
An Efficient Classification Algorithm based on
Pattern Range Tree Prototypes

Shreeranga P.R.
shreerangakamath@gmail.com

Akshat Vig

akshatvig19@gmail.com
Dr. V.S. Ananth Narayana

ananathvs1967@gmail.com
Dept. of Information Technology, National Institute of Technology Karnataka, Surathkal, India

Abstract
Abstraction based Pattern Classifier has drawn a

lot of attention today. This type of classifier has two
phases. They are: design phase, where the abstractions
are created and classification phase, where the
classification is done using these abstractions.
Techniques like neural networks, genetic algorithms
require very high design time. In other techniques like
nearest neighbor classifier, the design time is near to
zero but the classification time is predominantly high.
Pattern Count Tree (PC- tree) based classifier was
proposed as an abstraction based classifier that strikes
a balance between the design time and the
classification time. In this paper, we are going to
propose a novel data structure called Pattern Range
Tree (PR-tree) and a pattern classifier based on PR-
tree. Experimental results presented in this paper show
that PR-tree based classifier (PRC) is more efficient
than PC-tree based classifier (PCC) in terms of
storage space, processing time and classification
accuracy.

1. Introduction

Data mining involves a vast variety of sub fields,

one such challenging field is pattern recognition.
Pattern recognition aims to classify data based on a
priori knowledge or extracting statistical information
from the patterns available. Generally, in
neighborhood-based classifiers, for a test pattern, we
find the extent of match with each of the training
patterns and reduce our selection to the top k
qualifying patterns. The neighborhood-based classifiers
like PCC [3], k-nearest neighbor classifier (k-NNC) [4]
classify the test pattern based on the number of
representative training patterns selected for each class
and the number of common features between the test
and the selected training patterns. Neighborhood based

classification algorithms’ accuracy depends on the
nature of training set to a large extent.

Figure 1. Training patterns

Consider for example, the training patterns for class ‘9’
and ‘7’ as shown in Figure 1. Here each pattern is a
matrix of size 4X4 where a ‘1’ indicates the presence
of feature and a ‘0’ indicates the absence of feature.
Let us assume that all other classes also have such
training patterns. Let us consider a test pattern, Pattern
D as shown in Figure 2, to be classified. For a
neighborhood based classifier like k-NNC with number
of nearest neighbors k=8, assume that Pattern A
(number of such patterns = 1), Pattern B (number of
such patterns = 3) and Pattern C (number of such
patterns = 4) are 8 nearest neighbors to Pattern D.

 Figure 2. Test pattern
Table 1 illustrates the extent of match of Pattern D
with different training patterns. A common feature
between two patterns is either a nonzero value or a
zero value in both the patterns at the same position.
Weight for each training pattern (Wx), which is given
in the last column of Table 1 is calculated as follows.

Let Cx = Number of common features between the
test pattern and the training pattern X.

1 1 1 1
1 1 0 1
0 0 0 1
0 0 1 1

10th International Conference on Information Technology

0-7695-3068-0/07 $25.00 © 2007 IEEE
DOI

50

10th International Conference on Information Technology

0-7695-3068-0/07 $25.00 © 2007 IEEE
DOI 10.1109/ICIT.2007.51

50

10th International Conference on Information Technology

0-7695-3068-0/07 $25.00 © 2007 IEEE
DOI 10.1109/ICIT.2007.51

50

10th International Conference on Information Technology

0-7695-3068-0/07 $25.00 © 2007 IEEE
DOI 10.1109/ICIT.2007.51

50

Authorized licensed use limited to: NATIONAL INSTITUTE OF TECHNOLOGY SURATHKAL. Downloaded on February 23,2021 at 11:13:36 UTC from IEEE Xplore. Restrictions apply.

Cmin=Minimum value of Cx among the ‘k’ Cx values.
Cmax=Maximum value of Cx among the ‘k’ Cx values.
Weight for the training pattern X is given by:
Wx = (Cx – Cmin)/(Cmax – Cmin).

