

Aggregate TCP Congestion Management for Internet QoS

Hemkumar D
Department of Computer Science & Engineering

National Institute of Technology, Karnataka, Surathkal
Mangalore, India

e-mail: 1986.hem.kumar@gmail.com

K. Vinaykumar
Department of Computer Science & Engineering

National Institute of Technology, Karnataka, Surathkal
Mangalore, India

e-mail: vinaykumarin2000@yahoo.com

Abstract— In this project we study the one of the most
important performance in aggregate congestion control is
fairness, i.e. the equal use of resources. The objective of
Aggregate TCP congestion management is to achieve the fair
sharing of the bottleneck bandwidth between the aggregate
and other background TCP flows. There are many existing
mechanism to prove the fairness property but none of
mechanism proves fair share of the aggregated flows even
where the number of flows in the aggregate is large. To solve
this problem, unlike existing mechanism there are two
congestion window loops, one is that loss event rate loop and
other one is throughput control loop. Throughput control
loop is used to adjust its window size with a weight N.
Finally our simulation results prove an algorithm providing
for fairly services to TCP flows that share a bottleneck link
between the aggregate and other background TCP flows
even where the number of flows in the aggregate is large.

Keywords- TCP, Fairness, Congestion Control

I. INTRODUCTION
There are many existing protocols is performed in end-

to-end measurement like SCTP[8], DCCP, TCP. These
protocols are maintained for managing network
information available from other flows, especially the
information from other flows sharing the same bottleneck.
This might result in low efficiency of resource utilization.

Aggregate TCP flow management mechanism is used
for improving network utilization. Its main idea is to
cooperation between flows sharing the same bottleneck.
Multiple flows sharing the same bottleneck are aggregated
into a single flow or a smaller number of flows in an
aggregate flow management scheme. Thus a grain of
resource management is performed, while details of
individual flows are hidden. Aggregate flow management
is applied at a route and flows traversing a bottleneck link.
These flows are controlled by the end host or a router,
rather than independently. Aggregate flow management
has also been applied in various applications, such as
edge-to-edge QoS overlay services, a coordination
protocol for distributed media applications, wireless TCP
proxies for addressing network heterogeneity, and an
overlay network architecture providing DoS-limiting as
well as resilience on network edges. And also it could be

used in modern storage networks in which a huge amount
of block data is exchanged over a single TCP connection.

In this mechanism one of the most important properties
in aggregate congestion control is fairness, i.e. the equal
share of resources. Flowshare was defined for
characterizing fairness in aggregate congestion control. A
flowshare is defined as the bandwidth utilized by a one
congestion controlled flow, i.e. a one TCP connection.
In the aggregate TCP flow management, one standard TCP
congestion window loop is used for the aggregate. Both
the aggregate and each of the m background flows are
allocated

�

���
share of the bottleneck link bandwidth, and

also there are N flows within the aggregate. This is not
equally share, since the share of the bottleneck bandwidth
allocated to each flow within the aggregate TCPs is

�

(���)�
, while that allocated to each background flow is

�

���
. In figure 1, N flow shares should be allocated to an

aggregate having N flows under a good aggregate
congestion control mechanism, i.e. the share of the
bottleneck bandwidth allocated to the aggregate TCPs
should be

�

���
. Therefore, the aggregate congestion

control should support multiple flow shares so as to ensure
a fair share of the bottleneck link bandwidth for the
aggregate.

Figure 1: The aggregate traffic with the bandwidth of multiple flow
shares

2012 International Conference on Computing Sciences

978-0-7695-4817-3/12 $26.00 © 2012 IEEE
DOI 10.1109/ICCS.2012.10

375

2012 International Conference on Computing Sciences

978-0-7695-4817-3/12 $26.00 © 2012 IEEE
DOI 10.1109/ICCS.2012.10

375

2012 International Conference on Computing Sciences

978-0-7695-4817-3/12 $26.00 © 2012 IEEE
DOI 10.1109/ICCS.2012.10

375

Authorized licensed use limited to: NATIONAL INSTITUTE OF TECHNOLOGY SURATHKAL. Downloaded on April 09,2021 at 09:39:23 UTC from IEEE Xplore. Restrictions apply.

