

415

Utilization of Map-Reduce for Parallelization of Resource
Scheduling using MPI: PRS

Likewin Thomas and Annappa B
Dept of Computer Science and Engineering, Centre for Wireless Sensor Network

National Institute of Technology Karnataka
Surathkal, Mangalore, India

likewinthomas@gmail.com, annappa@ieee.org

ABSTRACT
Scheduling for speculative parallelization is a problem that
remained unsolved despite its importance [2]. In the previous work
scheduling was done based on Fixed-Size Chunking (FSC)
technique which needed several ‘dry-runs’ before an acceptable
finalized chunk size that will be scheduled to each processors is
found. There are many other scheduling methods which were
originally designed for loops with no dependences, but they were
primarily focused in the problem of load balancing. In this work we
address the problem of scheduling tasks with and without
dependences for speculative execution. We have found that a
complexity between minimizing the number of re-executions and
reducing overheads can be found if the size of the scheduled block
of iterations is calculated at runtime. We introduce here a
scheduling method called Parallelization of Resource scheduling
(PRS) in which we first analyze the processing speed of each
worker based on that further division of the actual task will be
done. The result shows a 5% to 10% speedup improvement in real
applications with dependences with respect to a carefully tuned
PRS strategy.

Categories and Subject Descriptors
B.2.1 [Design Style]: Parallel; B.4.1 [Data communication
Devices]: Processors, Receivers, Transmitters [Master]; D.1.3
[Concurrent Programming]: Distributed Programming, Parallel
Programming; D.2.1 [Requirement/ Specification]: Tools- MPI;
D.4.1 [Process Management]: Scheduling, Multiprocessing/
Multiprogramming/ Multitasking; D.4.4 [Communication
Management]: Input/ Output, Message Sending, Network
Communication; E.5 [FILES]: Sorting.

General Terms
Algorithm, Experimentation, Management, Performance,
Standardization, Verification.

Keywords
Master-Worker, Parallel Computing, Map-Reduce, Scheduler,
Fixed Chunk Size (FCS), PRS, Critical Path Analysis (CPA).

1. INTRODUCTION
Many time-based applications require predictable performance and
tasks in these applications have deadlines to be met [3]. In this
work, we propose an efficient algorithm for scheduling of
dynamically arriving real-time tasks (a-periodic tasks) in
multiprocessor systems, a real-time task is characterized by its
deadline, resource requirements, and worst case computation time
on p processors [1], where p is the degree of parallelization of the
task. We use this parallelism in tasks to meet their deadlines and,
thus obtain better schedulability compared to non-parallelizable
task scheduling algorithms. The comparison study shows that the
schedulability of the proposed algorithm is better than that of the
parallel algorithm for a wide variety of real time task parameters,
hence based on the research work done on the resource
requirement, the resource scheduling strategy is studied, which
includes

 Task priority,
 Resource assign rule,
 Sharing resource of parallel task and
 Cross maintenance.

“An Efficient Dynamic Scheduling Algorithm for Multiprocessor
Real-Time Systems [1]” is work which shows that each processor
has its own dispatch queue. This organization, shown in Figure. 1,
ensures that the processors will always find some tasks in the
dispatch queues when they finish the execution of their current
tasks hence ensuring proper schedulability is always a threat for
scheduling process.

“Just-In-Time Scheduling for Loop-based Speculative
Parallelization[2]” is work which shows that trading-off between
minimizing the number of re-executions and reducing overheads
can be found if the size of the scheduled block of iterations is
calculated at runtime, hence much of the execution time will be
wasted during runtime for trading off.

Figure 1 Dispatch Queues

1.1 PRS Algorithms is Centralized.
In a centralized scheme, all the tasks arrive at a central processor
called the scheduler (Master), which determines the scheduling
credibility of each slaves registered with the master by performing
the pre-scheduling task:

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise,
or republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee.
ICCCS’11, February 12–14, 2011, Rourkela, Odisha, India.
Copyright © 2011 ACM 978-1-4503-0464-1/11/02…$10.00.

416

Map: Here it (master) decides which processor is capable of
satisfying the credibility of the arrived task:

Reduce: Since the performance result of centralized scheme was
founded to be more practically applicable when compared with the
distributed scheme even after it having its own limitation this work
is been framed on the skeleton of centralized scheduling scheme
[4].

