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Abstract— In this project we study the one of the most 
important performance in aggregate congestion control is 
fairness, i.e. the equal use of resources. The objective of 
Aggregate TCP congestion management is to achieve the fair 
sharing of the bottleneck bandwidth between the aggregate 
and other background TCP flows. There are many existing 
mechanism to prove the fairness property but none of 
mechanism proves fair share of the aggregated flows even 
where the number of flows in the aggregate is large. To solve 
this problem, unlike existing mechanism there are two 
congestion window loops, one is that loss event rate loop and 
other one is throughput control loop. Throughput control 
loop is used to adjust its window size with a weight N. 
Finally our simulation results prove an algorithm providing 
for fairly services to TCP flows that share a bottleneck link 
between the aggregate and other background TCP flows 
even where the number of flows in the aggregate is large. 
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I. INTRODUCTION 
There are many existing protocols is performed in end-

to-end measurement like SCTP[8], DCCP, TCP. These 
protocols are maintained for managing network 
information available from other flows, especially the 
information from other flows sharing the same bottleneck. 
This might result in low efficiency of resource utilization. 

Aggregate TCP flow management mechanism is used 
for improving network utilization. Its main idea is to 
cooperation between flows sharing the same bottleneck. 
Multiple flows sharing the same bottleneck are aggregated 
into a single flow or a smaller number of flows in an 
aggregate flow management scheme. Thus a grain of 
resource management is performed, while details of 
individual flows are hidden. Aggregate flow management 
is applied at a route and flows traversing a bottleneck link. 
These flows are controlled by the end host or a router, 
rather than independently. Aggregate flow management 
has also been applied in various applications, such as 
edge-to-edge QoS overlay services, a coordination 
protocol for distributed media applications, wireless TCP 
proxies for addressing network heterogeneity, and an 
overlay network architecture providing DoS-limiting as 
well as resilience on network edges. And also it could be 

used in modern storage networks in which a huge amount 
of block data is exchanged over a single TCP connection. 

In this mechanism one of the most important properties 
in aggregate congestion control is fairness, i.e. the equal 
share of resources. Flowshare was defined for 
characterizing fairness in aggregate congestion control. A 
flowshare is defined as the bandwidth utilized by a one 
congestion controlled flow, i.e. a one TCP connection. 
In the aggregate TCP flow management, one standard TCP 
congestion window loop is used for the aggregate. Both 
the aggregate and each of the m background flows are 
allocated 

�

���
share of the bottleneck link bandwidth, and 

also there are N flows within the aggregate. This is not 
equally share, since the share of the bottleneck bandwidth 
allocated to each flow within the aggregate TCPs is 

�

(���)�
, while that allocated to each background flow is 

�

���
. In figure 1, N flow shares should be allocated to an 

aggregate having N flows under a good aggregate 
congestion control mechanism, i.e. the share of the 
bottleneck bandwidth allocated to the aggregate TCPs 
should be 

�

��� 
. Therefore, the aggregate congestion 

control should support multiple flow shares so as to ensure 
a fair share of the bottleneck link bandwidth for the 
aggregate.  

 

 
Figure 1: The aggregate traffic with the bandwidth of multiple flow 
shares 
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The contribution of this paper is to improve fairness of 
the bottleneck bandwidth in aggregate TCP congestion 
control mechanism; it extends MulTCP[6] with one more 
window, which improves fairness without the need of 
managing numerous window states. Our simulation results 
show that aggregate can hold its fair share of the 
bottleneck bandwidth while other TCP flows are also 
treated fairly. 

The outline of this paper is as follows. Related 
techniques supporting multiple TCP flows in aggregate 
congestion control are explained in Section 2. Our design 
of proposed mechanism is explained in Section 3. Our 
simulation results are shown in Section 4, finally, our 
conclusions are explained in Section 5. 

 

II. RELATED WORK 
 
There are many protocols proposed for improving 

fairness by multiple TCP flowshares, e.g. MulTCP , CP  
and MPAT. The Additive Increase Multiplicative 
Decrease (AIMD) algorithm is the congestion control 
mechanism used in standard TCP. It is modified in 
MulTCP[6] for enabling an aggregate to show the 
behaviour of multiple concurrent TCP connections. And it 
has been demonstrated that beyond small values of N, a 
MulTCP flow fails to behave like N independent TCP 
flows. In other words, the throughput of MulTCP does not 
increase proportionally to the number of flows within the 
aggregate, especially when N > 4. And also noted in that, 
loss behavior of a single MulTCP[6] flow is quite different 
from that of N independent TCP flows. This leads to an 
increasingly unstable window adjustment as N increases. 
Hence it is clear that the MULTCP[6] not satisfy the 
fairness property, when N is larger than four. 

