
A novel data structure for efficient representation of

large data sets in data mining

#Radhika M. Pai , Ananthanarayana V.S.
National Institute ofTechnology Karnataka, Srinivasanagar P. 0, Karnataka-5 75025, India

e-mail. radhikampai@rediffmail.com, anvs@nitk.ac. in

Abstract--An important goal in data mining is to
generate an abstraction of the data. Such an abstraction
helps in reducing the time and space requirements of the
overall decision making process. It is also important that
the abstraction be generated from the data in small
number of scans. In this paper, we propose a novel data
structure called Prefix-Postfix structure(PP-structure),
which is an abstraction of the data that can be built by
scanning the database only once. We prove that this
structure is compact, complete and incremental and
therefore is suitable to represent dynamic databases.
Further, we propose a clustering algorithm using this
structure. The proposed algorithm is tested on different
real world datasets and is shown that the algorithm is
both space efficient and time efficient for large datasets
without sacrificing for the accuracy. We compare our
algorithm with other algorithms and show the
effectiveness of our algorithm.

Index terms-- Prefix-Postfix structure, PC-tree, PPC-
tree, Clustering, Data Mining, Data structure,
incremental algorithm, dynamic databases

I. INTRODUCTION

Clustering is an exploratory data analysis task and has
been widely applied in many areas such as pattern recognition
and image processing, information processing, medicine,
geographical data processing, and so on. Most of these
domains deal with massive collections of data. In data mining
applications, both the number of patterns and features are
typically large and cannot be stored in main memory and
hence needs to be transferred from secondary storage as and
when required. This takes a lot of time. In order to reduce the
time, it is necessary to devise efficient algorithms to
minimize the disk I/0 operations. Hence, the methods to
handle them must be efficient in terms of data set scans and
memory usage. Several algorithms have been proposed in the
literature for clustering large data sets[2,3,4,1 1].

Most of these algorithms need more than one scan of the
database. To reduce the number of scans and hence the time,

the data from the secondary storage are stored in main
memory using abstractions and the algorithms access these
data abstractions and hence reduce the disk scans. Some
abstractions to mention are the CF-tree[4], FP-tree[4], PC-
tree[8], PPC-tree[6], kd-trees[5], AD-trees[1]. The CF-tree[4]
is the cluster feature vector tree which stores information
about cluster descriptions at each node. This tree is used for
clustering. The construction of this tree requires a single scan
provided the two factors B and T are chosen properly. The
FP-tree[4] is used for association rule mining and stores
crucial and quantitative information about frequent sets. The
construction of this tree requires two database scans and the
tree is dependent on the order of the transactions. The kd-
tree[5] and the AD-trees[1] reduce the storage space of the
transactions by storing only the prototypes in the main
memory. These structures are well suited for the applications
for which they have been developed, but the use of these
structures is limited as it is not possible to get back the
original transactions. i.e. the structure is not a complete
representation. PC-tree[8] is one such structure which is order
independent, complete and compact. By using this structure,
it is possible to retrieve back the transactions. The PC-tree[8]
is a compact structure and the compactness is achieved by
sharing the branches of the tree for the transactions having
the same prefix. The tree generates new branches if the
prefixes are different. One more abstraction called PPC-
tree[6] is similar to PC-tree but it partitions the database
vertically and constructs the PC-tree for each partition
separately. The drawback of this structure is that, it is not
possible to retrieve back the original transactions and the use
of this structure in clustering is very much dependent on the
partitioning criteria. The advantage of this structure is that it
generates some synthetic patterns useful for supervised
clustering. Both these abstractions need only a single
database scan.

The problem with the PPC-tree is that, by looking at the
data set, it is difficult to predict the number of partitions in
advance. To overcome this, we came up with a new structure
called an Offset-tree which stores the first transaction as a
linked list with all the features present, (the node structure
being same as the PC-tree) and thereafter for subsequent
transactions, the count field is incremented if the features are

1-4244-0716-8/06/$20.00 ©2006 IEEE. 547

Authorized licensed use limited to: NATIONAL INSTITUTE OF TECHNOLOGY SURATHKAL. Downloaded on February 22,2021 at 10:41:25 UTC from IEEE Xplore. Restrictions apply.

