (Figure 5.15). From the 

flood-inundated region derived from SAR imagery (Figure 5.12b), it is concluded that 

the 2018 floods have been the worst in the state in terms of magnitude. Thus, this 

scenario is treated as the basis for the likely flood-affecting regions for the future LULC 

projections of years 2035 and 2050. The 2035 and 2050 LULC maps obtained using 

the CA-Markov analysis are considered to determine the intensity of the flood for these 

years. It has been observed that 19.87 km2 of the built-up region, 99.18 km2 of 

vegetation, 13.7 km2, and 9.68 km2 of barren land and forest, respectively, will get 

inundated during the year 2035 in the study region (Figure 5.15). This shows a 34.99% 

increase in the inundation of the built-up and a 4% decrease in the inundation of the 

vegetation when compared with the 2018 LULC map. From the 2050 predicted map, it 

has been analysed that 23.32 km2 and 99.31 km2 of built-up and vegetation, 

respectively, will be inundated. Whereas 13.78 km2 and 9.58 km2 of barren land and 

forest, respectively, will be inundated by the flood in these regions. This is 58.4% of 

the increase in inundation of the build-up compared with the 2018 flood-inundated 

region. Between 2035 and 2050, the increase in the inundation of the built-up region is 

about 17.36%. The area of inundation for 2018 and for years 2035 and 2050 (future 

predicted) is shown in Figure 5.15. Considering the above facts, floods of similar 

intensity as 2018 will cause severe damage in the future years 2035 and 2050. 
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Figure 5.15 Flood inundation for the years 2018, 2035 and 2050 

5.3.3 Flood Susceptibility Mapping 

The sub-setting of data into training and testing datasets is the priority following the 

data gathering. The flooded and non-flooded regions are the primary attributes in the 

data classifying them as 1 and 0, respectively. The dataset is prepared using the flood 

inventory points and the flood conditioning factors and is fed into the R program for 

further data modelling. The eighteen parameters comprise both categorical (seven) and 

numerical (eleven), in which each category in the categorical layer is converted into a 

single layer using one hot encoding. Thus, it helps in converting these categorical layers 

into numerical values. The other eleven numerical layers are normalized using the scale 

function in the R program. So all the input data are normalized between 0 and 1. The 

RFE technique is used for the feature selection process with RF as a base model. This 

assists in reducing model dependencies and collinearity by iteratively eliminating a 

modest number of features in each iteration. The feature selection is carried out by 

calculating the MDA approach for all the data combinations. The maximum accuracy 

of 0.94 and Kappa of 0.88 is obtained for the twenty-two variable combinations out of 

the sixty-one variables. These twenty-two variables include slope, elevation, TRI, TWI, 

SPI, NDVI, plan_c, wind, rain, prof_c, ge9, STI, l2, b, l5, s1, ge6, g7, ge7, l4, e and f. 

The variable importance of each variable is shown in Figure 5.16. Thus, these twenty-

two variables are fed into the ML models, and the performance of the models is 

evaluated. 
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Figure 5.16 Variable importance of RFE 

The FSM is created by merging the twenty-two factors with the four stand-alone 

models, and their performance is assessed. The values of flood susceptibility range from 

0 to 1. The natural break algorithm is used to reclassify the susceptibility maps into five 

categories very low (0-0.2), low (0.2-0.4), medium (0.4-0.6), high (0.6-0.8), and very 

high (0.8-1.0) classes. This algorithm helps to identify the trends in the representation 

of the datasets and the accurate classification of the data. The parameter tuning and the 

performance of each algorithm are discussed as follows. 

5.3.3.1 Performance of AdaBoost 

The performance of the algorithm is weighed by performing hyperparameter tuning. 

The model uses n iterations to train and build the base classifiers to combine them to 

form a final output. The optimal values are obtained in the grid search approach and the 

10-fold cross-validation approach in the tuning. The highest ROC-AUC value of 0.9476 

is obtained for the training data with n iteration of 100 and the model AdaBoost.M1 

when multiple combinations of permutations are used (Figure 5.17a). The model 

AdaBoost.M1 is a discrete AdaBoost model that is used for classification rather than 

regression. The slope has the full significance of 100%, followed by elevation 
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(96.96%), TRI (92.86%), TWI (88.28%), and SPI (79.99%) in the model's variable 

importance plot (Figure 5.17b). STI is ranked last, with a score of 28.02%. The testing 

dataset has a ROC-AUC value of 0.90, an accuracy of 0.87, and a Kappa value 0.72. 

The AdaBoost model has an F1 score of 0.897 for the testing dataset. The sensitivity 

and specificity values are 0.75 and 0.95, respectively. The flood susceptibility map 

obtained from AdaBoost is shown in Figure 5.18. Around 48% of the region, or 5843 

km2, is very low susceptible. 25% of the study area is in the moderate and low 

susceptibility zone, while the remaining 27% is in the high and very high susceptibility 

zone. 

 

Figure 5.17 (a) Model accuracy and (b) Variable importance of AdaBoost 
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Figure 5.18 Flood Susceptibility Map using AdaBoost 

5.3.3.2 Performance of Random Forest 

The optimal values by resampling the results across tuning parameters resulted in the 

best ROC-AUC value of 0.9464 for the training data with a mtry of 25 obtained from 

grid search and a 10-fold cross-validation approach (Figure 5.19a). The number of 

variables randomly picked as candidates at each split is defined by mtry. The fifteen 

most significant variables for the model are ranked in which slope has a maximum 

variable importance of 100%, followed by elevation (24.85%), TRI (9.01%), wind 

(4.38%), and NDVI (4.16%). SPI, TWI, rain, prof_c, plan_c, STI, f, e, and ge6 has an 

importance of less than 4%, and the least important parameter is l5, i.e., waterbodies 

with a significance of 0.23% (Figure 5.19b). For the testing dataset, the ROC-AUC 

value is 0.89, while the accuracy and Kappa values are 0.87 and 0.73, respectively. The 

RF model has an F1 score of 0.899 for the testing dataset. The sensitivity and specificity 

values for the model are 0.75 and 0.96, respectively. The flood susceptibility map 

obtained from the RF is shown in Figure 5.20. It is found that 42% of the region is 
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classified as a very high and high susceptible zone, while 48% is classified as a very 

low susceptible region. Only 10% of the region is classified as low and moderately 

susceptible. 

