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Abstract 
Abstraction based Pattern Classifier has drawn a 

lot of attention today. This type of classifier has two 
phases. They are: design phase, where the abstractions 
are created and classification phase, where the 
classification is done using these abstractions. 
Techniques like neural networks, genetic algorithms 
require very high design time. In other techniques like 
nearest neighbor classifier, the design time is near to 
zero but the classification time is predominantly high. 
Pattern Count Tree (PC- tree) based classifier was 
proposed as an abstraction based classifier that strikes 
a balance between the design time and the 
classification time. In this paper, we are going to 
propose a novel data structure called Pattern Range 
Tree (PR-tree) and a pattern classifier based on PR-
tree. Experimental results presented in this paper show 
that PR-tree based classifier (PRC) is more efficient 
than PC-tree based classifier (PCC) in terms of 
storage space, processing time and classification 
accuracy. 
 
   
1. Introduction 

 
Data mining involves a vast variety of sub fields, 

one such challenging field is pattern recognition. 
Pattern recognition aims to classify data based on a 
priori knowledge or extracting statistical information 
from the patterns available. Generally, in 
neighborhood-based classifiers, for a test pattern, we 
find the extent of match with each of the training 
patterns and reduce our selection to the top k 
qualifying patterns. The neighborhood-based classifiers 
like PCC [3], k-nearest neighbor classifier (k-NNC) [4] 
classify the test pattern based on the number of 
representative training patterns selected for each class 
and the number of common features between the test 
and the selected training patterns. Neighborhood based 

classification algorithms’ accuracy depends on the 
nature of training set to a large extent. 

Figure 1. Training patterns 
 
Consider for example, the training patterns for class ‘9’ 
and ‘7’ as shown in Figure 1. Here each pattern is a 
matrix of size 4X4 where a ‘1’ indicates the presence 
of feature and a ‘0’ indicates the absence of feature. 
Let us assume that all other classes also have such 
training patterns. Let us consider a test pattern, Pattern 
D as shown in Figure 2, to be classified. For a 
neighborhood based classifier like k-NNC with number 
of nearest neighbors k=8, assume that Pattern A 
(number of such patterns = 1), Pattern B (number of 
such patterns = 3) and Pattern C (number of such 
patterns = 4) are 8 nearest neighbors to Pattern D. 
 
 
 
 
 

 
                       Figure 2. Test pattern  
Table 1 illustrates the extent of match of Pattern D 
with different training patterns. A common feature 
between two patterns is either a nonzero value or a 
zero value in both the patterns at the same position. 
Weight for each training pattern (Wx), which is given 
in the last column of Table 1 is calculated as follows.  
 

Let Cx = Number of common features between the 
test pattern and the training pattern X.  

1 1 1 1 
1 1 0 1 
0 0 0 1 
0 0 1 1 
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Cmin=Minimum value of Cx among the ‘k’ Cx values. 
Cmax=Maximum value of Cx among the ‘k’ Cx values.  
Weight for the training pattern X is given by:  
Wx = (Cx – Cmin)/(Cmax – Cmin).  

Cumulative weight for a particular class is obtained 
by adding up the weights of the patterns among ‘k’ 
nearest neighbors corresponding to that class. For 
example, for class ‘9’, there are totally 4 patterns 
among the 8 nearest neighbors. So, its cumulative 
weight is 1+0+0+0=1. For class ‘7’, there are totally 4 
patterns among the 8 nearest neighbors. So, its 
cumulative weight is 1/3+1/3+1/3+1/3=4/3. 
Considering these results, the neighborhood-based 
classifier will classify Pattern D into class ‘7’, since it 
has the maximum cumulative weight (i.e., 4/3). But, 
actually Pattern D has an exact match with Pattern A of 
class ‘9’. The cause of this misclassification is the 
number of patterns with which the test pattern (Pattern 
D) had an exact match (Pattern A) or number of 
patterns closer to the test pattern was less in the 
training data as compared to the number of patterns of 
the class into which the test pattern was finally 
classified (Pattern C). We call such training patterns 
‘rare patterns’, since the patterns similar or exactly 
same as them are rare in the training data. In Figure 1, 
Pattern A is rarer as compared to Pattern C. In this 
paper, we propose a classification algorithm that 
considers rareness of patterns in training data.  
 In PC-tree [3], there exists a node for every feature 
in the pattern. The structure we are going to propose 
need not maintain a node for every feature in the 
pattern. So, the structure proposed is more compact 
than PC-tree. We call this structure Pattern Range Tree 
(PR-tree). The proposed pattern classification 
algorithm uses this data structure as abstraction. 
 The organization of rest of the paper is as follows. 
We give a detailed description of the data structure, 
PR-tree, in section 2. Concept of rareness is discussed 
in section 3. We give PR-tree based classification 
algorithm in section 4 and the experiments in section 5. 
Section 6 concludes the paper.  
 