same or else only the offset is stored as a sibling to the node.
This tree is very much compact than the PC-tree or the PPC-
tree. But, the problem with this structure is that, when used in
clustering, the accuracy drops down due to overtraining. The
failure of this structure inspired us to think of a structure
which lies in between the Offset-tree and the PC-tree, and the
result is this new structure which we call the Prefix-postfix-
structure. This name is given because the transactions which
have the same prefix or the same postfix have their nodes
being shared by both. This results in quite compact
representation and this doesn't have the problem of fixing the
number of partitions as in the case of the PPC-Tree.
In this paper, we propose a novel data structure which has all
the properties of the PC-tree and is still compact than the PC-
tree. The compactness is achieved by sharing the branches of
the tree for the transactions having the same prefix as well as
the same suffix. This type of transactions in which the prefix
or the suffix being same with other transactions occur
naturally in the handwritten digit dataset.
For e.g. Consider the patterns which represent the digit 2 as
given in Figure 1. For simplicity , we just show a 4x4 matrix
for a pattern. But the real world datasets have orders which
are very larger than this for each pattern.
In the patterns given in Figure 1, the empty cells are
considered as zeroes. By taking the positional values of the
cells having ones, each pattern can be represented as a feature
list as follows.

Pattern #1:
Pattern #2:
Pattern #3:
Pattern #4:

1,2,3,7,10,13,14,15
0,1,2,3,7,9,10,12,13,14,15
1,2,3,5,7,10,13,14,15
1,2,3,4,7,10,12,13,14,15

Pattern #1 Pattern #2 Pattern #3 Pattern #4
Figure 1. Patterns for digit 2

In the PC-tree, if two transactions have different prefixes as

for patterns numbered 1 & 2, the algorithm results in 2
separate branches, even though the two transactions have the
same suffix. In our structure, we propose to reduce the space

further, by sharing the branches of the transactions having the
same suffix also.
Thus for patterns 1 and 2, the initial branch will be different
but later will have their branches merged. Further advantage
of this structure is that it generates some synthetic patterns
which help in increasing the accuracy of clustering algorithm.
The advantage of this structure is that using this structure one

can get back the original transactions as required by some

other applications as well as generate some synthetic patterns
not present in the original transactions which can aid in
clustering.

The paper is organized as follows. The novel
structure, the PP-structure, is described in Section 2, the

experimental results are discussed in section 3 and section 4
gives the conclusion.

II. PREFIX-POSTFIX STRUCTURE(PP-STRUCTURE)

The PP-structure is an abstract and compact representation
of the transaction database. It is also a complete
representation, order independent and incremental.
Let I il,i2....... in} be a set of items. A transaction is a non-
empty ordered subset of I.
A pattern is a nonempty ordered subset of a transaction.
We consider both transactions and patterns as ordered subsets
where item numbers appear in an increasing order.
A prefix-postfix structure stores all transactions of the
database in a compact way.
Each node of the PP-structure consists of four fields.
They are

'Feature' specifies the feature value of a pattern.
'Count' is a signed field. The absolute value specifies the
number of patterns represented by a portion of the path
reaching this node. The sign bit being 1 indicates that the
current branch is attached to an existing branch because
of the same suffix. This portion differs from that of the
PC-tree.
'Child_pointer' represents the pointer to the following
path.
'Sibling_pointer' points to the node which indicates the
subsequent other paths from the node under
consideration.
Figure 2 shows the node format of a PP- structure.

Feature Count Child_pointer Sibling_pointer

Figure 2. Node structure of the PP-structure

A. Construction ofthe PP-structure
The algorithm for the construction of the PP-structure is
as follows.
Let T, be the transaction database
Let root of the PP-structure be T
For each pattern, ti g Tr
Let mi be the set of feature values in ti
If no sub-pattern starting from T (prefix pattern) exists

corresponding to mi then
create a new branch, with a node having 'feature'

fields as first feature value of mi and count field with
value set to 1.

else
put the values of mi in an existing branch eb by

incrementing corresponding absolute count field values
of the nodes in eb When there is no match, create a new
branch with node having feature value as the first
mismatched feature value of mi and count value as 1.
Search the PP-structure already constructed and find a
maximal branch xb of the PP-structure whose nodes
match with the maximum length suffix of the values in
mi let mik be the feature value in mi from where the
suffix matches with the feature values of the in xb For

548

Authorized licensed use limited to: NATIONAL INSTITUTE OF TECHNOLOGY SURATHKAL. Downloaded on February 22,2021 at 10:41:25 UTC from IEEE Xplore. Restrictions apply.

the feature values from current position to mik create
new nodes with feature values equal to values in the set
mi and count field equal to 1. Attach it to Xb and
increment the count field of Xb by 1. Set the count value
of the node which is attached to eb as -count.