2. MASTER SLAVE MODEL OF
PARALLELIZATION: Map-Reduce

The parallelization paradigm that is used for optimization of
resource scheduling is the Master-Slave model. This model is
aimed at distributing the (objective function which in our term is
called as task) evaluation of the individuals on several slave
computing resources while a master resource executes the
optimization procedure [5] by assigning the task to calculate the
optimization of each processor. The master-slave model is shown
in the. Figure 2

Figure 2. Master-Slave Model

It is very natural to use parallel computers to divide the task
assigned and to solve expensive functions parallel. However, the
key issue is that in most of cases we deal with heterogeneous
resources but here, the central computing resource i.e., the master,
based on the obtained solutions and gather information by
performance of the assigned task to the registered resources
optimization steps (such as ranking etc.) will be carried on.
However, waiting for the slowest processor might take a long time.
The main questions when solving problems on heterogeneous
computing resources are

(a) How to efficiently search the resources? And
(b) How to use all of the resources so that none of them stops
working?

This work provides the solution for the above said problems in
heterogeneous systems; by providing proper architecture of
master/slave model, where the master controls the entire operation
of assigning the dummy/ common task in Map phase to find the
computation capability of each resources and once that is obtained
the master then decides/ come to know the processing speed of the
available resources hence it then divides the work accordingly
based on their processing speed and send it to the workers available
in the cluster hence by doing so we are able to identify the slow
running worker in the cluster and then assign less part of actual
task to him.

3. PRS with Map-Reduce:
Analysis and Workloads Classification
In this section, we analyze the Map-Reduce working procedure,
and give a classification of workloads on Map-Reduce.

3.1 PRS procedure analysis
Map tasks are the collection of independent tasks which use
common input that are assigned to different nodes in a cluster in
order to calculate the processing speed of that node. In the other
hand, Reduce tasks depend on the output of map tasks. Here in the
first phase the master finds the computation capability of the
available resources in the cluster by the help of computation time
taken by them, once that is found in map phase then the actual
work is divided based on the computation capability of each
resources and then the actual divided task is assigned in the Reduce
phase for performing the desired operation; hence by doing so we
are able to overcome the disadvantage obtained in FCS Method, the
following figure clearly specifies the above description.

Figure 3. A PRS procedure analysis Map-Reduce

3.2 PRS: Schedule policies

Figure 4. Classification of workloads on PRS: Schedule policies

The tasks scheduler: master contains a CPU-bound queue where
the tasks whose computation has to performed will be present in
the queue for the completion of the map, once the map result are
obtained the master will be able to decide which resource is better
performing, based on that division of chuck size will be decided
and proper scheduling will be done. Reduce task is then is
performed by dividing the task into chunk based on the processing
capability of the each resources in the cluster, hence if there is a
resources which is either heavily loaded or slow running machine
in the cluster and getting the result in most appropriate time.

417

Figure 5. Map-Reduce in PRS

3.3 Map-Reduce in PRS
From the above diagram we are able describe the utilization of
map-Reduce in PRS, in the initial phase:

In this phase decision will be taken which processor is better
performer and who has to be given larger chunk size, here there is
availability of same sample tasks which will be assigned to all the
workers who are registered with the master in the cluster. Now the
workers receive this sample task, then the earliest start time and
earliest finish time will be recorded by the master.

Total time = Earliest Finish time - Earliest start time

Reduce Phase in PRS:

This is the phase where the actual computation begins now when
the master has collected the time taken by each worker, and it has
sorted the workers in the order of the priority of the performance,
master will divide the actual run-time task on which the
computation has to be done according to the order of the
performance of the worker.

4. PARALLEL SOFTWARE FOR
RESOURCE SCHEDULING

Algorithm

Step 1: Map Phase/Task: Send the dummy initial task to the entire
worker/resources that are registered with the master and then wait
for the workers to complete the task assigned, when the task gets
completed master receives/collects the result by each worker along
with the finish time.

MPI_Send(&sum,1,MPI_INT,k,1,MPI_COMM_WORLD);

Where:
Sum is the a task that is been assigned to the workers
1 is the size of the task
MPI_INT is the data type
K is an integer that is going to be initilized to the rank of
the workers
MPI_COMM-WORLD is communicator

This is been received by each worker, when the operation is
operated the time is set which is called as earliest start time and at

the end of the operation the earliest finish time is set. Now then
when we have the earliest start time and earliest finish time we can
find the total time required for the operation.

