
An Agent Based Peer-to-Peer Network with Thesaurus Based Searching, and
Load Balancing

 Sabu M. Thampi
 Department of CSE

L.B.S College of Engineering
Kasaragod-671542

Kerala, India
smtlbs@yahoo.co.in

 K. Chandrasekaran
Department of CSE

National Institute of Technology Karnataka
Surathkal-575025

Dakshina Kannada, Karnataka, India
kch@nitk.ac.in

Abstract

This paper describes a search mechanism for files
in an unstructured peer-to-peer network. Most of the
existing P2P architectures cannot autonomously locate
services on the P2P network. Peers can hardly work
and cooperate as a team. Using well-designed agents
can improve the efficiency of the operations and data
communication in the P2P applications. In the
proposed system, agents are residing on peers and
almost take care of every thing. They receive a
problem from the user or other agents, send each job
to the responsible agents and merge the sub-solution
gathered from them to present a final solution. The
communication among nodes takes place through
mobile agents. The key features include content
matching, parallel downloads, agent based load
balancing and thesaurus based searching.

1. Introduction

A P2P system is a decentralized and distributed
network of nodes that is capable of sharing and
distributing resources between themselves. P2P offers
exciting new potential in distributed information
processing. The prime objective of a node in a P2P
network is to search and acquire resources and services
available on other nodes in the network and,
simultaneously allow other nodes to access resources
available on the node itself. P2P Internet applications
have recently been popularized through file sharing
applications like Napster, Gnutella, FreeNet, KaZaA
and others. Within these applications, the P2P concept
is mainly used to share files, i.e. the exchange of
diverse media data, like music, movies and programs.
The growth in the usage of these applications is
enormous and even more rapid than the growth of the
World Wide Web.

A software agent is a computing entity that carries
out some task or tasks on behalf of someone or
something. A stationary agent executes only on the
system where it begins execution. A mobile agent is an
active object that can move both data and functionality
(code) to multiple places within a distributed system.
There are several good reasons for using mobile agents
[2]. Mobile agents:

• reduce network load
• overcome network latency
• encapsulate protocols
• execute asynchronously & autonomously
• adapt dynamically

There are many different implementations of mobile
agents in existence [3]. Some of the popular
implementations include Telescript, Concordia, Mole,
Voyager and Aglets. The Aglets project [5] is a Java
based implementation that was originally developed by
IBM in Japan. An aglet can be dispatched to any
remote host that supports the Java Virtual Machine.
This requires from the remote host to pre-install Tahiti,
a tiny aglet server program implemented in Java and
provided by the Aglet Framework. To allow aglets to
be fired from within applets, the IBM Aglet team
provided the so-called “FijiApplet”, an abstract applet
class that is part of a Java package called “Fiji Kit”.
FijiApplet maintains some kind of an aglet context.
From within this context, aglets can be created,
dispatched from and retracted back to the FijiApplet.

Unlike conventional client-server file transfer
systems, all nodes in P2P networks are both clients and
servers, simultaneously. Once a node connects to any
point in the network, it can exchange files with other
nodes in the network. Most of the existing P2P
architectures cannot autonomously locate services on
the P2P network. Peers can scarcely work and
cooperate as a team.

Using well-designed agents can perk up the
efficiency of operations and data communication in

Proceedings of the 2005 International Conference on Computational Intelligence for Modelling, Control and Automation, and International Conference on
Intelligent Agents, Web Technologies and Internet Commerce (CIMCA-IAWTIC’05)
0-7695-2504-0/05 $20.00 © 2005 IEEE
Authorized licensed use limited to: NATIONAL INSTITUTE OF TECHNOLOGY SURATHKAL. Downloaded on February 22,2021 at 04:31:10 UTC from IEEE Xplore. Restrictions apply.

P2P applications. In the proposed system, agents are
residing on peers and almost take care of every thing.
They receive a problem from the user or other agents
invoke necessary resources after consulting with other
agents (peers). They also send each job to the
responsible agents and merge the sub-solution gathered
from them to offer a final solution. The communication
among nodes takes place through mobile agents.

This paper is organized as follows: Section 2 gives
an overview of different types of agents used in the
proposed system. Key features are described in section
3. Section 4 discusses the model of the system. P2P
algorithm is explained in section 5. Results and
discussion is in section 6. Section 7 concludes the
paper.

2. Agent architecture

The mobile agent based system is developed using
Aglet Software Development Kit. The system makes
use of several types of agents. Cooperation of the
agents enables the system to perform the required tasks
efficiently. This section gives a brief introduction to
various agents employed in the system (Figure 1).