If no branch Xb is found, create new nodes with feature
values equal to the feature values in mi and count field set to
1 till the end of set mi.

Retrieval.
For each branch of the PP-structure,
Traverse the branch and print the feature value of each

node and decrement the count value.
Repeat the above step for all branches.

B. Comparison ofPP-structure and PC-tree
The PC-tree[8] compacts the database by merging the

nodes of the patterns having the same prefix. But in the PP-
structure, still compaction is achieved by merging the
branches having the same suffix also and so the number of
nodes is reduced thus saving considerable space.

An example: Consider the following set of transactions as
shown in Figure 3(a). The first column gives the transaction
number, the second column gives the set of features and the
last column gives the label. The PP-structure and the PC-tree
for the set of transactions of Figure 3(a) is given in Figure
3(b) and Figure 3(c) respectively. In the figures, the nodes
are indicated by circles, the right arrow is the child pointer,
the downward pointer is the sibling pointer. The first number
inside the circle is the feature value and the number after the
colon is the count. The last node in all branches is the label
node.

Trans.#

1
2
3
4
5

Features Label

1,2, 3, 4, 5, 8, 9,10,11,12,14,15
1,2,3,4,7,10,1 1,12,14,15
2,3 ,4,5, 6,12, 14,15
2, 4,5,7,9,12,13,14
2,4,5,6,8,12,13,14

0
0
0
3
3

Figure 3(a). Sample set of transactions

-e24-a2(~.!27j 9.%1-5?. 812- 13- 02 :-e 112-> 1323 5~K+5.13-?

671

Figure. 3(b) PP-structure constructed for the set of transactions in Figure 3(a)

1111tQ-.3---V ÷ -eK9-(81 - 91 *-e10 1 - i e>ii-÷ii-> 51>0

{ 71 - >01 >i--K(¶j01±I3iXCi->s- oi
2 307D -e 1 ->(12 1:-> 14

C42

60 1 '-> 121: 13 1 -*-1D41-5sS

Figure. 3(c) PC-tree for the set of transactions in Figure 3(a)

549

Authorized licensed use limited to: NATIONAL INSTITUTE OF TECHNOLOGY SURATHKAL. Downloaded on February 22,2021 at 10:41:25 UTC from IEEE Xplore. Restrictions apply.

From the figures, we see that the PP-tree requires 30 nodes
whereas the PC-tree requires 44 nodes, the node structure
being same in both the cases.

C. PP-structure based clustering algorithm
Let c be the number of classes.
For each branch bj in the PP-structure T
Find the matches between the test pattern and the branch bj.

let it be Ci
Find k largest counts in decreasing order. Let them be Cl, C2

..., Ck and let the corresponding labels be 01, 02, *k-
For p=1 to k
Compute the weight, wp 1 - (CP _ Cl) / (Ck_ CP)

For n = I to c
Sumn = km=I(wm) where (om == n)
Output (label = o°) for which Sum, is maximum for x C

{1,2,...c}

III. EXPERIMENTS AND RESULTS

To evaluate the performance of our algorithm, the
following three real world datasets are considered.

A. Dataset 1. OCR data
This is a handwritten digit dataset. There are 6670 patterns in
the training set, 3333 patterns in the test set and 10
classes.[6,7,8,12]. Each class has approximately 670 training
patterns and 333 test patterns. Each pattern represents a digit
which is in the binary matrix form of order 16 x 12. The
binary matrix form of the digit is treated as transactions by
considering the positional value of the features having value
as 1. Thus each handwritten digit pattern has a maximum of
192 features.

We conducted experiments separately with
2000(200 patterns from each class), 4000(400 patterns from
each class) and 6670 training patterns(667 patterns from each
class) and compared our results with PC-tree based clustering
algorithm, the PPC-tree based algorithm and the k-NNC
algorithm. In PPC-tree based algorithm we chose the number
of partitions as 4. In all the cases the k-value was chosen as
15. The results are summarized in Table-1.