 

Figure 5.19 (a) Model accuracy and (b) Variable importance of Random Forest 
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Figure 5.20 Flood Susceptibility Map using Random Forest 

5.3.3.3 Performance of Gradient Boosting Machines 

The GBM model uses significant tuning parameters such as n.trees, shrinkage, 

interaction.depth, and n.minobsinnode. n.tree specifies the number of gradient boosting 

iterations performed in the model. Shrinkage is the learning rate of an algorithm; 

interaction.depth helps in the number of splits that the tree has to perform from the 

starting node. n.minobsinnode denotes the minimal number of observations in the 

terminal nodes of trees. The hyperparameter tuning obtained from grid search and ten-

fold cross-validation approach resulted in the optimal GBM model with the ROC-AUC 

values of 0.9494 for the training datasets. The parameter values are set as follows: 

n.trees = 150, interaction.depth = 3, shrinkage = 0.1 and n.minobsinnode = 10 (Figure 

5.21a). The fifteen most important variables are ranked as the slope (100%) being the 

highest importance, followed by elevation (4%), TRI (2.2%), NDVI (2.18%), and wind 

(2%) (Figure 5.21b). TWI, plan_c, SPI, prof_c, rain, e, f, STI, l4, and the least important 
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variable s1, scores less than 2% importance, are among the other variables. The ROC-

AUC value, accuracy, and Kappa of the testing datasets are 0.90, 0.88, and 0.74, 

respectively. The GBM has an F1 score of 0.903 for the testing dataset. The sensitivity 

and specificity for the model are 0.89 and 0.95, respectively. According to the flood 

susceptibility map (Figure 5.22), 42.5% of the region has a high and very high risk of 

flooding. Low and moderately sensitive areas comprise 8.5% of the region, whereas 

very low susceptibility areas comprise 49%. 

 

Figure 5.21 (a) Model accuracy and (b) Variable importance of GBM 
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Figure 5.22 Flood Susceptibility Map using GBM 

5.3.3.4 Performance of Extreme Gradient Boosting 

The XGBoost is a distributed gradient-boosting library optimized for efficiency, 

flexibility, and portability between languages (Chen and Guestrin 2016). The highest 

ROC-AUC value of 0.9494 is obtained from the hyperparameter tuning using grid 

search and a ten-fold cross-validation approach for the training dataset. The 

hyperparameter values for the model tuning are nrounds=150, max_depth=2, eta=0.4, 

colsample_bytree=0.8, and subsample=0.625. The gamma and min_child_weight are 

held constant at 0 and 1, respectively (Figure 5.23a). The importance of the slope is the 

highest, being 100%, followed by TRI (30.05%), NDVI (14.20%), wind (13.72%), and 

TWI (10.87). The other parameters have scored less than 10% of importance, including 

SPI, elevation, rain, prof_c, plan_c, STI, f, e, l5, and the least being ge6 (Figure 5.23b). 

The ROC-AUC value of the testing dataset is 0.90. The accuracy and Kappa for the 

testing datasets are 0.92 and 0.84, respectively. The XGBoost has an F1 score of 0.934 

for the testing dataset. The sensitivity and specificity values are 0.90 and 0.94, 
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respectively. The flood susceptibility map obtained from the XGBoost model is shown 

in Figure 5.24. From the susceptibility map, it was found that 35% of the study area 

falls in the very high and high susceptibility zones. 55% of the study area falls under 

the very low susceptibility zone. Only 14% of the region falls in the low and medium 

susceptibility zone. 

 

Figure 5.23 (a) Model accuracy and (b) Variable importance of XGBoost 
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Figure 5.24 Flood Susceptibility Map using XGBoost 

5.3.3.5 Discussion on Flood Susceptibility Mapping 

Floods are the most catastrophic natural disasters, causing massive financial losses and 

human deaths worldwide. The important influencing factors are not only human or 

anthropogenic activities but also meteorological factors and physical characteristics of 

the watershed, as it plays an important role in the intensity of the flood (Pati and Sahoo 

2021). Because of the changing climate, the frequency of floods and interruptions has 

increased dramatically (Abraham and Kundapura 2022; Jose and Dwarakish 2022). 

Moreover, recurrent floods in India are likely to occur with the increasing air 

temperature and rainfall maxima during the monsoon months (June–September) 

(Chakrabortty et al. 2022; Kumar et al. 1999). This was the case during the 2018 Kerala 

floods, where the excess rainfall led to the rapid filling of the reservoir, and all the 

reservoirs in the state attained their FRL by the end of July 2018. This was a matter of 

concern in the state, prompting officials to release water from reservoirs, resulting in a 

catastrophic situation due to floods and landslides (Sudheer et al. 2019). Apart from the 



123 

 

pre-flood, during-flood, and post-flood actions performed, producing a flood 

susceptibility map for the region is critical, which will be the most important step taken 

to protect the people from the deadly flood, with the evolution of remote sensing, GIS, 

ML and cloud computing technologies in the recent decades changed the perception of 

the data visualization and the ability to simulate data with a large number of parameters 

(Wang et al. 2019a). There is also great reliability in the simulations and their practical 

applicability, which are essential to ML models. Many research has been carried out to 

utilize the capability of learning algorithms, statistical, and data-mining models and to 

improve their predictive performance, as modelling and simulation systems are 

valuable decision-support tools for analysing past and present flood events and 

providing precise flood susceptibility maps (Balica et al. 2012; Das 2019; Dodangeh et 

al. 2020; Mahato et al. 2021; Meliho et al. 2022; Saha et al. 2021; Shafizadeh-

Moghadam et al. 2018).  

One of the most influential parameters in flood susceptibility studies is the slope, which 

is evident in the variable importance chart of RFE and all four models. The slope is an 

important factor that controls the water infiltration rate, where the surface and sub-

surface runoff increases with respect to an increase in the slope (Mu et al. 2015). At the 

same time, it increases the velocity of the runoff with an increase in the slope resulting 

in a faster accumulation of water at the end of the basin. The susceptibility maps show 

that the terrain slope between 0 to 5° is the most vulnerable to floods. It is also noted 

that VLS as a whole constitutes a nearly circular-shaped watershed. Thus, the above 

conditions may result from the peak flow in the discharge value becoming sharper in 

the hydrograph (Saghafian et al. 2002). In the AdaBoost, RF, and GBM models, 

elevation is the second most weighted parameter, whereas it is placed seventh in the 

XGBoost model. In the eastern part of the study lies the Western Ghats, and most 

regions are significantly 500 m above the MSL. The lowland is towards the western 

part of the study area covering the coastal regions. The elevation significantly impacts 

floods because the water flows from higher to lower elevations, resulting in less water 

storage in highly elevated areas. The susceptibility maps generated by all the model 

shows that the region at higher altitudes, i.e., in the eastern part of the study area, is less 

vulnerable to flooding than the region at lower elevations. The model shows the very 

high and highly susceptible region in and around the Kochi and Alappuzha, where the 



124 

 

elevation is less than 50 m above the MSL. Rainfall is one of the important parameter 

as the floods discussed are rainfall-induced floods. In the study, the main cause for the 

flood is both prolonged rainfall i.e. lasting for days or weeks as well as heavy downpour 

in the region. This significantly results in the saturation of the terrain resulting in the 

more surface and subsurface flow. Thus apart from the other parameters, the 

conjunction of these three distinguishing traits such as low elevation, less slope and 

heavy rainfall has a direct impact on the flood susceptibility of the region. 