2. Pattern Range Tree (PR-tree)  

 
PR-tree is a data structure, which is used to store the 

training patterns in a compact manner. Each node of 

the tree consists of the fields shown in Figure 3. In the 
node ‘FEATURE’ field specifies the position of 
nonzero value of the pattern. ‘CHILD’ field represents 
the pointer to the following path. ‘SIBLING’ field 
represents pointer to the node which indicates 
subsequent other paths from the parent of the node  

     Figure 3. PR-tree 
under consideration. ‘FLAG’ field value gives the 
information about the existence of the features between 
the ‘FEATURE’ field value of current node and the 
‘FEATURE’ field value of its immediate parent. It can 
take either a positive value or a negative value. A 
negative value of ‘FLAG’ field signifies the absence of 
all the features between the ‘FEATURE’ field value of 
current node and ‘FEATURE’ field value of its 
immediate parent. The first node after the root node in 
a branch always stores a negative value in the ‘FLAG’ 
field, since it corresponds to the first feature in the 
pattern. A positive ‘FLAG’ field value signifies the 
presence of all features between the ‘FEATURE’ field 
value of current node and the ‘FEATURE’ field value 
of its immediate parent. The absolute value of ‘FLAG’ 
field indicates the number of patterns sharing the 
particular node. We illustrate the construction of PR-
tree in Figure 4 corresponding to the patterns shown in 
Table 2. In Figure 4 the horizontal links indicate the 
‘CHILD’ pointers and the vertical links indicate the 
‘SIBLING’ pointers. In each node the ‘FEATURE’ 
field and the ‘FLAG’ field values are separated by ‘/’.   

   
In Table 2 above, ‘Features’ column represents the 

positions of nonzero values of the pattern confined by 
4X4 matrix. For example, the positions of nonzero 
values for Pattern A shown in Figure 1 are 1, 2, 3, 4, 5, 
6, 8, 12, 15 and 16.  

Figure 4 shows the PR-tree construction in three 
different stages for Pattern # 1, 2 and 3 of Table 2. The 
tree has the root represented by ‘T’. Figure 4 (A) 
shows PR-tree after the insertion of Pattern # 1. In 
Pattern # 1, the features from ‘1’ to ‘5’ are consecutive. 
So, we create a node ‘n1’ for feature ‘1’ with value 1 in 
n1’s ‘FEATURE’ field and then a child node ‘n2’ for 
feature ‘5’ with value 5 in n2’s ‘FEATURE’ field. For 
the node n1, the ‘FLAG’ field value is -1. This is 

Table 1. Details of classification of pattern D
Pattern 

X 
Class Number of 

common 
features 

with Pattern D 
(Cx) 

Number of 
Patterns 

Weight 
(Wx ) 

A 9 16 1 1 
B 9 13 3 0 
C 7 14 4 1/3 

T a b l e  2 . R ep r e s e n t a t i o n  o f  p a t t e r n s
Pattern # Class label Features 

1 0 1,2,3,4,5,8,9,12,13
,14,15 

2 6 1,5,9,10,11,12,13,
14,15,16 

3 7 1, 2, 3, 7, 11, 15
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because (i) it is the first feature of the pattern (ii) it is 
shared by only one pattern so far 
 