Table-1 shows the comparison of PP-structure based
clustering algorithm, the PPC-tree based algorithm and the
PC-tree based clustering algorithm. For completeness, we
have also compared our algorithm with the k-NNC algorithm.

Table-2 shows the results of various algorithms on
this data set.

B. Dataset 2 USPS data
This is a handwritten digit dataset which is a collection of
handwritten digits scanned from the U.S. postal services[9].
There are 7291 patterns in the training set and 2007 patterns
in the testing set and 10 classes. Each pattern represents a
digit and has 256 features which is in the form of a 16x16
matrix, each having a feature value as a normalized real
number in the range [-1..+1]. This pattern is converted into
binary matrix by taking the feature with a value -1 as 0 and
the remaining as 1. Again this matrix of features is converted
to a transaction by taking the positional value of the features

which have a value 1. We have compared our algorithm with
the PC-tree based algorithm, the PPC-tree based algorithm
with four partitions and the k-NNC algorithm. In all the
algorithms, we have chosen the value of k as 5.

C. Data set 3. MNIST data
This is a data which is a mixture of the NIST(National
Institute of standards and technology) special database 3 and
1 [10]. This is collection of handwritten digits written by
census bureau employees and high school students. This is a
large data set having 60000 patterns in the training set and
10000 patterns in the test set and 10 classes. Each pattern is in
the form of a matrix of order 28x28. Each feature has a value
in the range 0 to 256. The value of 0 corresponds to the
background gray value and the other corresponds to the
foreground value. This matrix is converted to a binary matrix
by taking the background pixel value as 0 and foreground
pixel value as 1. This binary matrix is converted into a
transaction by taking the positional value of the feature
having a value 1. We have compared our algorithm with the
PC-tree based algorithm and the PPC-tree based algorithm
with 4 partitions.. We have not run the k-NNC algorithm as
this is very expensive because of the large size of the data set.
The data set can't be stored in the main memory and requires
more than one data set scan.

All the experiments are executed on Xeon processor based
Dell workstation precision 670 series having a clock
frequency of 3.2 GHZ and 1 GB RAM. In each case, the
classification accuracy, the memory space used, and the time
(which includes both the design time and the testing time) is
recorded. The results are tabulated in Table- 1.
From the results we see that for OCR data, PP-structure
based algorithm gives best results in terms of accuracy and
space for 6670 transactions. The number of partitions fixed
for the PPC-tree based algorithm for this dataset is 4.
For USPS data set, we observe that the PP-structure based
algorithm gives good results in terms of accuracy. Though the
k-NNC algorithm consumes less space than the PP-structure
for this data set, the k-NNC algorithm fails for large data sets
as the data set cannot be fitted in the main memory and the
algorithm requires more than one data set scan. For this data
set, we have fixed the number of partitions in the PPC-tree
based algorithm as 4.
For the MNIST data set, we observe that the PP-structure
outperforms the other algorithms with respect to time, space
and accuracy. Here, we have fixed the number of partitions
in PPC-tree based algorithm as 4.
From these experiments, it is evident that the PP-structure is
an efficient abstraction for large datasets. The clustering
algorithm based on this structure is efficient in terms of time,
and space without sacrificing for the accuracy.

IV. CONCLUSION

In this paper, a novel data structure called Prefix-Postfix
structure is proposed which stores the transactions of a
transaction database in a compact way. This structure is

550

Authorized licensed use limited to: NATIONAL INSTITUTE OF TECHNOLOGY SURATHKAL. Downloaded on February 22,2021 at 10:41:25 UTC from IEEE Xplore. Restrictions apply.

complete, order independent and incremental and is suitable
to represent dynamic databases. The use of this structure in
clustering is also proposed and the effectiveness of the
algorithm for large data sets is established by comparing our

algorithm with other algorithms such as the PC-tree based
algorithm, the PPC-tree based algorithm and the k-NNC
algorithm. The PP-structure based algorithm is found to
outperform other algorithms for large data sets in terms of
time, space and accuracy.

The performance of the algorithm is evaluated by testing the
algorithm with 3 different datasets of handwritten digits and
the effectiveness of our algorithm is thus established.