TRI and SPI are negatively associated with the flood susceptibility zones where the 

increase in the ruggedness of terrain poses less threat to flooding. The SPI shows the 

abrasive power of the stream, and the possibility of flooding is high in the area where 

the SPI values are less. This occurs because when the abrasive power declines, water 

stagnates, resulting in floods (Chowdhuri et al. 2020). Whereas the TWI shows a 

positive correlation with the flooding scenarios as the wetness of the terrain increases, 

it results in less seepage of the water to the ground and results in huge surface flow. 

Higher STI values show high runoff and less stagnation. Hence, the area with low STI 

values increases the risk of flooding (Tehrany et al. 2017). Profile and plan curvature 

values that are moderate and near zero influence the risk of flood in the region. NDVI 

negatively correlates with the flood, as the high NDVI values denote the vegetation and 

forest. Hence the risk of flooding is less, whereas the low NDVI values of less than 0.2 

comprising of barren land, waterbody, and impervious layers like roads and settlements 

may lead to less water seepage and increased surface flow. In the geomorphology 

parameters, ge9 negatively correlates with flooding. Whereas ge6 and ge7 positively 

correlate for the flood scenario as they are the low-lying region, and the rivers converge 

together to drain into the lake, increasing the possibility of flooding in the region. Clay 

soil has an impact on floods since it has a poor infiltration rate due to its low 

permeability. Because of their high porosity, they retain more soil moisture, resulting 

in increased runoff (Taylor and Krüger 2019). The key influencing land use factors for 

flooding are forest and vegetation types, which have a negative impact on flooding 

because they absorb water and minimize the impact of floods. The flood susceptibility 

map of all four algorithms shows that the very high flood susceptibility spans from 

4.7% to 10.17% of the total area in the study area across all models, while the high 
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susceptibility ranges from 22.5% to 33%. The total area of the susceptibility in 

percentage is shown in Figure 5.25. 

 

Figure 5.25 Percentage area susceptible to flood 

The plot of the accuracy and Kappa values in Figure 5.26 illustrates the overlap of the 

boxes and the mean values of the four models. It is arranged in descending order of 

mean performance in terms of model accuracy. The mean accuracy values for 

XGBoost, GBM, RF, and AdaBoost are 0.944, 0.943, 0.941, and 0.939, respectively. 

The XGBoost model has a distribution of 0.90 to 0.97. The interquartile range is from 

0.933 to 0.955 as well. The interquartile range for the RF model is relatively narrow, 

ranging from 0.933 to 0.944. The GBM model has a distribution between 0.90 and 0.97. 

However, the outliers of the AdaBoost are from 0.894; the lower and the upper whisker 

lies at 0.917 and 0.966, respectively. The interquartile range for the model is from 0.933 

to 0.948. The findings show that the XGBoost outperforms the other three models, with 

a ROC-AUC value of 0.90 and accuracy, Kappa, and F1 scores of 0.92, 0.84, and 0.934, 

respectively. Followed by GBM, RF, and AdaBoost, with ROC-AUC values of 0.90, 

0.89, and 0.90, respectively (Figure 5.27), and F1 scores of 0.903, 0.899, and 0.897, 

respectively. 
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Figure 5.26 Plot of accuracy and Kappa 

 

Figure 5.27 ROC-AUC of the models 

The purpose of the study is that the VLS has been facing catastrophic flooding for the 

previous half a decade, but no substantial research has been conducted in the region for 

this lake system. Hence, flood susceptibility mapping is carried out using ML 

algorithms to analyse the susceptibility of the region. The parameters employed in this 
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work and the models may be widely accepted to map the flood susceptibility zone for 

rainfall-induced flood occurrences, providing that the main influencing parameters and 

geographical topography are the same as in Kerala. All four models considered for the 

study are decision tree-based models. One significant advantage of the tree-based 

model is that it considers interaction effects between independent variables and ranks 

the influential input factors depending on their contribution to the modelling process 

(Johnson et al. 2002).  

5.4 CLOSURE 

This chapter focuses on delineating flood-inundated areas using SAR imagery for 2018, 

2019, and 2021. The extent of flood inundation during the 2018 floods and the possible 

flood inundation region for projected future LULC in 2035 and 2050 is determined. 

The flood inventory map is created using SAR data for 2018, 2019, and 2021. The flood 

susceptibility map for the VLS is prepared using four different decision tree-based 

algorithms AdaBoost, RF, GBM, and XGBoost. 

The flooded regions are delineated using the Sentinel-1 SAR imagery in the GEE 

platform by applying the threshold for the pre and during-flood scenario. It was found 

that almost 4%, 3.21%, and 2.36% of the study area was flooded during 2018, 2019, 

and 2021 respectively. The affected regions during these floods are Kottayam, 

Changanassery, Thiruvalla, and Piravom. According to the analysis, to quantify the 

extent of flood inundation, 14.7 km2 of built-up area was inundated during the 2018 

floods. Using the 2018 flood event to quantify the amount of flood that may inundate 

the future LULC 2035 and 2050, it is found that the flood will severely affect 19.87 

km2 and 23.32 km2 of the built-up region, respectively. 

The generation of FSM and the map creation process is carried out in R and ArcGIS 

platforms, respectively. The application of decision tree models reveals the adaptability 

of tree models in classification problems and aids in developing highly accurate FSM. 

The RFE technique plays a vital role in the feature selection processes as it reduces the 

model dependencies and collinearity by iteratively eliminating a modest number of 

features in each iteration. This aids in reducing the dimensionality of the data from the 

sixty-one layers to twenty-two, resulting in a more accurate prediction of the model. 