Another existing mechanism MPAT, the number of 
congestion window loops in MPAT is the same as the 
number of flows within the aggregate. As a result, the 
several number of congestion window states are 
maintained. And also, each congestion window loop in 
MPAT probes the network condition independently, which 
results in competition among different congestion window 
loops. This may leads to degrade performance. 

III. DESIGN 
 
As we know that, none of the existing mechanisms 

does not prove fairly share the bottleneck bandwidth 
between the aggregate and other background flows. Based 
on the drawbacks of existing mechanisms i.e., congestion 
window adjustment. Instead of one window loop we are 
maintaining two congestion window loops. These two 
AIMD window loops are not maintained two separate 
connections, i.e. one MulTCP connection and one 
connection. Instead of two connections we are maintained 
inside a single connection. The one standard TCP loop acts 
as a loss event rate detector, it calculates the loss event rate 
of a standard TCP flow. Other one act has a throughput 
controller. It adjusts its window size with a aggregate N 

TCPs, which is similar to that in MulTCP[6]. The 
maximum window size is calculated based on the loss 
event rate that is detected by the other window loop. 

The maximum window size is calculated from the loss 
event rate measured by the probe window loop. Here 
AIMD (1, 1/2) is used for the probe window loop. The 
measurement of loss rate is also important to the window 
loop. Loss rate should be measured as loss event fraction, 
whereas loss event consists of one or more packets 
dropped within a single RTT. A loss event rate is 
calculated by constructing a loss history and identifying 
loss event rate. But the loss event rate is calculated on the 
sender’s side, rather than on the receiver’s side. 

Other window loop is used for throughput controller. 
Based on the loss event rate, it adjusts its congestion 
window size with a weight N, which is similar to that in 
MulTCP[6], but under a limitation on its maximum 
window size. The maximum window size is measured 
based on the loss event rate that is detected by the loss rate 
window loop. Here, AIMD (√�,

�

��	�
.� 
) is used for the 

throughput controller window loop. Another challenge in 
the design of the throughput controller window loop is 
how to adjust the congestion window size, given the loss 
rate that is calculated by the loss rate window loop. These 
two AIMD window loops are not maintained two separate 
connections i.e. one MulTCP[6] connection and one 
standard TCP connection.  Instead of two connections we 
maintained inside a single connection. 

The proposed mechanism is based on one of the 
existing mechanism i.e., MulTCP, MulTCP is a collection 
of multiple virtual TCPs. The working procedure of 
MULTCP[6] is that during slow start a TCP opens its 
congestion window exponentially and by sending two 
packets for every acknowledgement received. In 
MULTCP[6] achieved the same behavior, if it sent N 
packets at start and then two packets for every 
acknowledgement received. If N is large, this leads to  
large amount of losses. So MulTCP uses a smoother 
option. It starts sending a single packet like a normal TCP. 
After that, it sends three packets for each 
acknowledgement received until it has opened its 
congestion window as far as N TCPs would have. 

Crowcroft and Oechslin proposed MulTCP,  
AIMD( �,

�

�� 
)  is used in MulTCP, instead of      

AIMD(1, 1/2) in the standard TCP, for achieving the 
behavior of N  concurrent TCP connections using the same 
congestion window loop. 

The parameters behind AIMD ( �,
�

�� 
) ,The 

congestion window size of a single TCP flow is increased 
by one packet per RRT in the standard TCP, similarly the 
congestion window size of N virtual TCP flows is 
increased by N packets per RRT in MulTCP then the 
Increase parameter a = N . 

If one packet is lost, only one of the N TCP flows half 
of its congestion window size in the standard TCP. 
Simillarly, the congestion window size becomes  (1 −
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�

��
 )NW in MulTCP[6] then the Decrease parameter b = 

�

��
. In MULTCP it uses the parameter AIMD (�,

�

��
) but 

in throughput control window loop, it uses the parameter 
of AIMD (√�,

�

��	�
.�). 
After K round trip times N TCPs have a congestion 

window of N∗ 2
    . One MUlTCP sending three packets 
for each acknowledgement would have a window of  3
. 
Thus they have the same window after ��   round trip 

times where  ��  = 
��� �

��� 	���� �
 

 
 
If (cwnd < ssthresh)  
   { 
If (cwnd<=pow(3.0,1og(√�)/(log(3)-log(2)))) 
          cwnd += 2; 
          Else 
          cwnd += 1; 
   } 
 
It happens only when the window has a size of             

�� = 3
� when packet is loss, it half of its congestion 
window and sets slow start threshold to the new value of 
the congestion window and goes back to linear increase. 
When N TCPs are sending data and one packet is lost, 
only one TCP will half of its window. Thus MulTCP[6], 
when it happens loss, only half one Nth of its congestion 
window and by setting cwnd and ssthresh to 

(� � �.�)

�
 of 

cwnd. But we are used parameter AIMD (√�,
�

��	�
.�), 

so set the ssthresh to  
(	�
.���)

(	�
.���) 
 of cwnd. 