Figure 1. Agents in a node

Master Agent manages and controls the collection
of other agents and provides the basic user interface of
the application. It is designed to send essential
information to other agents. Agents that are dispatched
from other nodes submit their queries to master agents
to catch the results. There are two types of information
agents: search agent and Resource watcher Agent.

Each peer participating in the network may utilize
its resources available to other peers. When a user
needs a particular resource such as a file, search agent
discovers a match for the needed resource in the host.
Resource watcher agent acquires the specifications of
an available resource and forwards the same to the
master agent. The watcher agent decides the duration
for using the resource and the time of starting and
ending of the service. Watcher agent stores and

retrieves information to and from the local database. It
also notifies status of incomplete downloads to the user
with the assistance of master agent.

In addition to stationary agents, the system uses
java based mobile agents to provide communication
and data transfer among nodes. Download agent is a
special type of mobile agent to assist downloading
different sections of a file.

3. Key features

The proposed agent based P2P system has four key
features, which distinguish it from typical P2P
systems: content matching, parallel downloads, load
balancing and thesaurus based searching. In this
section, we discuss the design of and algorithms used
to implement these features.

3.1 Content matching

In the proposed system, files are identified by
content; we use the SHA1 hashing algorithm to
generate a 160-bit “fingerprint” for each file. Hashes
are precomputed for all the files a user is willing to
share. These hash values are stored in a database. Users
are then able to search for files they want in two ways -
either by the file hash or by the string query search. For
every file that is hashed, the file path/hash pair is added
to a database. On the other hand, when a user decides
that they no longer want to share particular files, the
associated database entries are deleted.

The file watcher agent verifies any directories,
which are shared, for newly added or removed files
and appropriately updates the database.

3.2 Load balancing

Load balancing enhances the performance of P2P
systems. Incoming requests should be evenly
distributed among nodes to achieve quick response.
Traditional load balancing approaches are implemented
based on message passing paradigm. Mobile agents
provide a novel technology for implementing load
balancing mechanism in P2P networks. The mobile
agent can embed policies of load balancing, travel to
other nodes, and interact with them on the site to
acquire latest load information. The mobile-agent
based approach can minimize the network traffic and
enhance the flexibility of a load balancing mechanism.

The proposed load balancing scheme (Figure 2)
makes use of two types of agents – Node Management
Agent (NMA) and Load Information Agent (LIA).
NMA is a stationary agent that sits at a P2P node,
responsible for monitoring the workload. When a node

Proceedings of the 2005 International Conference on Computational Intelligence for Modelling, Control and Automation, and International Conference on
Intelligent Agents, Web Technologies and Internet Commerce (CIMCA-IAWTIC’05)
0-7695-2504-0/05 $20.00 © 2005 IEEE
Authorized licensed use limited to: NATIONAL INSTITUTE OF TECHNOLOGY SURATHKAL. Downloaded on February 22,2021 at 04:31:10 UTC from IEEE Xplore. Restrictions apply.

is overloaded, the NMA on it begins the reallocation
process. NMA dispatches the jobs to other neighboring
nodes whose load is below some threshold. LIA is a
mobile agent accountable for information gathering. It
travels around the neighboring nodes and gathers the
load information. Meanwhile it broadcasts the load
information to the neighbors.

Figure 2. Agent based load balancing

The NMA activates the LIA to accumulate the load
information from neighbors while the load exceeds a
threshold. The LIA navigates through neighbors to
gather the updated values of cpu_load, no_connect and
free memory on each node and calculate the load
metrics. The load on a peer is computed as:

Where cpu_load is the workload on the peer, measured
in the length of job queue, no_connect is the number of
requests being processed on the node.

The load balancing scheme employs find-best
strategy for node selection. The LIA visits every
neighboring node and selects the nodes that have a load
below a threshold.

3.3 Parallel download

Parallel-Download is a technique used to fetch files
from multiple sources. Instead of selecting a particular
node to download a file, a number of P2P nodes are
selected and content is downloaded in parallel, getting
different bits of the content from different nodes.
Clients experience a transfer rate equal to the sum of
the individual transfer rates of the peers contacted.
Figure 3 shows an example of parallel download
session. There are three nodes that can serve the file
and the client requests one-third from each of them.