The contribution of this paper is to improve fairness of
the bottleneck bandwidth in aggregate TCP congestion
control mechanism; it extends MulTCP[6] with one more
window, which improves fairness without the need of
managing numerous window states. Our simulation results
show that aggregate can hold its fair share of the
bottleneck bandwidth while other TCP flows are also
treated fairly.

The outline of this paper is as follows. Related
techniques supporting multiple TCP flows in aggregate
congestion control are explained in Section 2. Our design
of proposed mechanism is explained in Section 3. Our
simulation results are shown in Section 4, finally, our
conclusions are explained in Section 5.

II. RELATED WORK

There are many protocols proposed for improving

fairness by multiple TCP flowshares, e.g. MulTCP , CP
and MPAT. The Additive Increase Multiplicative
Decrease (AIMD) algorithm is the congestion control
mechanism used in standard TCP. It is modified in
MulTCP[6] for enabling an aggregate to show the
behaviour of multiple concurrent TCP connections. And it
has been demonstrated that beyond small values of N, a
MulTCP flow fails to behave like N independent TCP
flows. In other words, the throughput of MulTCP does not
increase proportionally to the number of flows within the
aggregate, especially when N > 4. And also noted in that,
loss behavior of a single MulTCP[6] flow is quite different
from that of N independent TCP flows. This leads to an
increasingly unstable window adjustment as N increases.
Hence it is clear that the MULTCP[6] not satisfy the
fairness property, when N is larger than four.

Another existing mechanism MPAT, the number of
congestion window loops in MPAT is the same as the
number of flows within the aggregate. As a result, the
several number of congestion window states are
maintained. And also, each congestion window loop in
MPAT probes the network condition independently, which
results in competition among different congestion window
loops. This may leads to degrade performance.

III. DESIGN

As we know that, none of the existing mechanisms

does not prove fairly share the bottleneck bandwidth
between the aggregate and other background flows. Based
on the drawbacks of existing mechanisms i.e., congestion
window adjustment. Instead of one window loop we are
maintaining two congestion window loops. These two
AIMD window loops are not maintained two separate
connections, i.e. one MulTCP connection and one
connection. Instead of two connections we are maintained
inside a single connection. The one standard TCP loop acts
as a loss event rate detector, it calculates the loss event rate
of a standard TCP flow. Other one act has a throughput
controller. It adjusts its window size with a aggregate N

TCPs, which is similar to that in MulTCP[6]. The
maximum window size is calculated based on the loss
event rate that is detected by the other window loop.

The maximum window size is calculated from the loss
event rate measured by the probe window loop. Here
AIMD (1, 1/2) is used for the probe window loop. The
measurement of loss rate is also important to the window
loop. Loss rate should be measured as loss event fraction,
whereas loss event consists of one or more packets
dropped within a single RTT. A loss event rate is
calculated by constructing a loss history and identifying
loss event rate. But the loss event rate is calculated on the
sender’s side, rather than on the receiver’s side.

Other window loop is used for throughput controller.
Based on the loss event rate, it adjusts its congestion
window size with a weight N, which is similar to that in
MulTCP[6], but under a limitation on its maximum
window size. The maximum window size is measured
based on the loss event rate that is detected by the loss rate
window loop. Here, AIMD (√�,

�

��	�
.�
) is used for the

throughput controller window loop. Another challenge in
the design of the throughput controller window loop is
how to adjust the congestion window size, given the loss
rate that is calculated by the loss rate window loop. These
two AIMD window loops are not maintained two separate
connections i.e. one MulTCP[6] connection and one
standard TCP connection. Instead of two connections we
maintained inside a single connection.

The proposed mechanism is based on one of the
existing mechanism i.e., MulTCP, MulTCP is a collection
of multiple virtual TCPs. The working procedure of
MULTCP[6] is that during slow start a TCP opens its
congestion window exponentially and by sending two
packets for every acknowledgement received. In
MULTCP[6] achieved the same behavior, if it sent N
packets at start and then two packets for every
acknowledgement received. If N is large, this leads to
large amount of losses. So MulTCP uses a smoother
option. It starts sending a single packet like a normal TCP.
After that, it sends three packets for each
acknowledgement received until it has opened its
congestion window as far as N TCPs would have.

Crowcroft and Oechslin proposed MulTCP,
AIMD(�,

�

��
) is used in MulTCP, instead of

AIMD(1, 1/2) in the standard TCP, for achieving the
behavior of N concurrent TCP connections using the same
congestion window loop.