 
If (cwnd < ssthresh) 
    cwnd = cwnd/2; 
 
Else 

    cwnd = cwnd *
(	�
.���)

(	�
.���) 
; 

    ssthresh = cwnd; 
 
When there are too many losses within one RTT, 

timeouts occur and transmission restarts with a slow start 
after the last acknowledged packet. N TCPs are less 
timeout than that of one MulTCP[6]. Since the losses are 
distributed over N connections and the probability that one 
TCP experiences enough losses within one RTT to make it 
is smaller. And if one TCP should stall, the (N-1) others 
can still go on sending. Thus after the slow-start is over the 
MulTCP will have the same window as N TCPs would 
after one of them has done a slow-start. This ensures that 
the loss rate loop experiences a loss event rate, which is 
similar to that of standard TCP flow sharing the same 
bottleneck link. 

So this mechanism is designed to improve efficiency 
and fairness of the aggregate congestion control, while 
achieving the desired throughput given the weight N for an 
aggregate. 

IV. EVALUATION 
Our simulation is performed on ns-2[1]. The Aggregate 

TCP flow management mechanism is implemented based 
on MulTCP[6], A network topology having only one 
congested bottleneck link is used, which has 10ms delay 
and drop-tail queue management. The buffer size is always 
set to the delay-bandwidth product. The packet size is 
1500 bytes. MulTCP cannot provide fair sharing for the 
aggregate. We will show that proposed mechanism 
improves fairness property. Our simulations demonstrate 
that, aggregate TCPs competes with m standard TCP flows 
over a shared bottleneck link, where N spans from 2 to 30 
.The bandwidth of the bottleneck link is set to 3 Mbps and 
The simulation time is 200 seconds. 

We ran 5 aggregates, each with a different value of N, 
together with respective background TCP flows. The five 
aggregates use N = 10, 14 and 20. We then replaced each 
aggregate with the different number of independent TCP 
flows. Figure 2 shows the bandwidth for each of the five 
aggregates, with data points sampled every 1sec. 

 

 
 

Figure 2: Bandwidth utilization of aggregate N TCP flows 

Figure 3 shows fairness index under different weight 
N. Table contains number of aggregate TCP flows along 
with number of background flows, throughput of 
aggregate and throughput of background flows. We define 
fairness index as the performance ratio for calculating 
fairness of the long-term sending rate. It is the average 
throughput of N flows within the aggregate divided by the 
average throughput of m background standard TCP flows: 
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No.Aggre-
TCP 

 

No.BG-
TCP 

Aggre-
Throughput 

BG-
throughput 

 

 Fairness 
Index 

 
12 6 1899975 973145.7 0.98 
14 6 1973789 827015.1 1.022 
16 7 2018955 878030.2 1.006 
18 7 2049769 785206 1.0151 
20 7 2205317 750834.2 1.02 
24 11 1980422 868663.3 1.04 
 
Figure 3: Fairness index under different weight N 

 

 
Figure 4: Fairness property of aggregate N TCP flows 

 
 

   Fairness index =
�
�

�
� 

 ∑ ����!
�
!"�

 

Where T is the throughput of the aggregate and #$%&'
  

is the throughput of the ith background standard TCP flow. 
If the fairness index is equals one, it means that the 
aggregate TCP’s fairly shares the bandwidth with the other 
background TCP flows. If the fairness index is less than 
one, the aggregate losses the bandwidth to the background 
TCP’s. Otherwise, the aggregate is more aggressive than 
the background TCP flows. Figure 4 shows that the 
aggregates i.e., N=12,14,16,18,20 and 24 are 
approximately equal to ideal. So we prove that, to achieve 
the fair sharing of the bottleneck bandwidth between the 
aggregate and other background TCP flows, where the 
number of flows in the aggregate is large. 

 

V. CONCLUSION 
The paper demonstrates that providing differential 

services, among a group of TCP flows that share the same 
bottleneck link. Single flowshare in aggregate congestion 
control mechanism results in unfairness between the 
aggregate and the background flows, which are sharing the 
same bottleneck. There are many existing mechanism to 
prove the fairness property but none of mechanism proves 
fair share of the aggregated flows even where the number 

of flows in the aggregate is large. But this paper concludes 
this challenge. We demonstrate on ns-2 simulation that fair 
sharing of the bottleneck bandwidth between the aggregate 
and other background TCP flows. That result is fairer than 
MulTCP[6] over a wide range of the weight N, only 
changes congestion condition. This Mechanism can adjust 
the bandwidth maintain and proportional bandwidth within 
the aggregate. Aggregate congestion control mechanism 
could be applied to a wider range of scenarios, such as 
mobile or wireless TCP proxies, edge-to-edge overlays 
QoS [3] provisioning and mass data transport in storage 
networks. 
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