There are many different algorithms to perform
parallel download. The algorithm that we used in this
paper is a variation of the ones proposed in [15]. It is a
dynamic algorithm based on load balancing. This
scheme tries to request more bytes from peers by

monitoring the load on each of the selected nodes.
Master agent dispatches download agents to the least
loaded peers for downloading the required file. The file
is divided into many small portions. Each peer is
assigned one of them. When one node finishes serving
a piece, it is assigned a new one. This process
continues until all sections of file have been
downloaded.

Figure 3. Example of a parallel download
session

3.4 Managing interrupted transfers

The agent submits request for a section of a file,
which may be the entire file from the sender. While
downloading a file, the hash value of the original file
needs to be recorded, so that it can be used to locate the
file again later. This hash value will differ from that of
the local copy of the file before the download has
completed. Hence we need to differentiate files which
are the result of complete downloads, and those which
are incomplete. Table 1 shows an example of the
information stored in the database for a complete file
and an incomplete file.

Table 1. Complete and incomplete
download

File Path Hash File Info.
download/file1 412672bbe831

45610cf66f879
3858a03fbf29a9b

CMP 10485760

incomplete/file2 7e264558f0eb6
ecdc7e2357b80a
5383af367e92e

5431340-452-
554-2400

Hash values are stored as null-terminated strings.
Complete files have the CMP label followed by the
size of the file stored in the “file info” field.
Incomplete files have the size of the target file,
followed by details about sections of the file that have
been successfully downloaded. The file info field is
used when recalculating hash values. Whenever a user
wants to recommence the interrupted download of a
file (watcher agent informs the details of the
downloaded file to the user), they can search for an

Proceedings of the 2005 International Conference on Computational Intelligence for Modelling, Control and Automation, and International Conference on
Intelligent Agents, Web Technologies and Internet Commerce (CIMCA-IAWTIC’05)
0-7695-2504-0/05 $20.00 © 2005 IEEE
Authorized licensed use limited to: NATIONAL INSTITUTE OF TECHNOLOGY SURATHKAL. Downloaded on February 22,2021 at 04:31:10 UTC from IEEE Xplore. Restrictions apply.

identical file to resume their transfer. This is made by
searching for files with the same hash values as that of
the original file they are trying to obtain.

3.5 Thesaurus for searching files

By guiding indexers and searchers about which
terms to use, it can help to improve the quality of
retrieval. By listing groups of words that have similar
meanings to each other, a thesaurus offers a choice of
alternative words that can be used in place of one that
you already have in mind. A file name is a natural
language description of the file, so when a user
searches for a file, he would presumably wish to search
by file name.

People tend to group similar files in directories,
which have names, that can potentially provide more
information about the files with in. For example,
consider a user sharing a file with the name “classic
music/das/fourpeople.mp3”. If an incoming search
request is for “music”, the different equivalent
directory names are searched in the thesaurus. The
system returns back details of files in the matching
directories. Look at how many words there are for the
word music, for instance: classical, folk, harmony,
hymn, jazz, melody, tune, ragtime, rap, refrain, rock,
song, soul, swing, tune, art music, chamber music,
longhair music, operatic music, semi classical music,
concert music, symphonic music. Names of directories
and subdirectories that bear any of these words will be
selected and the user downloads files from these
directories.

4. System model

The model of the proposed system is shown in
figure 4 [4]. While a user submits a query, search agent
searches its own resources. If required file is found, the
watcher agent retrieves the corresponding information.
If a resource is not found on the searched nodes, the
peer dispatches mobile agents to its neighbors whose
load is below some threshold. The neighboring agents
search their nodes and in turn transmit the query to
their neighbors by dispatching mobile agents, and so
on. A journey time also known as time-to-live is set for
every process and the search ends when the journey
time expires.

Each mobile agent is assigned a user request-id
while it is dispatched. In addition, they are provided
information on nodes visited previously. Hence,
incidence of revisits is reduced. If two mobile agents
from the same creator peer arrive at the current peer,
the request-id of the second agent is verified and if it is
same as the first one, the second agent destroys itself.

Figure 4. System model

5. P2P algorithm

The algorithm we used is as follows:
1. The user submits a query.
2. Master agent receives the query and forwards it

to the search agent.
3. Search agent checks the query to check whether

it is a file name with an extension, or a string
If it is a filename, search for the file.
else
Perform thesaurus-based search.

4. Search agent submits the result back to master
agent.

5. Resource watcher agent retrieves the required
information

6. Node dispatches mobile agents to its least loaded
neighbors for searching file(s).

7. Set user request-id and TTL for each mobile
agent.

8. Neighboring agents propagate the query to their
neighbors.

9. Mobile agents present the result back to the
creator peer.

10. The agent decrements its journey time (TTL) as
soon as it arrives on a peer.

11. In order to reduce incidence of revisits, mobile
agents are provided with information on already
visited nodes.

12. If two mobile agents from the same creator peer
arrive at the current peer and the user-request-id
of both agents are same, the second mobile agent
destroys itself.