The performance of all four models shows their practical applicability. However, 

XGBoost performed well in terms of the metrics of the model. According to the 
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findings, an average of 30-40% of the region falls into the high and very high 

susceptibility category, which is an alarming range, as evidenced by the number of 

persons affected in the region. Because several of the state's important cities are on the 

shore, they are quite close to the MSL, leading to floods in the region. Apart from 

rainfall, one of the major causes of the flood is topography, which causes the five major 

rivers in the state to converge and drain into the lake, increasing the amplitude of the 

flood in the surrounding areas. 
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CHAPTER 6 

6 ANALYSIS OF THE OPTICAL PROPERTIES OF THE LAKE WATER 

6.1 GENERAL 

Spatial remote sensing analysis aids in identifying spatio-temporal patterns, which is 

one of the most important factors to examine in conjunction with in situ monitoring and 

numerical modelling. Satellite remote sensing has recently been utilized to monitor 

water surface biogeochemical indicators such as Chl-a and SPM in coastal areas. The 

Inherent Optical Properties (IOPs) of offshore waters are primarily driven by 

phytoplankton and its associated material (Case 1 waters). The coastal and inland 

waters are optically more complex due to the diverse presence of suspended, dissolved 

organic and inorganic substances and multiple combined 

physical/biological/chemical/geological processes occurring over a wide range of time 

scales. In contrast to open ocean waters, coastal and inland surface waters have 

substantial regional variation in terms of bio-optical characteristics, necessitating 

sensors with medium to high spatial resolution. The SPM, which contains organic and 

mineral-suspended particles, is one of the most studied characteristics, owing to its 

importance in various processes like sediment dynamics, coastal erosion processes, and 

water quality monitoring. Several algorithms have been created to measure SPM using 

remote sensing reflectance, Rrs(λ), in which the radiometric parameter is determined 

after the atmospheric corrections. Among these several techniques, entirely empirical 

algorithms based on a single band, numerous bands, or band ratios (Doxaran et al. 2002; 

Forget and Ouillon 1998; Siswanto et al. 2011; Tassan 1994; Yepez et al. 2018), and 

semi-analytical algorithms (Balasubramanian et al. 2020; Han et al. 2016; Nechad et al. 

2010) utilizing IOPs are widely used. 

6.2 MATERIALS AND METHODS 

6.2.1 Data Preparation 

Water quality is influenced by a variety of biological, chemical, and physical factors. 

Aquatic humus and suspended matter concentrations in surface water are calculated 

using reflectance and attenuation spectra obtained in the optical atmospheric window. 

The IOPs of these components must be understood to analyse recorded spectra in terms 
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of concentrations (Buiteveld et al. 1994). Copernicus Sentinel-2 satellites are a 

constellation of two polar-orbiting satellites in sun-synchronous orbit phased at 180° to 

each other. It is an open-access dataset developed under the European Commission and 

European Space Agency to meet the operational needs of the Copernicus program. Both 

Sentinel-2A & 2B satellites together form a revisiting capability of 5 days at the equator 

capturing images at both visible and infrared wavelengths using 13 spectral bands. 

Though the Sentinel mission was primarily designed for land-based studies and its 

changes, because of its high spatial resolution (10m, 20m, and 60m) and good 

radiometric resolution (Pereira-Sandoval et al. 2019), it is an ideal instrument for 

remote monitoring of the water quality of lakes, reservoirs, and coastal waters (Avtar 

et al. 2020; Caballero et al. 2020, 2022; Kulk et al. 2021). Level - 1C raw Sentinel - 2 

images were downloaded from Copernicus Open Access Hub 

(https://scihub.copernicus.eu/) for the period of 2016 to 2021. In the present study, the 

ACOLITE (Atmospheric Correction for OLI lite) generic processor is used to perform 

the atmospheric correction and derive the optical properties of Lake Vembanad. 

ACOLITE was created by the Royal Belgian Institute of Natural Sciences (RBINS) 

specialized in the application of inland and coastal water bodies. It also supports a wide 

range of sensors, including Sentinel-3 OLCI, Landsat 5/7/8/9, EO1/HYPERION, 

PlanetScope, HICO, PRISMA, SPOT 6/7, WorldView-2/3, and CHRIS. The Dark 

Spectrum Fitting (DSF) algorithm for atmospheric correction of the Sentinel-2 and 

Landsat series satellite images (Vanhellemont and Ruddick 2016a; b) has demonstrated 

its potential for monitoring the changes in water, and this is possible due to its spectral 

resolution (Caballero et al. 2022). Since sunglint interference is noted at Level-1C, the 

optional image-based sunglint correction of the surface reflectance is also considered. 

Finally, the bottom-of-atmosphere reflectance is derived for visible, NIR, and SWIR 

bands.   

6.2.1.1 Diffuse attenuation coefficient (Kd) 

The diffuse attenuation coefficient Kd is one of the most widely used parameters to 

represent the availability of light in the water column. The optical properties of 

absorption and backscattering coefficients are intrinsic. Kd is an apparent optical 

property affected by the Raman scattering or chlorophyll fluorescence caused by the 
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angular distribution of light in the water column and inelastic scattering mechanisms 

(Mishra et al. 2005). They influence the colour of the water, which is often determined 

by the water-leaving radiance, together with downwelling Sunlight and sky (ratio of 

water-leaving radiance to above-surface downwelling irradiance). Since a water's IOPs 

are directly related to its constituents, their values are used to identify the water type, 

the intensity of subsurface light, the depth at which solar heat fluxes, pigment 

concentration, and sediment loading. Kd is derived from the absorption outputs from 

the Quasi-Analytical Algorithm (QAA) of Lee et al. (2002) at 490 nm using ACOLITE 

software. 

6.2.1.2  Suspended Particulate Matter (SPM) concentration 

SPM is an important factor in determining the water quality in and around the riverine 

and coastal areas as the natural light will be disturbed by the high concentrations of 

suspended sediments in estuaries and inland lakes, causing it to affect the development 

of aquatic species and the primary productivity of water bodies. These suspended 

particles can contain minerals, humic, or phytoplankton resulting in cyanobacterial 

growth. Hence, SPM is composed of both inorganic and organic material and is 

maintained in suspension in the upper mixed layer by physical force-like currents. The 

majority of the mineral particles in the inorganic fraction come from stream flow and 

erosion (Garg et al. 2020). These particles backscatter a part of UV rays from the Sun, 

resulting in favourable conditions for bacterial growth. The cyanobacteria once 

developed are difficult to control and will result in eutrophication, which is a great 

threat to both human and animal life. As well, extreme human activity along the river's 

course and runoff with the high-suspended matter may cause high Total Dissolved 

Solids (TDS) content in the rivers (Jafar-Sidik et al. 2017). Mapping of SPM from 

satellites and airborne imagery has become a valuable tool for assessing and monitoring 

suspended particle distribution (Alem et al. 2021). Ritchie et al. (1976) found a 

curvilinear relationship between the SPM and the remote sensing reflectance or 

radiance. The 1 to 50 gm-3 concentration shows a linear relationship between the 

radiance and the SPM, whereas the 50 to 500 gm-3 range necessitates a higher 

curvilinear relationship (Ritchie et al. 2003). SPM concentration is computed using the 

algorithm for turbid waters proposed by Nechad et al. (2010) and recalibrated by 
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Nechad et al. (2016) specifically for Sentinel-2 red band using the ACOLITE 

processing software. 

6.2.1.3 Turbidity 

Turbidity is another key parameter for analysing the quality of the natural water in lakes 

and rivers (Dogliotti et al. 2015), and remote sensing is an effective way of retrieving 

data temporally. It determines the optical property of the water where the suspended 

sediments in the lake attenuate the light rather than transmit it along the water depth. 