The parameters behind AIMD (�,
�

��
) ,The

congestion window size of a single TCP flow is increased
by one packet per RRT in the standard TCP, similarly the
congestion window size of N virtual TCP flows is
increased by N packets per RRT in MulTCP then the
Increase parameter a = N .

If one packet is lost, only one of the N TCP flows half
of its congestion window size in the standard TCP.
Simillarly, the congestion window size becomes (1 −

376376376

Authorized licensed use limited to: NATIONAL INSTITUTE OF TECHNOLOGY SURATHKAL. Downloaded on April 09,2021 at 09:39:23 UTC from IEEE Xplore. Restrictions apply.

�

��
)NW in MulTCP[6] then the Decrease parameter b =

�

��
. In MULTCP it uses the parameter AIMD (�,

�

��
) but

in throughput control window loop, it uses the parameter
of AIMD (√�,

�

��	�
.�).
After K round trip times N TCPs have a congestion

window of N∗ 2
 . One MUlTCP sending three packets
for each acknowledgement would have a window of 3
.
Thus they have the same window after �� round trip

times where �� =
��� �

��� 	���� �

If (cwnd < ssthresh)
 {
If (cwnd<=pow(3.0,1og(√�)/(log(3)-log(2))))
 cwnd += 2;
 Else
 cwnd += 1;
 }

It happens only when the window has a size of

�� = 3
� when packet is loss, it half of its congestion
window and sets slow start threshold to the new value of
the congestion window and goes back to linear increase.
When N TCPs are sending data and one packet is lost,
only one TCP will half of its window. Thus MulTCP[6],
when it happens loss, only half one Nth of its congestion
window and by setting cwnd and ssthresh to

(� � �.�)

�
 of

cwnd. But we are used parameter AIMD (√�,
�

��	�
.�),

so set the ssthresh to
(�
.���)

(�
.���)
 of cwnd.

If (cwnd < ssthresh)
 cwnd = cwnd/2;

Else

 cwnd = cwnd *
(�
.���)

(�
.���)
;

 ssthresh = cwnd;

When there are too many losses within one RTT,

timeouts occur and transmission restarts with a slow start
after the last acknowledged packet. N TCPs are less
timeout than that of one MulTCP[6]. Since the losses are
distributed over N connections and the probability that one
TCP experiences enough losses within one RTT to make it
is smaller. And if one TCP should stall, the (N-1) others
can still go on sending. Thus after the slow-start is over the
MulTCP will have the same window as N TCPs would
after one of them has done a slow-start. This ensures that
the loss rate loop experiences a loss event rate, which is
similar to that of standard TCP flow sharing the same
bottleneck link.

So this mechanism is designed to improve efficiency
and fairness of the aggregate congestion control, while
achieving the desired throughput given the weight N for an
aggregate.

IV. EVALUATION
Our simulation is performed on ns-2[1]. The Aggregate

TCP flow management mechanism is implemented based
on MulTCP[6], A network topology having only one
congested bottleneck link is used, which has 10ms delay
and drop-tail queue management. The buffer size is always
set to the delay-bandwidth product. The packet size is
1500 bytes. MulTCP cannot provide fair sharing for the
aggregate. We will show that proposed mechanism
improves fairness property. Our simulations demonstrate
that, aggregate TCPs competes with m standard TCP flows
over a shared bottleneck link, where N spans from 2 to 30
.The bandwidth of the bottleneck link is set to 3 Mbps and
The simulation time is 200 seconds.

We ran 5 aggregates, each with a different value of N,
together with respective background TCP flows. The five
aggregates use N = 10, 14 and 20. We then replaced each
aggregate with the different number of independent TCP
flows. Figure 2 shows the bandwidth for each of the five
aggregates, with data points sampled every 1sec.

Figure 2: Bandwidth utilization of aggregate N TCP flows

Figure 3 shows fairness index under different weight
N. Table contains number of aggregate TCP flows along
with number of background flows, throughput of
aggregate and throughput of background flows. We define
fairness index as the performance ratio for calculating
fairness of the long-term sending rate. It is the average
throughput of N flows within the aggregate divided by the
average throughput of m background standard TCP flows:

377377377

Authorized licensed use limited to: NATIONAL INSTITUTE OF TECHNOLOGY SURATHKAL. Downloaded on April 09,2021 at 09:39:23 UTC from IEEE Xplore. Restrictions apply.