Step 2: Then call sorting algorithm to sort the time in ascending
order to find which worker has taken less time which is obtained in
map step based on the computational time taken by the resources.

Do while(time[i] less then mid)// here the time [i] is the
coparitive time of worker 1 and is compared to mid value time if
yes then do following

Begin while::
 i++; // here I is increamented and is pointing to 2 time
from right

while(time[j] greater then mid)// here the time[j] is the
time of worker 2 and is compared to the mid value weaather it is
greater then that or not and if greater then do following

 Begin while::
 j--; // here j is decremented and is pointing

to second from left of the array

 if(i less then & equal to j) // from above
incrementation and decrementation we will reach a point where
i will meet j then if i is less then j then swap as follow;

Begin if::
 y = time[i];
 time[i]=time[j];
 time[j]=y;
 i++;
 j--; end if
 End While
 while(i<=j)// if i is still less then or equal to j then call
function recursively hence we get sorted list at the end hence

 Begin while::
 if(low<j) sort(time,low,j);

 End if

 if(i<high sort(time,i,high); End if
 return 0;End While

Sample Task

Sample Task

Sample Task

Sample Task

Worker

Worker 1

Worker 1

Worker 1

Completion time1

Completion time2

Completion time3

Completion time4

Real task
which will
split based

on
completion

time

Worker1

Worker2

Worker3

Worker4

Map Phase Reduce Phase

418

Where i pointing to the first element of the unsorted array of time
and j is pointing to the last element of the array of time and then the
comparison begin as explained in the above algorithm.

Step 3: Now based on the output of the previous sorting method the
fastest processor will be identified, where the worker whose time
has come first in the sorted list is considered to taken very less time
hence we get the worker whose processing speed is high in the
cluster and from the sorted list we are able to identify the
processing speed of all of rest of workers in the cluster and once we
have the worker ordered in the order of their processing speed then
it is quite easy to divide the work which is actually going to be
allotted hence the work will be divided based on their processing
speed and following step clearly shows how the mathematical
calculation is performed to get the percentage of amount to be
divided to the workers.

for(i=1;i<mpiSize;i++) // this implies for all the workers

in the cluster

Begin for::
 percent=rem_per/size;// initially rem_per is
initialized to 100 hence by dividing it with size (number of workers
in the cluster we get the fixed chunk size)

 percent1[i]=percent+(percent/2);//hence
percent of 1st worker in the list of processing speed sorted worker
will be found where percent is already found in above calculation

 rem_per=rem_per-percent1[i];// Now rem_per
is re-initialized by subtracting it with already alloted percentage to
1st worker
 size--;// size is decremented as the 1 worker is
alloted the percentage
 following lines are used for converting the obtained
percentage into a whole number which is clearly explained with an
example below.

 percent2[i]=(float)percent1[i]/10;
percentfinal3[i]=(int)percent2[i];
percentfinal1[i]=percent2[i]-

(int)percentfinal3[i];

if(percentfinal1[i]>=0.5)
 Begin if

percentfinal3[i]= percentfinal3[i]+1;
 End if
End for

Where rem_per is initialized to 100. and the fastest processor is
alloted percent+(percent/2) where percent is rem_per/size and size
is size of the cluster;

Example:

If the percent1[i] is 33 then the percent2[i] will be 3.3 that will be
stored into an array of percent2[i]. Then percentfinal3[i] will be
calculated by converting the obtained percent2[i] into integer and
then percentfinal1[i] is an array which will obtain the decimal part
of the float that is been obtained. Hence percentfinal1[i] will
contain 0.3 of 3.3 which is the percent2[i].

This then will be compared with the 0.5 if it is less than 0.5 then
the percentfinal3[i] which is 3 will remain as it is else if it is greater
than 0.5 then percentfinal3[i] will be incremented/ added by 1.
Hence we get the whole number based on which the array will be
divided. Now the master will send this size of chunk to the
respective worker who is stored in worker array based on the
performance which is been calculated in the map-phase. Along
with the chunk size master will have to send the starting point of
the array to the worker so that the worker will be able to find from
where he will have to start his portion of work of computation.

Hence for that:

last_per[i]=last_per[i-1]+percentfinal3[i-1];

where last_per[1] is initialized to 0 i.e., the starting point of the first
worker will be 0 then the last_per[i] will be calculated for the
workers who priority stands from 2 to last worker, hence the
starting point of rest of the worker is found by adding the previous
chunk size to the previous starting point of the worker.