High quantities of these substances may cause turbidity and reduce the amount of light 

accessible to phytoplankton for photosynthesis. Higher trophic levels may experience 

cascade effects from a decline in phytoplankton biomass, and there have also been 

reports of direct impacts of suspended matter on zooplankton and fish survival (Kulk 

et al. 2021). The turbidity is usually measured in the field using the Secchi disk, where 

the disk is lowered in the water column, and the visibility of the disk is measured 

accordingly. The information obtained from the Secchi disk is point data rather than 

spatial, but the concentration of the suspended sediments varies temporally and 

spatially. Despite the accuracy of the field measurements, they are more time-

consuming, costly, and labour-intensive (Kari et al. 2016). It has been stated that the 

visible part of the spectrum has a good relationship with the concentration of suspended 

sediments, but the red and NIR sections of the spectrum are more sensitive to turbidity 

(Caballero et al. 2020; Garg et al. 2020). The turbidity is measured using a bio-optical 

approach that correlates the red spectral reflectance of water derived by Nechad et al. 

(2016) in ACOLITE, and it is measured in Formazin Nephelometric Unit (FNU). 

6.2.1.4 Chlorophyll-a (Chl-a) concentration 

Deriving Chl-a concentration acts as a crucial water quality indicator, a predictor for 

biomass, and a public health measure for cyanobacteria monitoring is a successful 

strategy for keeping track of Harmful Algal Blooms (HABs) in inland and coastal 

waterbodies (Caballero et al. 2020). Monitoring the Chl-a level is essential to determine 

the eutrophic state of the water bodies. Numerous remote bio-optical techniques have 

been used to assess concentrations of the typical phytoplankton pigment Chl-a. The red-

NIR bands, which use the Chl-a absorption peak at 665 nm and red-edge location, are 

the primary basis for Chl-a algorithms for coastal and inland water bodies. The red-NIR 
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band ratio algorithms produce more accurate retrievals of Chl-a concentration in turbid 

inland and coastal waters because they are less impacted by the absorption caused by 

other water components (Dev et al. 2022). The algorithm proposed by Mishra and 

Mishra (2012) is used in this study. It comprises two bands to derive the Normalized 

Differential Chlorophyll Index (NDCI), demonstrating its ability to estimate the Chl-a 

concentration in turbid productive waters. The red band at the wavelength of 665 nm is 

more sensitive and absorbs the Chl-a pigment, whereas the NIR band at 708 nm is less 

sensitive to the Chl-a pigment. Hence, the spectral band difference of 708 and 665 nm 

is taken and normalized using their sum of the differences. The ACOLITE software is 

used to estimate the Chl-a concentration using NDCI proposed by Mishra and Mishra 

(2012). 

6.2.2 Data Visualization 

The processed data from ACOLITE comprises L2W parameters in a network Common 

Data Form (netCDF) format. These data are loaded into the SeaDAS software, which 

extracts the values of each parameter within the study region as ASCII files. The 

average values for each parameter are calculated from these ASCII files, and those 

values are visualized in a graphical format to analyse the trends that those parameters 

follow, as discussed in the following section. 

6.3 RESULTS AND DISCUSSION 

The stream flow of the six rivers reaches the Vembanad Lake. The study period 

considered is from January 2016 to December 2021. Only five scenes of data were 

evaluated during 2016 due to the presence of the cloud in the data and since Sentinel-

2B was launched later in 2017. Thus a total of 109 scenes are evaluated from 2016 to 

2021. As illustrated in Figure 6.1, the lake has been split into three segments to discuss 

the outcomes: Northern (A), Central (B), and Southern (C). In order to analyse and 

summarize the results, the mean values of the pixels for the entire image are calculated 

and evaluated. The river streamflow reaching the lake is graphically represented with 

the mean values of water quality parameters. As a result, understanding the changes in 

total water quality parameter values becomes convenient. Changes in each sector of the 

lake are also examined and explained for a better understanding of the changes 

happening. 



134 

 

 

Figure 6.1 Study considered for the analysis 

6.3.1 Variability in water quality parameters 

The observations reveal that the mean values of Kd are at their lowest during the pre-

monsoon season, i.e., from January to May, when the streamflow generated by the 

rivers reaching the lake is the least. From 2016 to 2021, the least mean Kd (±standard 

deviation) observed is on the 14th of April 2019 with a value of 0.915±0.15 (Figure 6.2). 

The highest mean value of Kd is found during the monsoon season. During December 

2017, the Kd value increased by more than 1.3±0.1 in the central and southern regions 

of the lake. The 2018 flood influenced the increase in Kd value to be more than 1.5 in 

the lake's southernmost region, where the average streamflow value of the rivers is 

about 2250 m3/s (Figure 6.2), and its effects can be observed from September to 

November (Figure 6.3). The rest of the southern lake has comparatively less Kd values 

of around 1±0.2. There is a significant increase in the value of Kd (greater than 1.5) in 

the northern part of the lake during the post-2019 floods during October and November, 

as shown in Figure 6.3. The COVID-19 breakout caused a nationwide lockdown in mid-

March 2020. Due to the first COVID-19 lockdown, industries and tourism halted, 
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resulting in less pollution. The Kd value drops significantly during this lockdown. 

According to Figure 6.3, the southern part of the lake has a very low diffuse attenuation 

value, i.e., less than one, during April 2020. The second wave of COVID-19 hit the 

country in April 2021, leading to the lockdown by the end of April. This has also halted 

the normal functioning of industries and tourism. Due to the presence of the cloud in 

the Sentinel-2 data, a higher mean value of Kd (1.62) is displayed in Figure 6.2 during 

May, which may be treated as an outlier. The month of June recorded the lowest Kd 

value during the monsoon season, with a mean value of 1.19±0.2 which might be the 

influence of the second lockdown. It is observed that the Kd value decreased by overall 

5.15% and 2.5% for 2019 and 2021, respectively, from 2017. 