 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 

 
 

Figure 4. PR-tree construction stages 
 . For the node n2 the ‘FLAG’ field value +1 
indicates that all the features (i.e. ‘2’, ‘3’ and ‘4’) 
between the ‘FEATURE’ field value of the present 
node (i.e., 5 of n2) and the ‘FEATURE’ field value of 
its immediate parent (i.e., 1 of n1) are present in Pattern 
# 1. For next feature ‘8’ of Pattern # 1, we create a 
node with ‘FEATURE’ field value equal to 8. The 
‘FLAG’ field value for this node is -1. This is because 
there are no features between the ‘FEATURE’ field 
value of its immediate parent node (n2) and the 
‘FEATURE’ field value of this node. This procedure is 
continued for the remaining part of Pattern # 1. In all 
the nodes created for Pattern # 1, absolute value of the 
‘FLAG’ fields is 1. It indicates that the nodes are not 
shared by any other patterns so far. At the end of this 
branch we attach a node with ‘0’ in the ‘FEATURE’ 
field which indicates that Pattern #1 belongs to class 
‘0’. We call this node, the label node. The ‘FLAG’ 
field of this node is not assigned any value for now 
(indicated by ‘-’). The ‘FLAG’ field of the last node of 
each branch is assigned a value after the construction 
of the whole tree. 
 Figure 4 (B) shows PR-tree after the insertion of 
Pattern # 2. Pattern # 2 shares a common prefix (‘1’) 
with Pattern # 1. So, increment the absolute value of 
the ‘FLAG’ field for the node n1. Now the new 
‘FLAG’ field value for node n1 is -2. The absolute 
value of the ‘FLAG’ field i.e., 2 indicates that two 
patterns share the node n1. Add the remaining nodes 
for Pattern # 2 as the sibling branch of node n2.  
  Figure 4(C) shows PR-tree after the insertion of 
Pattern # 3. Pattern # 3 contains a common prefix (‘1’, 
‘2’ and ‘3’) with Pattern # 1. So we can share the nodes 

for these features with Pattern # 1. But we do not have 
a node for feature ‘3’, since it is represented implicitly 
by the positive ‘FLAG’ field value of the node n2. So a 
rearrangement is needed. That is, we need to insert a 
node (n2') for feature ‘3’ between nodes n1 and n2, with 
3 in its ‘FEATURE’ field and +1 in its ‘FLAG’ field. 
After introducing this new node (n2'), we should check 
whether the child node i.e., n2 has any siblings. Since 
n2 has a sibling, we should shift it such that it becomes 
the sibling of the node n2'. After this rearrangement, 
increment the absolute values of the nodes representing 
the common prefix for Pattern # 3 and Pattern # 1. Add 
the rest of the nodes for Pattern # 3 as the sibling 
branch of the node n2.  
 Use of the ‘FLAG’ field in label nodes and the 
values specified in Figure 4 (C) in those ‘FLAG’ fields 
will be described in section 3.1. 
 
2.1. Algorithm for the construction of PR-tree 
   
 The Assignment of ‘FLAG’ field values of the label 
nodes in PR-tree constructed by the algorithm 
presented below is described in section 3.1.  
INPUT: 
 Tr: Training Data Set. 
OUTPUT:  
PR-tree constructed for Tr. 
ALGORITHM: 
Let the root of the PR-tree be T. 
For each pattern ti Є Tr 

Let Mi be the sequence of positions of nonzero 
values            in ti 
If no branch starting from T corresponding to a 
prefix ofMi exists 

     Then 
 Create new branch by calling Makebranch(ti 
,Mi).  