13. Clones of mobile agents are created to visit the
nodes until the expiry of journey time (TTL).

14. Master agent gathers information on node last
visited by each mobile agent.

15. In case the search fails during journey time,
master agent dispatches a mobile agent to a node
selected randomly from the list prepared in step
(14). The selection is not based on load at the
nodes.

16. Repeat steps 7 to 15 to complete the search.

Proceedings of the 2005 International Conference on Computational Intelligence for Modelling, Control and Automation, and International Conference on
Intelligent Agents, Web Technologies and Internet Commerce (CIMCA-IAWTIC’05)
0-7695-2504-0/05 $20.00 © 2005 IEEE
Authorized licensed use limited to: NATIONAL INSTITUTE OF TECHNOLOGY SURATHKAL. Downloaded on February 22,2021 at 04:31:10 UTC from IEEE Xplore. Restrictions apply.

17. The creator peer merges the subsolution gathered
from various nodes to offer a final solution.

18. Master agent displays the search results.
19. Master agent dispatches the download agents to

download sections of a file (download from
multiple sites is supported).

20. Watcher agent notifies the user about incomplete
downloads. Procedure described in section 3.4
(managing interrupted transfers) is followed to
download the remaining portions of the file.

21. When a node is overloaded, NMA dispatches the
jobs to its neighbors based on load information.

6. Results and discussion

An agent based P2P system is implemented and
tested to evaluate the performance of the system. For
performance evaluation and peer-to-peer comparison
of the system, three popular distributed applications -
Gnutella, HTTP server and FTP server along with
Agent Based P2P system are tested in a common
environment and circumstances.

The performance evaluation compares the time
taken for file transfer, file browsing and file searching
among four applications. The File browsing time for
both Gnutella and HTTP server are not available for
performance comparison. Only the search time for
Gnutella and Agent based system is available. Figures
5, 6 and 7 compare the performance of the applications
in terms of file transfer, file searching and file
browsing. Despite the use of both stationary agents,
mobile agents and other key features, which exist in
the P2P system, the performance is still competitive
with others.

For comparing download performance of the
dynamic algorithm, we plot all the measured waiting
times for different number of nodes used. As we
increase the number of nodes that contain the required
file (file size 7.2 MB), we get better performance.
Figure 8 shows our dynamic algorithm compares to an
algorithm with no parallel download. It is observed
from the graph that the traditional method of download
from single site performs much worse that the dynamic
method based on load.

The performance of agent based load balancing
scheme is evaluated by comparing its performance
with the message-passing paradigm. The performance
is assessed in terms of network traffic. Figure 9
compares the network traffic of two schemes.

The system throughput is measured in the number
of requests processed per second. Figure 10 shows the
system throughput of message passing paradigm and
agent based load balancing. The agent based scheme

can outperform the message passing scheme when the
number of clients is above 250.

File Transfer
43

12 12

43

0
10
20
30
40
50

Gnutella HTTP
Server

FTP Server Agent
Based

System

 s
ec

on
ds

/2
.4

M
B

File Transfer sec/2.4MB

Figure 5. File transfer performance

File Search Time

0
0.2
0.4
0.6
0.8

1
1.2

Gnutella Agent Based System

Se
co

nd
s

File Search Time

1 Sec/ 3 agents1 Sec/ 3 peers

Figure 6. File search in group

File Browsing Time

2 2

0

0.5

1

1.5

2

2.5

FTP Server Agent Based System

Se
co

nd
s

File Browsing Time

Figure 7. File browsing performance

3 nodes

4 nodes

5 nodes 6 nodes

No parallel
dow nload

0
20
40
60
80

100
120
140
160

M
ea

n
W

ai
tin

g
Ti

m
e

(S
ec

.)

Figure 8. Comparison of performance of
download algorithms

Proceedings of the 2005 International Conference on Computational Intelligence for Modelling, Control and Automation, and International Conference on
Intelligent Agents, Web Technologies and Internet Commerce (CIMCA-IAWTIC’05)
0-7695-2504-0/05 $20.00 © 2005 IEEE
Authorized licensed use limited to: NATIONAL INSTITUTE OF TECHNOLOGY SURATHKAL. Downloaded on February 22,2021 at 04:31:10 UTC from IEEE Xplore. Restrictions apply.

