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Abstract— Technology driven High-Level Synthesis make the
present High-Level Synthesis knowledgeable of the target Field
Programmable Gate Array. All the functions of High-Level Syn-
thesis become aware of target technology since parsing. It makes
right inference of hardware, by attaching target technology
specific attributes to the parse tree. This right inference will
guide to generate optimized hardware.
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I. INTRODUCTION

In Very Large Scale Integrated Circuit (VLSI) design, higher
level abstraction of the circuit design is inevitable due to 1.
Higher complexity, 2. Shrinking device size and 3. Shorter
time to market. Hardware Description Language (HDL) al-
lows, representation of a digital synchronous system at a
higher abstraction level. High-Level Synthesis (HLS) converts
this HDL input into corresponding Register Transfer Level
(RTL) netlist. This netlist will further be technology mapped
and implemented onto a Field Programmable Gate Array
(FPGA) by down stream implementation tools. Optimization
at this level is very much necessary to design a chip which
consumes less silicon area and power and also works at
higher speed. It is possible by applying compiler optimization
techniques onto the intermediate representation and also by
improving the design methodology itself. This paper suggests
a new approach in the existing HLS design methodology
for optimal hardware generation since compiler optimization
techniques offer only little improvement [23].

Present generic HLS approach is independent of target
technology, onto which the circuit is to be implemented. Due
to this the potential of the target technology is not exploited
and it leads to sub-optimal generation of hardware. We propose
a new methodology to make the present HLS approach aware
of the target technology using Attribute Grammars (AGs), so
that it generates the optimized hardware, by exploiting the
technology to its potential. Technology driven HLS (THLS),
which uses this new methodology, is the tool developed by
the authors.

A. High-Level Synthesis

HLS takes a source program in any HDL as input and
converts it into RTL structures. Its front end includes scanner,
parser and intermediate code generator. Parser converts the
syntax of the HDL input into an annotated parse tree that
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is then elaborated into an intermediate representation. Elabo-
ration process instantiates modules, evaluates and propagates
symbolic constants, checks the connectivity of all the devices
and produces a checked consistent design. The Intermediate
Representation (IR) is Control/Data Flow Graph (CDFG), a
variant of syntax tree along with control information. Its
back end consists of optimizer and hardware generator (syn-
thesizer) phases which are scheduling and allocation. The
optimizer applies compiler optimization techniques on the
CDFG, to improve it, keeping speed, silicon area and power
as optimization factors. Scheduling assigns operations to clock
cycles. Allocation assigns operations to functional units like
arithmetic logic units, multiplexers and storage elements [5],
[6], [12]. It uses a generic library of devices like Library of
Parameterized Modules (LPM)[25].

B. Target Technology

There are two basic versions of Programmable Read Only
Memories (PROM) available; one can be programmed by
the manufacturer and the other by the end user. The former
is Mask Programmable and latter is Field Programmable.
The FPGA consists of programmable array of uncommitted
elements, which can be interconnected in a generic way.
Logic block is the basic unit of the FPGA that performs the
combinational and sequential logic functions. Look Up Table
(LUT), the logic block, is a digital memory with & address
lines that can implement any function of &k inputs by placing
its truth table into the memory. The interconnect comprises
segments of wire, where the segments may be of various
lengths. Present in the interconnect are programmable switches
that serve to connect the logic blocks to the wire segments or
one wire segment to another. Logic circuits are implemented
onto the FPGA by partitioning the logic into individual logic
blocks as required via the switches. The structure and content
of the interconnect in an FPGA is called its routing architecture
consists of both wire segments and programmable switches
[3], [26]. This FPGA is referred as target technology in this

paper.
C. Attribute Grammars

Attribute Grammars, a semantic formalism, devised by
Knuth [1], attach attributes and semantic rules to the grammar
symbols of a Context Free Grammar (CFG). Consider CFG G
= (S, N, T, P), where S is start symbol and S € N; N is set of
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nonterminals; T is set of terminals and P is set of production
rules. Let X, X € (N U T') can have a set of attributes A, and
an attribute may be any context sensitive property of X, for
instance, value of X. The attributes can be either synthesized
or inherited. Synthesized attributes of a grammar symbol, in a
parse tree, depend upon the attributes of its children, whereas
the inherited attributes depend upon the attributes of its parent
and siblings of the corresponding parse tree. There can be a set
of semantic rules for each production pr € N, called R, which
define the attributes in terms of other attributes of terminals
and nonterminals of the same production [2].