             Add it to T as a branch. 
     Else 

Consider the branch Eb with longest prefix 
pattern corresponding to Mi among all the 
branches.  Let prefix of Mi corresponding to 
this branch be M'i and the rest of the sequence 
of values in Mi be M"i (i.e., M'i concatenated 
with M"i should give Mi ) 
If there is no node in Eb with ‘FEATURE’ 
field value equal to last value of M'i 

   Then  
               Introduce a node corresponding to the last  
                    value of M’i and rearrange the tree  
                    appropriately. 
   Else 
               No rearrangement required. 
           Endif 
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Let E'b be the part of the branch Eb              
corresponding to M'i. Put the Values of M'i in 
E'b by incrementing the absolute values of 
corresponding ‘FLAG’ fields without 
changing the sign. Let E"b be the part of the 
branch Eb corresponding to M"i. Create E"b by 
calling Makebranch(ti, M"i). Add E"b as a new 
path following E'b. 

    Endif  
Endfor 
Makebranch (pattern t, sequence of positions of 
nonzero values M) 
Let B be the branch corresponding to M. 
Initially B is empty. 
For each value p in M 

 If p is the position corresponding to the first value 
of a sequence of consecutive nonzero values in 
pattern t  

     Then 
   Create node X with ‘FEATURE’ field value         
   equal to p and ‘FLAG’ field value equal to -1. 

     Else 
 If p is the position corresponding to the last                    
     value of a sequence of consecutive nonzero                
     values in pattern t.  

        Then     
create node X with ’FEATURE’ field value                  
equal to p and ‘FLAG’ field value equal to +1 

        Else 
If p is the position corresponding to a nonzero   
    value which is not a part of a sequence of  
    consecutive nonzero values in pattern t 

               Then  
       create node X with ‘FEATURE’ field  
       value equal to p and ‘FLAG’ field value  
       equal to -1. 

               Endif 
        Endif 
     Endif 
     If node X is created with ‘FEATURE’      
        field value equal to p 
     Then 
           If B is empty 
           Then  
                  Add node X as the first node in B 
           Else 
                  Add node X as the child of the        
                  last node in B. 
           Endif  
     Endif 
Endfor 
Add the label node at the end of B with ‘FEATURE’ 
field value equal to the class of the pattern t. 
Return B 
End Makebranch 

3. Rareness 
  

Training data contains training patterns for each 
class. Some of the patterns in the training data may not 
have a close resemblance with the patterns in the 
training data of the same class. We call such patterns 
‘rare patterns’; since the patterns similar to them are 
rare in the training data and we call this property as 
‘rareness’. In Figure 1, if there were more patterns of 
class ‘9’, similar to Pattern A, then they would have 
replaced some patterns in 8 nearest neighbors of 
Pattern D shown in Figure 2 and Pattern D would have 
been correctly classified into class ‘9’ rather than class 
‘7’. To handle this we use the concept of rareness.  
 
3.1. Realization of rareness of a training 
pattern 
  
 One of the methods for finding the rareness of a 
training pattern is by calculating the number of 
common features between the training pattern under 
consideration and each of the training patterns of its 
class. Sum of these common features divided by the 
number of training patterns in the class will give the 
average number of common features between the 
training pattern under consideration and the training 
patterns in its class. Let the reciprocal of this quantity 
be ‘R’. We call ‘R’, the ‘rareness factor’. ‘R’ provides 
a measure of rareness.  
 Following example illustrates the calculation of ‘R’. 
Consider the 4X4 patterns given in Figure 1 for class 
‘9’ and class ‘7’. For the sake of brevity let us assume 
that there are no other patterns in the training data 
other than the patterns shown in Figure 1 for class ‘9’ 
and class ‘7’. We can compare each of these patterns 
with each pattern in the training data of the same class 
to find out the value of their ‘R’. A simple way to do 
this is by using the matrices shown in Figure 5.  
 
 
 
 
 
 
 
 
 
 
 
Figure 5. ONELIST and ZEROLIST matrices for 

patterns shown in Figure1. 

53535353

Authorized licensed use limited to: NATIONAL INSTITUTE OF TECHNOLOGY SURATHKAL. Downloaded on February 23,2021 at 11:13:36 UTC from IEEE Xplore.  Restrictions apply. 