 

Figure 6.2 Variation of average Kd from 2016 to 2021 
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Figure 6.3 Time series of Kd concentration (2016-2021) for the Vembanad Lake 

The SPM values decrease during the pre and post-monsoon seasons and reach their 

peak during the monsoon season. This is due to the increase in the streamflow resulting 

in high inflow during the monsoon seasons. The results from the analysis carried out in 

the lake from 2016 to 2021 show several change patterns in the values of SPM due to 

the floods and the COVID-19 lockdown measures. It is found that there is an average 

decreasing trend in the SPM level of 15.5 to 13.5 gm-3 from the year 2016 to 2021, 

respectively. The Figure 6.4 shows that the SPM values decrease to the minimum 

during the post-monsoon season of the post-flood scenarios. After the 2018 floods, the 

SPM values in the lake's southern part have fallen to 8±1.3 gm-3 during September and 

October (Figure 6.5). It further decreased to less than 5 gm-3 during November. The 
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same trend is found during the post - 2019 floods. The southern part of the lake falls up 

to 8±2 gm-3 during November 2019. During December, these values decrease up to 

4±0.7 gm-3 in the central and southern regions of the lake. These trends may be due to 

the flushing action of the lake during the flood resulting in less SPM during the post-

monsoon seasons. The effects of the first COVID-19 lockdown decreased the SPM 

values to 9±1.3 gm-3 on April 03, 2020. It further decreased to less than 4 gm-3 in the 

Southern part of the lake by the mid of April (Figure 6.5). These are the lowest recorded 

SPM values during April in the entire span of the study period. The lockdown imposed 

due to the second wave of COVID-19 has also influenced the SPM values in the lake 

up to 7±1.5 gm-3 in the southern part of the lake during June. This is the lowest mean 

value observed during the monsoon season in the lake. The SPM values decreased by 

12.1% and 11.4% in 2019 and 2020, respectively, and recorded a 4.3% decrease in 2021 

from 2017. 

 

Figure 6.4 Variation of average SPM from 2016 to 2021 
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Figure 6.5 Time series of SPM concentration (2016-2021) for the Vembanad 

Lake 

Turbidity rises during the monsoon season due to the large number of sediments 

transported into the lake by the high inflow from the rivers. The turbidity value 

decreases during the pre and post-monsoon season as the inflow into the lake is less, 

and the sediments settle to the bottom of the lake. The scenario of post - 2018 floods 

shows a considerable decrease in the turbidity values (Figure 6.6) during September, 

October, and November 2018, where the southern part of the lake falls up to 8±2.2 FNU 

during September and October, whereas below 7±0.6 FNU in November (Figure 6.7). 

The post-flood conditions in the year 2019 also resulted in a decrease in the turbidity 

of the water during the post - monsoon months. There is a considerable decrease in the 

central and the southern part of the lake up to 8±1.2 FNU during October. By December, 

the turbidity value further decreased below 7 FNU in the southern part and up to 8±1.4 

FNU in the northern and central parts of the lake. It is observed that the effect of the 
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first COVID-19 lockdown resulted in the decrease in turbidity of the region, where the 

values decreased by less than 6 FNU in the southern part of the lake. The turbidity of 

the lake is found to be up to 7±2.2 FNU during July, October, and November 2020. 

During the second COVID-19 lockdown, there was a significant decrease in turbidity 

values up to 8±0.9 FNU in June 2021. The turbidity values have an overall decrease of 

about 12.4%, 11.6%, and 4.28% for 2019, 2020, and 2021 respectively, compared to 

2017. 

 
Figure 6.6 Variation of average Turbidity from 2016 to 2021 
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Figure 6.7 Time series of turbidity concentration (2016-2021) for the Vembanad 

Lake 

Chl-a concentration increases during the pre-monsoon months (Figure 6.8), when there 

is less inflow into the lake resulting in water stagnation. This phenomenon is owing to 

an increase in HRT in the lake, and the pattern is observed clearly in Figure 6.9 during 

February 2017, where the Chl-a of the lake increased by about 15±2.1 μg/l in the 

southern part. During the 2018 floods, there was a considerable increase in the Chl-a 

concentration due to the runoff generated during the flood flushing the region, which 

led to the increase in Chl-a concentration in the lake. This phenomenon was observed 

from September to November 2018 in the southernmost region of the lake, where the 

Chl-a concentration increased up to 25±3.4 μg/l in those regions. The Chl-a during 

January 2019 increased up to 30±4 μg/l in the southern part of the lake owing to the 
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less streamflow from the river. Post-2019 flood shows an abrupt increase in the overall 

Chl-a values up to 25±1.4 μg/l, and the southernmost part of the lake has reached up to 

30±2.1 μg/l during October and November 2019. During January and February 2020, 

the southernmost region of the lake had an increased Chl-a concentration of up to 

40±5.2 μg/l, which may be due to the effect of the 2019 flood. There is no substantial 

change in the concentration of Chl-a during the first and second COVID-19 lockdown 

periods. The average Chl-a concentration remains unchanged for 2018, 2019, and 2020. 

Whereas there is a 12% decrease in the concentration for 2021 compared to the previous 

years. 

 

Figure 6.8 Variation of average Chl-a from 2016 to 2021 
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Figure 6.9 Time series of Chl-a concentration (2016-2021) for the Vembanad 

Lake 

6.3.2 Discussion on change in the water quality 

The effect of streamflow from the rivers during the monsoon has a direct or indirect 

relationship with the water quality parameters. The value of Kd and Chl-a increased 

considerably during the 2018 flood. The increase in Kd may be due to the increase in 

streamflow into the lake, and the southernmost region of the lake is connected with the 

agricultural fields, and this may be the prime reason for the increase in the Chl-a where 

the agricultural residues remain in the lake as the paddy fields adjacent to the southern 

part of the lake are also flooded due to excessive river streamflow. The values of SPM 

and turbidity were decreased due to the flushing action in the lake. There are six rivers 

draining into the lake. River Periyar drains into the northern part of the lake, whereas 

Muvattupuzha, Meenachil, Manimala, Pamba, and Achencoil drain in the southern part. 

The river-suspended sediment concentration showed a significant seasonal change in 

sediment supply, and its variations are strongly related to the hydrodynamics across the 

wetland (Vinita et al. 2017). As a result, the SPM, turbidity, and Kd values rise 
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dramatically during the monsoon season. Whereas the flushing action of the lake during 

the flood results in a reduction of these values during the post-flood scenarios. When 

compared to the main body of the lake, the southernmost region of the lake has very 

high values of the parameters mentioned above. This may be due to the presence of 

agricultural fields in the area and the channel pattern, which restricts the free movement 

of water to flush this part of the lake. The partially treated or untreated effluents from 

the industries along the banks of the river Periyar and the untreated municipal sewage 

from Kochi city may account for the lack of the northern half of the lake's noticeable 

alterations (Kulk et al. 2021). The dredging activities carried out during the first 

COVID-19 lockdown period in the main shipping channel might have also resulted in 

the increase in turbidity and SPM values in the northern part of the lake during this time 

(HCSL 2020). Turbidity increase impacts both top-down and bottom-up processes in 

the lake system because they render less light accessible, limiting the lake's primary 

productivity. Raising the inorganic SPM compared to phytoplankton may also lower 

the nutritive benefits of the zooplankton (Kari et al. 2016). Chl-a is a measure of 

phytoplankton biomass and controls the purity of the water, which reveals how 

effectively the lakes are functioning normally. The cHABs spurred on by anthropogenic 

activities impact the water, causing several environmental issues that worsen the water 

quality and limit swimming, fishing, and water supplies. A considerable increase of 

Chl-a during the time of flooding is observed. This could also be caused by an increase 

in turbidity/SPM by mineral/inorganic particles, as the NDCI algorithm can be affected 

by non-algal particle backscattering that does not covary with Chl-a (Maciel et al. 