Step 4: Now sending the allotment to each processor along with
their starting point which is calculated

for(i=2;i<mpiSize;i++) Begin For::

last_per[i]=last_per[i-1]+percentfinal3[i];
 End For
where last_per[i] is initialized to 0 for first processor and
percentfinal3[i] is an array of allotement of each processor. Hence
at the end of this step the starting task will be decided for each
work.

Step 5: Now then based on percentage and starting point of the
each worker, each worker will be allotted the work load.

4.1 Critical path analysis (CPA)
Heart of PRS algorithm uses critical path analysis (CPA) [12] to
calculate a resource’s processing capability those are registered
with the master, which is done by the pre- mapping technique.
Hence at the end of CPA the master will be able to know the
processing capability of each processor registered with the master.
The workers follow the CPA process step-by-step and provide a
clear insight into how resource schedules are calculated by Task
Assignment by the master.

Critical path analysis (CPA) is a mathematical procedure that
calculates a resource's scheduling by taking each task in turn, it
firstly calculates how quickly the task can be accomplished its early
start and early finish time. The sample CPA process which is been
adopted in this work is shown in the following diagram which
clearly shows early start of a task and early finish.

Figure 6. CPA

Where:
ES: Early Start,
EF: Early Finish,
LS: Latest Start,
LF: Latest Finish.

ES 5 Sec EF

Task Name

LS TS LF

419

Hence from the CPA we are able to find the best path between the
master and the worker in the cluster through which the work can
assigned.

How CPA is adopted in PRS

Critical Path Analysis is a best performing and suggested tool since
1950 tool for finding the critical path of scheduling; hence it helps
in scheduling and managing complex resources.Critical Path
Analysis (CPA) or the Critical Path Method (CPM) was adopted in
PRS to find all resources that must be analyzed before assigning
the actual task begins so that the efficient path of allocation of
resources can be found which helps in effective resource allocation.
Hence, preparation of a schedule and of resource scheduling
planning can be done. During execution of the task by the help of
CPA we were able to monitor the working capability of the
resources present in the cluster they also helped to overcome the
fault by indicating where remedial action needs to be taken to get a
task back on course. The benefit of using CPA within the PRS is
that it helped us to develop and test our plan to ensure that it is
robust. Critical Path Analysis formally identifies resources which
must be allotted more percentage of divided tasks so that whole
task can be completed on time without leaving any resources idle
due to early completion compared to other resources. It also
identifies which tasks can be delayed if resource needs to be
reallocated to catch up on missed or overrunning tasks. A further
benefit of Critical Path Analysis is that it helped us to identify the
minimum length of time needed to complete a task hence by that
we were able to find out where we need to run an accelerated
project, it helps you to identify which task steps you should
accelerate to complete the task within the available time.

5. RESULT AND ANALYSIS

Figure 7. Time Graph of Parallelization of Resource
Scheduling

The Figure 7 shows the time taken when the work PRS was run on
10 machines starting from 2. The result effectively shows how the
time is properly distributed to achieve proper Resource Scheduling
and Scheduling of the task. The figure 8 is the result which was
obtained when a FCS parallelization algorithm was run for the
same task which was run for the PRS, the result clearly differentiate
the time taken when the no of machines were changed.

Figure 9 shows the comparison study for the normal parallelization
with PRS, from the study we easily notice that the time taken by the
proposed algorithm is much linear and better than that of the
existing work.

Figure 10 shows the speed up of 5 to 10% was obtained by PRS
when run in comparison with that of FCS, this is the speed up
obtained with the smaller chunk size hence by running it with
larger size of data we are able to achieve more rate of speed up
from the figure we are able to draw the speed-up generated by
providing the proper Resource scheduling for the normal
parallelization.

Figure 8. Time Graph of FCS Parallelization

Figure 9. Comparison of Time Taken by PRS and FCS

Figure 10. Speed Up of PRS

420

6. CONCLUSION
Meeting deadlines and achieving high resource utilization are the
two main goals of task scheduling in real-time systems. Hence this
work has been able to achieve these 2 goals with the high speed-up
of 5%-10% which is suggested to be greater turn in the world of
parallelization.

Parallelizable task scheduling considered in this work, is a solution
which tries to meet the conflicting requirements of high
schedulability with low overhead. In this work, we have designed a
new algorithm based on parallelizable task model for dynamic
scheduling of tasks in real-time multiprocessor systems. Speeding
up the parallelization is a challenging task which is been effectively
done in this work.