REFERENCES

[1] Andrew Moore, Mary Soon Lee, (1998), "Cached
sufficient statistics for efficient machine learning with large
datasets", Journal of Artificial Intelligence Research 8
(1998), pages 67-91.
[2] Anil K.Jain, Richard C.Dubes (1988), "Algorithms for
Clustering Data", Prentice Hall Advanced Reference Series.
[3] A.K.Jain, M.N.Murty, P.J.Flynn(1999), "Data Clustering:
A Review", ACM Computing Surveys, vol. 31, No.3,
September 1999, pages 264-323.

[4]Arun K, Pujari(2001), "Data Mining techniques",
University Press 2001.
[5] Friedman J.H., Bentley J.L., Finkel R.A.(1997), "An
algorithm for finding best matches in logarithmic expected
time",ACMtrans. Math software 3 (3), pages 209-226
[6]P.Viswanath, M.N.Murthy(2002), "An incremental mining
algorithm for compact realization of prototypes", Technical
Report, IISC, Bangalore.
[7]M.Prakash, M.Narasimha Murthy(1997), "Growing
subspace pattern recognition methods and their neural
network models, IEEE trans. Neural Networks 8(1) 161-168.
[8]V.S.Ananthanarayana, M.Narasimha Murty,
D.K.Subramanian(2003), "Tree structure for efficient data
mining using rough sets", Pattern Recognition Letters,
vol.24(2003),pages851-86.
[9] http://www.cs.cmu.edu/15781/web/digits.html
[10]http://wwwi6.informatik.rwthaachen.de/keysers/usps.ht
ml
[11] R.O.Duda, P.E.Hart (1973), "Pattern Classification and
Scene Analysis", Wiley, New York.
[12]T.Ravindra Babu, M.Narasimha Murthy(200 1),
"Comparison of Genetic Algorithms based prototype
selection scheme", Pattern Recognition 34 (2001), pages523-
525.

Table 1. Comparison of PP-tree, PC-tree, PPC-tree and k-NNC based Algorithms

551

Expt. No. Dataset Algorithm Storage space (in Time in secs. Accuracy
bytes) to store (Training time +
training patterns testing time)

OCR data PP-structure 1123696 34 89.56
(2000 based algorithm
patterns) PC-tree based 1406528 153 89.56

algorithm
PPC-tree based 1119280 131 41.58
algorithm(with 4
partitions)*
k- NNC 1544000 18 89.44

2 OCR data PP-structure 2070112 110 92.04
(4000 based algorithm
patterns) PC-tree based 2717792 245 91.96

algorithm
PPC-tree based 1970304 198 41.01
algorithm(with 4
partitions)*
k-NNC 3088000 31 91.90

3 OCR data PP-structure 3216400 863 93. 76
(6670 based algorithm
patterns) PC-tree based 4408256 386 93.61

algorithm
PPC-tree based 3812320 314 64.3
algorithm(with 4
partitions)*
k-NNC 5149240 47 93.55

4 USPS data PP-structure 7991504 554 93.27

Authorized licensed use limited to: NATIONAL INSTITUTE OF TECHNOLOGY SURATHKAL. Downloaded on February 22,2021 at 10:41:25 UTC from IEEE Xplore. Restrictions apply.

* For the PPC-tree based algorithms, we have chosen the number of partitions as 4 in all the experiments. The accuracy, time
and storage space varies depending on the number of partitions.

Table 2. Results of various classifiers on the OCR data set

Algorithm Accuracy(%)
Leaders[12] 92.9
Medoids[12] 91.18
k-NNC[11] 93.55
GSM[7] 90.8
EALSM[7] 92.0
ALSM[7] 91.1
GLSM[7] 91.0
MLP[7] 90.4
PC-tree based[8] 93.61
PPC-tree based algorithm with 4 64.3
partitions[6]
PP-structure based 93.76

552

based algorithm
PC-tree based 10030656 537 92.68
algorithm
PPC-tree based 6490336 337 92.23
algorithm(with 4
partitions)*
k-NNC 7495148 39 93.27

5 MNIST PP-structure 108528480 5996 96.5
data based algorithm

PC-tree based 126535296 28451 96.5
algorithm
PPC-tree based 77355312 17182 68.3
algorithm(with 4
partitions)*
k-NNC 188400000 cannot be stored Not Implemented

in main memory as it is expensive

Authorized licensed use limited to: NATIONAL INSTITUTE OF TECHNOLOGY SURATHKAL. Downloaded on February 22,2021 at 10:41:25 UTC from IEEE Xplore. Restrictions apply.