2023). 

During the first COVID-19 lockdown in 2020, there was a significant decrease in the 

Kd, SPM, and turbidity values. This trend is observed during the second COVID-19 

lockdown in the year 2021, showing a significant decrease in the values of these 

parameters. The findings indicated that the pollution from industry and tourists had a 

greater impact on the lake than non-industrial pollution, which continued to exist over 

this time (Yunus et al. 2020). The region adjacent to the lake is densely populated as it 

comprises the major cities of Kerala; the resuming of the industries, tourism, and other 

activities around the lake increased the Kd, SPM, and turbidity values. But Chl-a values 

are unchanged for both the lockdowns, and this phenomenon was also observed by 
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Avtar et al. (2020) during the first lockdown in the Vembanad Lake. This might be 

owing to lower HRT due to river discharge and tidal currents, resulting in poor primary 

productivity.  

The ACOLITE program is chosen for its simplicity of deployment and the ability to 

rectify intrinsic effects such as sunglint and land pixel adjacency (Pereira-Sandoval et 

al. 2019). It employs the DSF method for atmospheric correction by default; the 

exponential extrapolation method can also be employed (Vanhellemont 2019; 

Vanhellemont and Ruddick 2016b). The ACOLITE algorithm is designed to work in 

turbid water environments where traditional atmospheric correction algorithms may not 

perform well. This is because these algorithms assume a homogeneous atmosphere, 

which is not the case in turbid waters where the presence of water vapour and aerosols 

can lead to significant variations in atmospheric properties. One limitation of the study 

is the lack of in situ data to verify the results, but the streamflow generated by the rivers 

is compared and evaluated. Apart from this, several studies both globally (Ansper and 

Alikas 2019; Caballero et al. 2020, 2022; Dogliotti et al. 2015; Mabit et al. 2022; 

Nazirova et al. 2021; Nechad et al. 2010; Ngoc et al. 2020; Pereira-Sandoval et al. 2019) 

and locally (Avtar et al. 2020; Kulk et al. 2021) in the lake, have previously examined 

these generally used semi-analytical methods for estimating biophysical parameters. 

The in situ data in the lake yielded a better comparison with the ACOLITE processor 

than the other satellite retrieval algorithms (Avtar et al. 2020; Kulk et al. 2021; Yunus 

et al. 2020). Even though satellite products were not evaluated using local in situ data 

to address quality and uncertainty, the products utilized are proxies for the biophysical 

features of the lake. These models emerge as consistent and reliable techniques for a 

wide range of global applications (Caballero et al. 2022; Nechad et al. 2009, 2016). 

Even in confined inlets and ports, Sentinel-2’s red (665 nm) and NIR (842 nm) bands 

at 10 m spatial resolution enable the recovery of turbid or SPM concentration. Sentinel-

2's incorporation of a 20 m resolution red edge band at about 705 nm, which overcomes 

the limitations of open ocean blue-green ratio algorithms, is one of its key benefits over 

Landsat-8 in terms of determining Chl-a absorption in turbid and productive waters. 

Previous studies (Sravanthi et al. 2013; Vinita et al. 2017; Yunus et al. 2020) done in 

the lake region showed the concentration of SPM in the lake as <110 gm-3, considering 

the range it is assumed that the model (Nechad et al. 2010) can retrieve the SPM values 
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with an overall Root Mean Square (RMS) error of less than 10 gm-3. Although the in 

situ readings have uncertainties, which may be fairly considerable, they are always 

assumed in remote sensing investigations to represent the truth (Toming et al. 2017). 

Pereira-Sandoval et al. (2019) emphasized the use of ACOLITE in Case II waters, as 

their performance is good in the visible spectrum of the region. Additionally, 

Vanhellemont and Ruddick (2018) state that the DSF algorithm in ACOLITE 

performed well in murky coastal waters. One major benefit of remote sensing data is 

that it allows for the examination of previous water quality as well as changes in water 

quality during times of flood or a lockdown without the need for in situ data, with the 

sole need that the data collected for the analysis be cloud-free. 

Thus, the overall decreasing trend in Kd, SPM, and turbidity indicates an improvement 

in the lake's water quality over the past six years, which may benefit the lake's 

dependent flora and fauna as well as the increase in phytoplankton photosynthesis. But 

the Chl-a also shows a slightly decreasing trend in the past six-year analysis, which 

shows the various other factors that influence the growth in the phytoplankton (Avtar 

et al. 2020; Kulk et al. 2021). Some important reasons that may reduce the decrease in 

the phytoplankton growth are due to the increase in the surface temperature of the lake, 

which has been higher in the past few decades, the flushing action of the lake during 

the flood, and the anthropogenic activities resulting in the eutrophication of the lake.  

6.4 CLOSURE 

The bio-optical algorithms have been analysed using the Sentinel-2 images in the 

ACOLITE software to evaluate the water quality of the Vembanad Lake and its 

temporal changes during the floods and the COVID-19 lockdown. The parameter Kd 

shows a substantial decrease from 2016 to 2021, accounting for an overall decrease of 

2.5%. The values of SPM and turbidity also show an overall decrease of about 4.3% 

and 4.28% from 2016 to 2021. There was no substantial change in the Chl-a content 

from 2016 to 2020. For 2021, there is an overall decrease of 12% in the Chl-a content 

compared to the other years. From the study, it is observed that the flooding and 

lockdown decreased the values of Kd, SPM, and turbidity. It is anticipated that the 

values of Chl-a content will eventually rise with an improvement in water quality, but 

in 2021, they began to fall. Though the precise cause of the Chl-a decline could not be 
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determined, previous studies in the lake suggested that the Chl-a content declines due 

to a reduction in HRT. To develop a long-term solution for the lake environment, 

precise standards based on the framework must be followed within the allocated period 

because the Ramsar Convention defines the lake as being of international importance. 

The socioeconomic position of the inhabitants who depend on the lake could be 

impacted if a long-term solution is not found to decrease the environmental harm caused 

to the lake, as it is highly dependent on tourism. 
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CHAPTER 7 

7 SUMMARY AND CONCLUSION 

Water resources in coastal regions and wetlands are incredibly significant since any 

development activity will rely heavily on the availability of fresh water to support 

household, industrial, and agricultural needs. However, owing to the overexploitation 

of water resources, discharging wastewater into the lake, and sea level rise, fresh water 

supplies in these wetlands are anticipated to suffer devastating and permanent 

consequences in the future years. The construction of the Thanneermukkom barrage in 

the lake led to the intervention, disrupting the physical and biological continuity of the 

lake with coastal waters. This has resulted in the decline of fish production and species 

diversity of the lake. The area around the lake is heavily populated since the major cities 

in the state are situated nearby. VLS is also severely affected by floods in the past few 

years due to the unprecedented rainfall during the monsoon seasons. 