0
0.2
0.4
0.6
0.8

1
1.2
1.4

Node1 Node2 Node3

M
by

te
s

Agent
Based
Load
Balancing

Message
Passing
Paradigm

Figure 9. Network traffic

Figure 10. System throughput

7. Conclusion

A P2P system based on load balancing, thesaurus
based searching, parallel download and content
matching is presented. The agent-based load balancing
approach outperforms the traditional message passing
method. Dynamic parallel download technique based
on load can adapt better to changing network
conditions. Since we have not provided any sort of
caching or replication scheme, any files the node store
are inaccessible while they are heavily loaded. The
system can be extended to incorporate some form of
probabilistic selection criterion with a bias against
heavily loaded peers, to prevent sudden shifts where
every client avoids sending requests to heavily loaded
peers.

8. References

[1] Belmon, S. G., and Yee, B. S, “Mobile agents and
intellectual property protection,” In Rothermel and Hohl, pp.
172–182.

[2] R. Gray, D. Kotz, G. Cybenko and D. Rus. Mobile
Agents: Motivations and State-of-the-art systems. Dept. of
Computer Science, Dartmouth College, 2000.

[3] Dan Connolly, Mobile Code Systems,
http://www.w3.org/Mobile Code/

[4] Leontiadis, Vassilios, Evaggelia Pitoura, Cache updates
in a Peer-to-Peer network of Mobile Agents,
http://femto.org/p2p2004/papers/leontiadis.pdf.

[5] IBM Japan Aglets,
http://www.trl.ibm.com/aglets/index.html

[6] RothermeL, K., and Popescu-Zeletin, R, Eds. Mobile
Agents (MA ’97), vol. 1219 of Lecture Notes in Computer
Science. Springer Verlag, Berlin Heidelberg, 1997.

[7] Qin Lr, Pei Cao, Edith Cohen, Kai Li, Scott Shenker,
Search and Replication in Unstructured Peer-to-Peer
Networks, proc. of the 2002 ACM SIGMETRICS
international Conference on Measurement and Modeling of
Computer”, 2002, pp258-259

[8] Antenella Di Stefano, “Locating Mobile Agents in a
Wide Distributed Environment”, IEEE Trns. On Parallel and
Distributed Systems,” VOL.13 pp.844-863, Aug. 2002.

[9] D. Lange, M.Oshima, Programming and Deploying Java
Mobile Agents with Aglets, Addison-Wesley Longman,
Reading, Mass., 1998.

[10] A.Datta, M.Hauswirth, and K.Aberer, “Updates in
highly unreliable, relicated peer-to-peer systems”, in proc. of
ICDS2003, 23rd International Conference on Distributed
Computing Systems, Providence, Rhode Island, May 2003,
pp. 76-85.

[11] V.Pham, A: Karmouch, Mobile Sofware Agents: An
Overview, IEEE Communications Magazine, 36(1998),
pp.26-37.

[12] V.V. Dimakopoulos, E. Pitoura, “A Peer-to-Peer
Approach to Resource Discovery in Multi-Agent Systems,”
in proc. CIA 2003, 8TH Int’l Workshop on Cooperative
Information Agents, Helsinki, Finland, Aug. 2003, pp 62-77.

[13] D.Lv, P. Cao, E.Cohen, K Li, and S. Shenker, “Search
and Replication in Unstructured Peer-to-Peer Networks,” in
proceeding of the 16th ACM International Conference on
Super computing, 2002.

[14] Gnutella Protocol Specification, Version 0.4, in
http://www.limewire.com/developer.

[15] Pablo Rodriguez, Andreas Kirpal, and Ernst W.
Biersack, "Parallel-Access for Mirror Sites in the Internet",
Infocom, 2000.

[16] John W. Byers, Michael Luby, Michael Mitzenmacher,
and Ashutosh Rege, "A Digital Fountain Approach to
Reliable Distribution of Bulk Data", ACM SigComm, 1998.

Proceedings of the 2005 International Conference on Computational Intelligence for Modelling, Control and Automation, and International Conference on
Intelligent Agents, Web Technologies and Internet Commerce (CIMCA-IAWTIC’05)
0-7695-2504-0/05 $20.00 © 2005 IEEE
Authorized licensed use limited to: NATIONAL INSTITUTE OF TECHNOLOGY SURATHKAL. Downloaded on February 22,2021 at 04:31:10 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f007200200049004500450045002000580070006c006f00720065002e0020004300720065006100740065006400200031003500200044006500630065006d00620065007200200032003000300033002e>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