The rest of the paper is organized as follows: Section 2
presents the related work done in making HLS aware of
target technology. Section 3 gives details about the suggested
methodology. Section 4 presents the implementation aspects.
Section 5 discusses the result and implications and section 6
gives the concluding remarks.

II. RELATED WORK

Recently several approaches have been presented taking
physical information into account. Most of the algorithms
use floor planning information in HLS to estimate area and
performance accurately [4], [8]. Stammermann et al proposed
an approach, taking binding, allocation and floor planning
information into account for low power in HLS [20]. Lot of
techniques have already been proposed taking into account
power consumption in HLS [10] - [17]. Some contributions
also consider interconnect power [9], [14], [18]. Junhyung Um
et al presented a new RTL synthesis approach for arithmetic
circuits, which considers fast timing and easy layout. They
proposed a two-phase approach, which (Phase 1) produces
an optimal-timing arithmetic circuit and (Phase 2) refines the
circuit structure obtained in Phase 1, can be used effectively
in synthesizing data-paths [19]. Min Xuy et al addressed the
problem of layout-driven synthesis as this step has a direct
relevance on the final performance of the design [15]. Jason
et al presented a complete bitwidth-aware HLS flow, including
bitwidth analysis, simultaneous scheduling and binding [22].
Gwenole Corre et al presented a strategy to take into account
the memory architecture and memory mapping in HLS for
Real-Time VLSI circuits. They defined memory mapping
constraint and included it in the scheduling algorithm [21].
Oliver et al presented an approach on combined HLS and
partitioning for FPGA-based multi-chip emulation systems
to synthesize a prototype with maximal performance under
the given area and interconnection constraints of the target
architecture. Interconnection resources were handled similar
to functional resources, enabling the scheduling and sharing
of inter-chip connections according to their delay [16]. HDL
compiler in Xilinx Synthesis Tool (XST) [26], a leading
commercial synthesis tool, parses the HDL code and extracts
the known generic functions like multiplexers, memories and
others. It then maps them onto the technology primitives by
the technology mapper. In this approach target technology
knowledge is used only at the mapper not at the compiler.

TABLE 1
DIFFERENCE BETWEEN THE THLS AND HLS

No. | THLS
1 Target specific output
2 Retains designer’s
technology knowledge
3 Uses TSIR
4 Uses TSL
5 Reduces the gap
between tool and
target capabilities
6 Exploits technology

HLS

Generic output
Looses designer’s
technology knowledge
Uses generic IR

Uses generic library
Widens the gap
between tool and
target capabilities
Doesn’t exploit
Technology

Output is sub-optimal
in terms of speed, power
and silicon area

7 Output is optimal in
terms of speed, power
and silicon area

(TSIR - Target Specific Intermediate Representation; IR - Intermediate Rep-
resentation; TSL-Technology Specific Library)

The above mentioned approaches in HLS considered only
part of the physical information for some functions of HLS.
These are independent of target technology at higher abstrac-
tion i.e. at parser level. We present a new methodology, which
makes the HLS, aware of the target technology since parsing
itself. All the functions of HLS are knowledgeable of target
technology in this approach.

III. TECHNOLOGY DRIVEN HLS

Present generic HLS approach checks only functional cor-
rectness of the design. It neglects the designer’s technology
knowledge coded into the design since it aims to generate
generic output; e.g. it infers an adder for a count operation in
the input. It looses the designer’s intention of implementing a
counter and also does not exploit the counter feature available
in the target technology. This will result in sub-optimal im-
plementation. If HLS is aware of target domain knowledge,
optimal generation of hardware is possible [12]. To retain
designer’s technology knowledge coded into the design, and to
exploit the target technology to its potential, HLS tool should
be made aware of target technology.