In Figure 5, for class ‘9’ and class ‘7’, each entry in the 
ONELIST matrix of a particular class indicates the 
number of training patterns of the corresponding class 
which have a nonzero value in the corresponding 
position. Similarly, each entry in the ZEROLIST of a 
particular class indicates the number of training 
patterns of the corresponding class, which have a zero 
value in the corresponding position. The following 
three steps calculate value of ‘R’ for a training pattern. 
Step 1: Check the value at each position one by one in 
the training pattern. If the value is nonzero, take the 
corresponding entry from the ONELIST of the class of 
the training pattern. Else, if the value is zero we take 
the corresponding entry from the ZEROLIST of the 
class of the training pattern. Add these entries together 
to get the total number of common features between 
the training pattern under consideration and each of the 
training patterns in the class.  
Step 2: Divide the final sum obtained in Step 1 by the 
number of patterns in the class of the training pattern. 
Step 3: Calculate the reciprocal of the value obtained 
in Step 2. This value is ‘R’ for the training pattern. 

 
 Table 3 illustrates Step 1, Step 2 and Step 3 for 

Pattern A, Pattern B and Pattern C shown in Figure 1. 
The column headed by Step 3 contains the value of ‘R’ 
for the corresponding patterns. 
 In Figure 4 (C), the values stored in the ‘FLAG’ 
field of the last node of each branch are the values 
obtained in Step 1 described above for the patterns 
represented in Table 2. These values can be calculated 
and stored in a single scan of the tree after the whole 
tree is constructed with the help of ONELIST and 
ZEROLIST. Using these values, ‘R’ can be calculated 
during classification. 
   
4. PR-tree based Classifier (PRC) 
  
  So far in this paper, we have explained the concept 
of rareness and how rareness can cause 
misclassification of patterns. But, rareness need not be 
the cause of all the misclassifications. So, we need to 
use certain criteria to consider the rareness of patterns 
for classification. In this section, we present an 
algorithm, which does this. Here we find the ‘k’ 
nearest neighbors in the PR-tree for the test pattern. 
Then we find the cumulative weight corresponding to 
each class. Next, we find the difference between the 
highest and second highest cumulative weights. This 

gives a measure of closeness between the cumulative 
weights for the two classes. Then this difference is 
compared with a small constant called threshold. If the 
difference is greater than threshold then the test pattern 
is classified into the class with highest cumulative 
weight. Otherwise, the value of ‘R’ for each of the ‘k’ 
nearest neighbors is found out. Then, either (i) if the 
pattern with highest ‘R’ belongs to the class with 
second highest cumulative weight, the test pattern is 
classified into the class with second highest cumulative 
weight, or (ii) if the pattern with highest ‘R’ does not 
belong to the class with second highest cumulative 
weight, test pattern is classified into the class with 
highest cumulative weight. 
 The constant threshold is the maximum difference 
between the highest and the second highest cumulative 
weights of the classes, required to consider the rareness 
of the patterns for classification. Value of threshold 
needs to be calculated experimentally. Generally, this 
is close to 1. Very high values for the threshold may 
cause decrease in classification accuracy because of the 
over consideration of rareness. Minimum value for 
threshold is zero. Incase it is zero the algorithm just 
resolves the tie between the cumulative weights for 
two classes when the two highest cumulative weights 
are equal. 

The classification algorithm proposed is given 
below.  
 
INPUTS: 
1. Ts – Test patterns  
2. K – Number of nearest neighbors  
3. NOC – Number of classes  
4. T – PR-tree corresponding to the set of training 
patterns      
5. Threshold   
OUTPUT: 
Class label, Label i for each test pattern si belonging to 
Ts according to the classification algorithm.  
ALGORITHM: 
 For each pattern, si belonging to Ts let ni be the set of   
        positions of non-zero values corresponding to si.  