The comparison studies show that the success ratio offered by our
algorithm is better than that of the other algorithm for a wide
variety of task parameters. In our future work, we will try to
implement proper fault tolerance and more optimization of Parallel
Resource.

7. ACKNOWLEDGMENTS
Completion of a task is never a one man effort. It is often the result
of valuable contribution of number of individual in a direct or
indirect manner, which helps in shaping and achieving an
objective. It is my pleasant duty to thank all those who have been
helpful in various ways towards successful completion of this
project. The credit of the successful completion of the project
should go to the persons who rendered their consistent, constant
source of knowledge, timely suggestions and instructions towards
me.

First of all I wish to express earnest thanks and affection respect to
my honorable Prof and Head Of the Department Dr. Santhi
Thilagan, Dept of Computer Engineering for providing the required
facility and encouraging for the successful completion of the
project.

8. REFERENCES
[1] G.Manimaran and C.Siva Ram Murthy, Member, IEEE 1998

An Efficient Dynamic Scheduling Algorithm For
Multiprocessor Real-Time Systems IEEE Transactions on
Parallel and Distributed Systems, VOL. 9, NO. 3, MARCH
1998 PP No 312-319.

[2] Diego R. Llanos, David Orden, Bel´en Palop 2008 Just-In-
Time Scheduling for Loop-based Speculative Parallelization
16th Euromicro Conference on Parallel, Distributed and
Network-Based Processing 0-7695-3089-3/08 © 2008 IEEE
DOI 10.1109/PDP.2008.13 PP 334-342.

[3] Sanaz Mostaghim, J¨urgen Branke, Andrew Lewis, Hartmut
Schmeck 2008 Parallel Multi-objective Optimization using
Master-Slave Model on Heterogeneous Resources IEEE
Congress on Evolutionary Computation (CEC 2008) 978-1-
4244-1823-7/08 2008 PP 1981-1987.

[4] Chao Tian12, Haojie Zhou1, Yongqiang He 12, Li Zha 2009
A Dynamic Map-Reduce Scheduler for Heterogeneous
Workloads 2009 Eighth International Conference on Grid and
Cooperative Computing 978-0-7695-3766-5/09 © 2009 IEEE
DOI 10.1109/GCC.2009.19 PP 218 -224.

[5] K.Somasundaram, S.Radhakrishnan 2008 Node Allocation In
Grid Computing Using Optimal Resource Constraint (ORC)
Scheduling IJCSNS International Journal of Computer
Science and Network Security, VOL.8 No.6, June 2008
Manuscript received June 5, 2008. Manuscript revised June
20, 2008. PP 309-313.

[6] Ren Minglun, Zhu Weidong, Yang Shanlin Institute of
computer network Systems 2000 Data Oriented Analysis of
Workflow Optimization Proceedings of the 3'" World
Congress on Intelligent Control and Automation June 28-July
2,2000, Hefei, P.R. China.

[7] Nathan R. Tallent and John M. Mellor-Crummey, Rice
University 2009 Identifying Performance Bottlenecks In
Work-Stealing Computations 0018-9162/09 2009 IEEE
Published by the IEEE Computer Society.

[8] Changzheng Qu Liu Zhang Bo Zhang Mingjun Gao
Department of Equipment Command and Management,
Mechanical Engineering College 2009 Maintenance Resource
Scheduling Modeling by Petri net ICEMI’2009 The Ninth
International Conference on Electronic Measurement &
Instruments.

[9] Argy Krikelis Apsex Microsystems Ltd. Brunel University
“Application-centric parallel multimedia software” IEEE
Concurrency.

[10] Christopher H. Nevison 1995 Parallel computing in the
Undergraduate Curriculum Colgate University 0018-9162/95/
D 1995 IEEE December 1995.

[11] Slo-Li Chu, Tsung-Chuan Huang, Lan-Chi Lee 2001
Computer Improving Workload Balance and Code
Optimization in Processor-in-Memory Systems 0-7695-1 153-
8/010 2001 IEEE.

[12] Andy Jessop Project Learning International Performing
critical path Analysis.

[13] Jeffrey Dean and Sanjay Ghemawat 2004 Map-Reduce:
Simplified Data Processing on Large Clusters 0018-9162/95/
D OSDI IEEE 2004.