THLS is a customized HLS tool for a particular target tech-
nology. All the phases of this tool are knowledgeable of the
target technology. In THLS attributes and target technology
are the key elements. Parser uses AGs to attach target specific
attributes, to generate technology specific annotated parse tree.
Elaboration then generates Technology Specific Intermediate
Representation (TSIR) from this annotated parse tree. The
optimizer then applies compiler optimization techniques on
the CDFG, to improve it, keeping speed, silicon area and
power as optimization factors. Synthesizer converts this TSIR
into hardware. It uses the Technology Specific Library (TSL)
not any generic library like LPM. Table 1. compares both
the THLS and HLS approaches. Some salient features of this
approach are discussed below.

A. Right Inference in Parsing

THLS allows the parser to generate annotated parse tree,
in which attributes are technology specific. Attributes are
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Fig. 1. Compiler Transformations - Icarus tool

abstractions of target technology features. These attributes
indirectly carry the cost information like speed, silicon area
and power. Parser or elaborator use these attributes to infer
the operations correctly. This guides to map right hardware
devices during synthesis [24]. It also makes all the HLS
functions to become aware of target domain.

B. TSIR

TSIR is created based on the target technology. Technology
details are embedded into the CDFG to make it technology
specific. E.g: for shift register, there will be shift register node
with the particular technology details.

C. TSL

TSL is a library of technology specific devices, defined
based on the target technology. E.g: for shift register, there
will be shift register device as per target technology.

IV. COMPILATION IN THLS

We present the details of this new design methodology with
few examples in the subsequent sections. IEEE standard 1364

Out <= Out + 1:
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Fig. 2. Compiler Transformations - THLS tool

HDL Verilog grammar is considered for the discussion.

A. Upcounter

Consider the Verilog code segment ‘out <= out + 1/,
which is a count operation. Parser in Icarus tool, converts
it into a parser expression binary object PE Binary. Parser
infers an addition operation here. Elaborator then converts
this into a structural adder object NetFEBAdd, a type of
NetEBinary object. Net EBAdd is a node in the generic IR
for addition operation. Synthesizer then transforms this into an
adder device NetAddSub from LPM. This ivl - LPM (Icarus
Verilog LPM) is a generic object, which can be mapped to
any target technology Technology 1 or Technology 2 and the
like. Optimizer applies optimization techniques and improves
this adder. Since this approach tries to synthesize for a generic
architecture, it infers an adder for a counter, though counters
are available in the target. Sequence of transformations for the
code segment ‘out <= out + 1/, under Icarus tool is given in
Fig.1.

Parser in THLS, on the other hand, converts the above code
segment into a parser expression unary object PEUnary.
Parser infers a count operation here. This makes elaboration
to generate a structural counter object NetINC, a type of
NetEUnary object. NetINC is a TSIR node. Synthesizer
transforms this into a counter device NetINR from TSL.
Optimizer then improves it. Sequence of transformations for
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the code segment ‘out <= out + 1’ under THLS tool is given
in Fig.2. Here target technology is considered as Virtex IV as
an example case. (Note: All objects referred in this paper are
C++ objects.)

B. Shift Register

This example, shift register, is slightly different, where
elaboration makes the inference. Consider the Verilog code
segment ‘reg [15 : 0]sr’, which is for shift register. Parser,
in Icarus tool, calls the make_wire function with the attribute
identifier!.name, and create parser wire object PWire,
for the identifier sr. It also creates a register variable entity.
Parser uses another production rule for assigning the range
for the register variable. It determines the range i.e. register
width. Parser also creates a vector (parser_expr) to store the
Most Significant Bit (MSB) and Least Significant Bit (LSB)
values of sr. Here ‘MSB’ and ‘LSB’ values are derived from
their corresponding attributes. Elaboration associates register
variable with range. Here, it infers a structural signal object
(sig). Synthesizer then transforms this into a set of flip-flop
devices from LPM. Optimizer applies optimization techniques
on them. This is the present approach. This approach holds
good for the Verilog source code segment ‘reg [7 : Olout’,
which represents a register. For the above mentioned code
segment ‘reg [15 : 0]sr’, which represents a shift register, this
approach will not hold good. This approach will implement
it as a set of registers, not exploiting the shift register feature
available in the target technology. This implementation is sub-
optimal, since it occupies more silicon area and consumes
more power.