For each branch bj belonging to PR-tree T 
count the number of common features 
between ni and bj, let it be cij. (Note that the 
feature which is absent in both ni and bj is also 
counted as a common feature). Find K largest 
counts in non increasing order; let them be ci1, 
ci2, ci3 …cik and let corresponding branches in 
the PR- tree be b1, b2, b3 … bk. 
Let o1, o2, o3 …ok be the labels associated 
with branches b1, b2, b3 …bk.  
 Compute the weight Wp 

 = (cip – cik) / (ci1– cik), for each p = 1, 2, 3 … 
k.  

Table 3. Illustration of calculation of ‘R’
Pattern Step 1 Step 2 Step 3 

A 55 55/4 4/55 
B 61 61/4 4/61 
C 64 64/4 4/64 
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For n=1 to NOC  
                     Sumn = ∑ km= 1 (Wm) where (om==n)  
           Endfor 

Label_x = x, if Sumx is highest, for each x = 1 
to NOC 

              Label_y = y, if Sumy is second highest,     
              For each y = 1 to NOC 
.          Difference = Sumx - Sumy  

If ‘Difference’ is less than or equal to 
threshold  

            Then  
Let f1, f2, f3,…..fk be the ‘FLAG’ field 
values of the label nodes in the branches 
b1, b2, b3, ….. bk respectively. 
Let C1, C2, C3 …Ck be the class of the 
patterns corresponding to the branches b1,  
b2, b3 …bk respectively. 
Compute the rareness factor Rz = number 
of training patterns for class Cz / fz ,   

       For each z = 1, 2, 3 … k. 
                      Rarest = od, If Rd is highest,  

    For each d = 1 to k. 
        If (Rarest == Label_y)  
           Then  
          Labeli = Label_y  
               Else  
                Labeli = Label_x 

                  Endif  

               Else  
           Labeli = Label_x 

                      Endif 
      Endfor 
Endfor 
 
         
 5. Experiments 

 
PCC [3] strikes a balance between the design time 

and the classification time unlike other classifiers like 
neural networks [1] and genetic algorithms [2]. PCC 
also has advantages over conventional classifiers (like 
nearest neighbor, k-NNC) with respect to storage 
space, processing time (PT) and classification accuracy 
(CA) [3] (processing time is the sum of design time 
and classification time). So, we chose to conduct 
experiments by comparing PRC with PCC for two 
different sets of handwritten digit data. Each set of data 
consists of a test set and training set of digits ‘0’ to ‘9’ 
written by different people. Value of the constant 
threshold is maintained equal to 1 for all experiments 
with PRC.  
 Table 5 provides the results of the experiments on 
first data set [3]. Test data consists of 3333 patterns. 
The dimension of test and training patterns is 16x12. 

 

Table 6 provides the results of the experiments on 
third data set (taken from MNIST handwritten digit 
database). Test data consists of 10,000 patterns. Test 
and training patterns are of the dimension 28X28. 

 
6. Conclusion 
 
      In this paper, a compact data structure, PR-tree and 
an efficient classifier based on it, PRC are proposed. It 
is observed that PRC has advantages over other 
classifiers with respect to processing time, memory 
requirements and classification accuracy. The future 
direction of our research includes finding out the best 
criteria for determining the value of threshold. 
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Table 5. Results with first data set 
Classifier 

 
Total 

processing 
time 

(in Sec) 

Size of 
PR-tree 

(in Bytes) 

CA 
(%) 

No. of 
training
patterns

PRC, k=16 62.36 29,94,784 94.449 6670 
PCC, k=15 64.82 44,08,064 93.669 6670 
PRC, k=16 38.30 18,45,504 92.619 4000 
PCC, k=15 39.91 27,17,712 91.95 4000 
PRC, k=16 19.54 9,57,216 90.57 2000 
PCC, k=15 20.71 14,06,512 89.55 2000 

Table 6 . Results with third data set 
Classifier Total 

processing 
time 

(in Sec) 

Size of  
PR-tree 

(in Bytes) 
 

CA 
(%) 

No. of
training 
patterns

PRC,k=11 4073.90 4,40,58,240 96.90 60,000
PCC,k=11 5034.90 18,98,02,800 96.55 60,000
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