No.Aggre-
TCP

No.BG-
TCP

Aggre-
Throughput

BG-
throughput

 Fairness
Index

12 6 1899975 973145.7 0.98
14 6 1973789 827015.1 1.022
16 7 2018955 878030.2 1.006
18 7 2049769 785206 1.0151
20 7 2205317 750834.2 1.02
24 11 1980422 868663.3 1.04

Figure 3: Fairness index under different weight N

Figure 4: Fairness property of aggregate N TCP flows

 Fairness index =
�
�

�
�

 ∑ ����!
�
!"�

Where T is the throughput of the aggregate and #$%&'

is the throughput of the ith background standard TCP flow.
If the fairness index is equals one, it means that the
aggregate TCP’s fairly shares the bandwidth with the other
background TCP flows. If the fairness index is less than
one, the aggregate losses the bandwidth to the background
TCP’s. Otherwise, the aggregate is more aggressive than
the background TCP flows. Figure 4 shows that the
aggregates i.e., N=12,14,16,18,20 and 24 are
approximately equal to ideal. So we prove that, to achieve
the fair sharing of the bottleneck bandwidth between the
aggregate and other background TCP flows, where the
number of flows in the aggregate is large.

V. CONCLUSION
The paper demonstrates that providing differential

services, among a group of TCP flows that share the same
bottleneck link. Single flowshare in aggregate congestion
control mechanism results in unfairness between the
aggregate and the background flows, which are sharing the
same bottleneck. There are many existing mechanism to
prove the fairness property but none of mechanism proves
fair share of the aggregated flows even where the number

of flows in the aggregate is large. But this paper concludes
this challenge. We demonstrate on ns-2 simulation that fair
sharing of the bottleneck bandwidth between the aggregate
and other background TCP flows. That result is fairer than
MulTCP[6] over a wide range of the weight N, only
changes congestion condition. This Mechanism can adjust
the bandwidth maintain and proportional bandwidth within
the aggregate. Aggregate congestion control mechanism
could be applied to a wider range of scenarios, such as
mobile or wireless TCP proxies, edge-to-edge overlays
QoS [3] provisioning and mass data transport in storage
networks.

VI. REFERENCES

[1] NS simulator, version 2.29.
http://nsnam.isi.edu/nsnam/.

[2] F.-C. Kuo and X. Fu, “Probe-Aided MulTCP: An Aggregate
Congestion Control Mechanism," Institute for Informatics,
University of Goettingen, Technical Report IFI-TB-2007-01, 2008.

[3] L. Subramanian and I. Stoica and H. Balakrishnan and R. Katz,
“OverQoS: An Overlay Based Architecture for Enhancing Internet
QoS,” Accepted for publication in First Symposium on Networked
Systems Design and Implementation (NSDI), March 2004.

[4] H. Y. Hsieh and K.H. Kim and R. Sivakumar, “On Achieving
Weighted Service Differentiation: an End-to-end Perspective,” in
Proceedings of IEEE IWQoS, June 2003.

[5] H. Balakrishnan and H. S. Rahul and S. Seshan, “An Integrated
Congestion Management Architecture for Internet Hosts,” in
Proceedings of ACM SIGCOMM, pages 175-187, Sept 2002.

[6] J. Crowcroft and P. Oechslin, “Differentiated End-to- End Internet
Services using a Weighted Proportional Fair Sharing TCP,” ACM
Computer Communication Review, 28(3):53-69.

[7] R. Stewart, Q. Xie, K. Morneault, C. Sharp, H. Schwarzbauer, T.
Taylor, I. Rytina, M. Kalla, L. Zhang, and V. Paxson, “Stream
Control Transmission Protocol,” Internet Engineering Task Force,
October 2000. RFC 2960.

[8] M. Singh, P. Pradhan and P. Francis, “MPAT: aggregate TCP
congestion management as a building block for Internet QoS,” in
Proceedings of IEEE International Conference on Network
Protocols, pages 129– 138, Oct. 2004.

378378378

Authorized licensed use limited to: NATIONAL INSTITUTE OF TECHNOLOGY SURATHKAL. Downloaded on April 09,2021 at 09:39:23 UTC from IEEE Xplore. Restrictions apply.