Parser, in THLS, converts the same code segment into a
parser wire object PWire. It also creates a register variable
entity. Parser uses another production rule for assigning the
range for the register variable. It determines the range i.e.
register width. Parser also creates a vector (parser_expr) to
store the Most Significant Bit (MSB) and Least Significant
Bit (LSB) values. Elaboration associates register variable
with range. Then it infers a structural shift register object
(NetShiftreg), a TSIR node. The choice between register
and shift register is possible based on the width of the identi-
fier. It is the difference between MSB and LSB values, which
is dependent on target technology. Synthesizer transforms this
into a shift register device from TSL. Optimizer then improves
this.

C. Memories

In target technology, distributed Random Access Memory
(RAM), block RAM and Read Only Memory (ROM) features
are available. At present, the HLS infers a generic memory at
the compiler level, not making any choice, though it is clearly
represented in the input. Consider the Verilog code segment
‘reg mem[15 : 0], which is an array to be implemented
as memory in the target. In Icarus compiler, parser calls
make_wire function, for the identifier, with the attribute
identifier!.name and create a parser wire object PWire.
It also creates a register variable entity. It sets the attributes

‘expression’.val’ and ‘expression®.val’, as index values,
if they are constants. The attributes ‘expression'.val’ and
‘expression®.val’, which are array limits, represent its width.
These index values will, later, guide to infer a generic memory
NetMemory during elaboration, which is a node in generic
IR. Synthesizer will map it into a generic memory device
NetRamDgq from LPM. This is the present approach. It
will create complication and confusion in making a choice
among memories for the down stream tools and lead to sub-
optimal implementation sometimes. Consider the Verilog code
segment ‘reg mem/[15 : 0]’ in the source program, meant for
a distributed memory of 16-bit in the target technology. The
present tool has to rightly infer it as a distributed RAM, not a
generic memory. In some other cases, a block RAM memory
should be inferred. So it is imperative that the compiler should
infer rightly and make a choice of memory at this abstraction
itself.

In THLS, parser will infer the memory rightly at this
abstraction itself. It is possible based on the width of the identi-
fier given in the design, which is the difference between index
values. This is the deciding factor to make choice between
distributed RAM and block RAM; e.g. if the width is very
large, it is better to infer a block RAM. The best choice for
the code segment ‘reg mem/[15 : 0]’ is distributed RAM of 16-
bit. Here parser invokes the routine make_dis_ram with cor-
responding attributes identifier'.name, expression'.val
and expression®.val, based on the width of the iden-
tifier, which is dependent on target technology. Similarly
it invokes the routine make_block_ram with correspond-
ing attributes identifier!.name, expression'.wal and

expression?.val, based on the width of the identifier, which

is dependent on target technology. Later, elaboration will
elaborate either NetRamMemory or NetBlockMemory,
which are TSIR nodes for distributed and block RAM enti-
ties respectively. Synthesizer will then map them into either
NetRamMemoryDevice or NetBlockMemoryDevice,
which are TSL devices for distributed and block RAM entities
respectively. (Note: ROM is not considered here.)

V. IMPLEMENTATION FRAMEWORK

We modified Icarus Verilog Compiler to develop the THLS
tool. It is a compiler for the IEEE standard 1364 HDL Verilog.
It translates the Verilog source code into RTL netlist formats
for synthesis or other executable programs for simulation. The
currently supported targets are vvp for simulation and anf
and fpga for synthesis. It is an open source EDA (Electronic
Design Automation) tool and also a part of gEDA (gnu EDA)
[27].

We used Virtex IV, a high performance FPGA from Xil-
inx Inc, as the target technology. Its devices are user pro-
grammable gate arrays with various configurable elements.
The innovative Advanced Silicon Modular Block column
based architecture is unique in the programmable logic indus-
try. Virtex-IV contains three families LX, FX and SX, which
provide resources to develop logic, communication and digital
signal processing applications. A wide array of hard IP-core

488

Authorized licensed use limited to: NATIONAL INSTITUTE OF TECHNOLOGY SURATHKAL. Downloaded on February 24,2021 at 04:30:42 UTC from IEEE Xplore. Restrictions apply.