As a result, this study is being conducted to map the change in LULC and predict the 

projected LULC. The mapping of flood-inundated areas, frequently flood-prone areas, 

and the possible impact of floods on projected LULCs that inundate the area are 

analysed. The spatio-temporal change in lake water quality, its consequences during 

flooded seasons, and the COVID-19 lockdowns are investigated. 

7.1 LULC CHANGE DETECTION AND PREDICTION 

As urbanization in developing countries becomes uncontrollable and unsustainable, 

determining the spatial and urban development patterns is a crucial problem for 

achieving a sustainable environment. As a result, there is a need to raise public 

consciousness about the dramatic improvements and degradation of natural 

environments. In this regard, the research helped to examine the transition of the urban 

environment. Since the study area was seriously affected by the floods in 2018, 2019, 

and 2021, this research will help society understand the LULC changes due to 

anthropogenic and flood-related factors. This will assist planners in making the 

requisite precautionary plans for the current and potential urban growth trends for 

sustainable development.  
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GEE has a powerful scripting language that works in tandem with its cloud 

infrastructure and user-friendly API. It aided in the efficient study of the classification 

based on ML. From the analysis, the RF algorithm outperformed the CART and SVM 

models in accuracy. This demonstrates the RF algorithm's ability to tackle multiclass 

classification and outperform the other two models. The ML application in the CA-

Markov model of Idrisi TerrSet software helps to analyse the spatio-temporal change 

prediction of the LULC using the LCM module. Except for barren land, this model had 

more than 94% accuracy for all LULC classes. The transition study in the LULC groups 

reveals a dramatic growth in the built-up area and barren land and a steady decline in 

vegetation and forest cover. 

7.2 FLOOD ANALYSIS AND MODELLING 

The primary ideas of flood susceptibility mapping are risk assessment and primary 

prevention measures. Evidence currently reveals that unrestricted land-use planning 

and policy execution, as well as climate change, have dramatically increased flood 

occurrences worldwide. The focus of risk evaluation and prevention efforts focus no 

longer on controlling floods but on local governments' obligations to lessen flood 

impacts. Residents in flood-prone areas should be warned about the hazards and 

possibilities. Land-use planners and government entities are obligated to inform local 

communities about the most recent flood susceptibility evaluations and the rules 

prohibiting new projects in areas with a high risk of flooding. As a result, this study 

will be extremely useful to the government and non-governmental organizations in 

terms of risk assessment and mitigation during times of crisis, as well as early people 

rescue and worthwhile preparation. 

The mapping of the flood-inundated region demonstrates the ability of SAR images to 

penetrate clouds and map during disasters. It also demonstrates the evolution of remote 

sensing and its ability to monitor temporally, even during critical times. The 2018 flood 

scenario is utilized to understand the likely flood affecting the region in future predicted 

LULCs. By the year 2050, nearly 23.32 km2 of the region, representing a 58.4% 

increase in the built-up area compared to 2018, will be inundated by floods of the same 

intensity as that of 2018. The flood inventory map is prepared from the flooded data of 

2018, 2019, and 2021. The flooded regions are delineated using the Sentinel-1 SAR 

imagery in the GEE platform by the image ratio technique and applying the threshold 
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for the pre and during-flood scenario. The flood susceptibility map is generated for the 

VLS using the four decision tree-based algorithms: AdaBoost, RF, GBM, and 

XGBoost. Based on the research results, 30-40% of the region falls under high and very 

high vulnerable regions to flooding. This is a concerning range, given that the study 

includes some of the most urbanized areas of Kerala, including Ernakulam, Alappuzha, 

and Kottayam, which have population densities of 1072, 1504, and 895 km2, 

respectively. 

7.3 OPTICAL PROPERTY OF THE LAKE 

The Sentinel-2 has aided in the continuous monitoring of the lake over the last seven 

years. With the launch of Sentinel-2B, the temporal resolution of the satellite has been 

cut in half because the satellites are monitoring at 180° out of phase. The only drawback 

of multispectral imagery is that it cannot pass through clouds. Because of this, there is 

very little data availability during the monsoon and post-monsoon seasons, when the 

region experiences heavy rainfall. Henceforth, remote sensing can aid open-source data 

in continuously observing the lake's water quality changes without collecting in situ 

data during natural or man-made crises.  

The ACOLITE software was selected because of its ease of deployment and capability 

to correct inherent issues like sunglint and pixel adjacency on land. Thus, the effect of 

change in water quality during various seasons and during the flood and COVID-19 

lockdowns are attempted to understand. The Vembanad Lake is one of the most 

severely polluted lakes in the country. The analysis revealed a 2.5% decrease in Kd 

values between 2016 and 2021. From 2016 to 2021, the SPM and turbidity decreased 

by 4.3% and 4.28%, respectively. The drop in Kd, SPM, and turbidity shows improved 

water quality over the years, observed due to the combined effects of the floods and the 

COVID lockdowns. The Chl-a concentration remained unchanged from the year 2016 

to 2020. In contrast, it drops by 12% during the year 2021. This could be due to lower 

HRT due to river discharge and tidal currents, decreasing primary productivity. This 

demonstrates that continuous monitoring of the water quality and taking precautionary 

measures in the lake will aid in achieving the SDG, which promotes the recovery, 

protective measures, and sustainable management of marine and aquatic ecosystems. 

Thus, this study provides insights to the planners, government, and NGOs about the 
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change in the water quality and can serve as a valuable reference during strategic 

planning. 

7.4 LIMITATIONS 

 The increase in the influence of anthropogenic activities and natural disasters 

may result in a rapid change in LULC, which will not be accounted for during 

the prediction. This is because spatio-temporal variation is limited to the current 

trend of transition in the LULC, which can differ over time. 

 In the CA-Markov model, only two LULC maps can be used as a base map to 

forecast possible LULC. 

 The multispectral images suffer from severe cloud cover because the study area 

experiences rainfall during the southwest and northeast monsoons. This poses a 

potential barrier to continuous monitoring of changes in the lake's water quality. 

7.5 SCOPE OF FUTURE WORK 

 The classification using Sentinel-2 may help generate the fine-resolution LULC 

map, but the Sentinel-2 collection of satellite data is not available for more than 

seven years. 

 Rainfall-runoff modelling coupled with the optical properties of the lake may 

also provide more insight into the lake's water quality change. 

 Integrating the influence of climate change into the projected LULC data for the 

analysis of flood susceptibility has the potential to facilitate the development of 

future flood susceptibility models.  
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