TABLE 11
DEVICE UTILIZATION 1 FOR UPCOUNTER

No. | Components | Icarus | THLS | ISE
1 LUT 8 0 7
2 XORCY 7 8 7
3 MUXCY 6 7 7
4 FDRE 8 8 8

(LUT - Look Up Table, XORCY - XOR gate with Carry,
MUXCY - Multiplexer with Carry, FDRE - D-Flip-Flop)

TABLE III
DEVICE UTILIZATION 2 FOR UPCOUNTER

[ No. | Metric [ Icarus [ THLS | ISE |
[ 1T [ GateCount | 101 | 95 [ 115 |

(Note: Gate count refers to Total equivalent gate count)

blocks are also available. Its devices are produced on a state-
of-art 90nm copper process using 300mm (12 inch) wafer
technology. There is up to 40 speed over previous generation
devices in the Configurable Logic Block (CLB) of Virtex-IV
[26].

VI. RESULT

We present here the result and analysis of two example
Verilog programs, eight-bit upcounter and 16-bit shift register.
We used Icarus, THLS and ISE synthesis tools for our ex-
perimentation. ISE is leading commercial synthesis tool from
Xilinx Inc [26]. The product version used is ISE 8.2.01i. We
executed the above mentioned example programs, in these
three synthesis tools and generated synthesized netlists. We
could generate programming files successfully in ISE 8.2.01i
for the target Virtex IV. We use synthesis and map reports to
compare and analyze the result of these three synthesis tools.

A. Upcounter

Table 2. gives the device utilization details based on syn-
thesis reports for upcounter implementation under these three
tools. Icarus and ISE tools use the target technology compo-
nents LUT, XOR gate with Carry (XORCY), Multiplexer with
Carry (MUXCY) and D-Flip-Flop (FDRE) for implementing
it. In Icarus, eight LUTs, which are meant for performing
logic functions, are used for counter implementation. LUTs are
powerful logic elements and they cannot be wasted like this.
This implementation will occupy four slices in a CLB of Virtex
IV. Similarly ISE uses 7 LUTs. On the other hand, THLS
tool exploits the carry-chain logic, XORCY and MUXCY,
meant for implementing counters in the target, leaving all the
eight LUTs free. THLS tool offers three times improvement
in silicon efficiency and four times improvement in speed over
the Icarus tool.

Table 3. gives the details of total equivalent gate count based
on map reports generated after technology mapping in ISE. It
is a metric to evaluate the tool’s silicon efficiency. THLS tool
has 1.06 times improvement in silicon efficiency over Icarus
tool and 1.21 times improvement over ISE.

TABLE IV
DEVICE UTILIZATION 1 FOR SHIFT REGISTER

No. | Components | Icarus | THLS | ISE
1 SRLC16 0 1 1
2 FDRE 16 0

(SRLC16 - 16-bit shift register with clock,
FDRE - D-Flip-Flop)

TABLE V
DEVICE UTILIZATION 2 FOR SHIFT REGISTER

No. Metric Icarus | THLS | ISE
1 Gate Count 128 72 72

(Note: Gate count refers to Total equivalent gate count)

B. Shift Register

Table 4. gives the device utilization details based on synthe-
sis reports for shift register implementation under these three
tools. Icarus tool uses 16 FDREs, whereas the THLS tool
uses single shift register (SRLC16) for the implementation.
The former occupies eight slices of two CLBs in the target
technology. The latter occupies only 1/2 slice, which is 1/4t"
of a CLB. THLS tool offers almost 16 times improvement in
silicon efficiency than the Icarus tool.

Table 5. gives details of total equivalent gate count based on
map reports generated after technology mapping in ISE. THLS
tool has 1.7 times improvement in silicon efficiency over the
Icarus tool. Both THLS and ISE have same silicon efficiency
in this case. ISE infer, first, a set of registers as Icarus. Later
at low level synthesis only, it infers a shift register. But THLS
infers it correctly at the elaboration itself.

VII. CONCLUSION

It is imperative that HLS must be aware of the target
technology for optimal hardware generation. Towards that we
suggested a new hardware compilation methodology called
THLS. We experimented this methodology for few examples
and generated optimal hardware. It achieves this optimization
at the cost of portability.
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