Cumulative weight for a particular class is obtained
by adding up the weights of the patterns among ‘k’
nearest neighbors corresponding to that class. For
example, for class ‘9’, there are totally 4 patterns
among the 8 nearest neighbors. So, its cumulative
weight is 1+0+0+0=1. For class ‘7’, there are totally 4
patterns among the 8 nearest neighbors. So, its
cumulative weight is 1/3+1/3+1/3+1/3=4/3.
Considering these results, the neighborhood-based
classifier will classify Pattern D into class ‘7’, since it
has the maximum cumulative weight (i.e., 4/3). But,
actually Pattern D has an exact match with Pattern A of
class ‘9’. The cause of this misclassification is the
number of patterns with which the test pattern (Pattern
D) had an exact match (Pattern A) or number of
patterns closer to the test pattern was less in the
training data as compared to the number of patterns of
the class into which the test pattern was finally
classified (Pattern C). We call such training patterns
‘rare patterns’, since the patterns similar or exactly
same as them are rare in the training data. In Figure 1,
Pattern A is rarer as compared to Pattern C. In this
paper, we propose a classification algorithm that
considers rareness of patterns in training data.
 In PC-tree [3], there exists a node for every feature
in the pattern. The structure we are going to propose
need not maintain a node for every feature in the
pattern. So, the structure proposed is more compact
than PC-tree. We call this structure Pattern Range Tree
(PR-tree). The proposed pattern classification
algorithm uses this data structure as abstraction.
 The organization of rest of the paper is as follows.
We give a detailed description of the data structure,
PR-tree, in section 2. Concept of rareness is discussed
in section 3. We give PR-tree based classification
algorithm in section 4 and the experiments in section 5.
Section 6 concludes the paper.

2. Pattern Range Tree (PR-tree)

PR-tree is a data structure, which is used to store the

training patterns in a compact manner. Each node of

the tree consists of the fields shown in Figure 3. In the
node ‘FEATURE’ field specifies the position of
nonzero value of the pattern. ‘CHILD’ field represents
the pointer to the following path. ‘SIBLING’ field
represents pointer to the node which indicates
subsequent other paths from the parent of the node

 Figure 3. PR-tree
under consideration. ‘FLAG’ field value gives the
information about the existence of the features between
the ‘FEATURE’ field value of current node and the
‘FEATURE’ field value of its immediate parent. It can
take either a positive value or a negative value. A
negative value of ‘FLAG’ field signifies the absence of
all the features between the ‘FEATURE’ field value of
current node and ‘FEATURE’ field value of its
immediate parent. The first node after the root node in
a branch always stores a negative value in the ‘FLAG’
field, since it corresponds to the first feature in the
pattern. A positive ‘FLAG’ field value signifies the
presence of all features between the ‘FEATURE’ field
value of current node and the ‘FEATURE’ field value
of its immediate parent. The absolute value of ‘FLAG’
field indicates the number of patterns sharing the
particular node. We illustrate the construction of PR-
tree in Figure 4 corresponding to the patterns shown in
Table 2. In Figure 4 the horizontal links indicate the
‘CHILD’ pointers and the vertical links indicate the
‘SIBLING’ pointers. In each node the ‘FEATURE’
field and the ‘FLAG’ field values are separated by ‘/’.

In Table 2 above, ‘Features’ column represents the

positions of nonzero values of the pattern confined by
4X4 matrix. For example, the positions of nonzero
values for Pattern A shown in Figure 1 are 1, 2, 3, 4, 5,
6, 8, 12, 15 and 16.

Figure 4 shows the PR-tree construction in three
different stages for Pattern # 1, 2 and 3 of Table 2. The
tree has the root represented by ‘T’. Figure 4 (A)
shows PR-tree after the insertion of Pattern # 1. In
Pattern # 1, the features from ‘1’ to ‘5’ are consecutive.
So, we create a node ‘n1’ for feature ‘1’ with value 1 in
n1’s ‘FEATURE’ field and then a child node ‘n2’ for
feature ‘5’ with value 5 in n2’s ‘FEATURE’ field. For
the node n1, the ‘FLAG’ field value is -1. This is

Table 1. Details of classification of pattern D
Pattern

X
Class Number of

common
features

with Pattern D
(Cx)

Number of
Patterns

Weight
(Wx)

A 9 16 1 1
B 9 13 3 0
C 7 14 4 1/3

T a b l e 2 . R ep r e s e n t a t i o n o f p a t t e r n s
Pattern # Class label Features

1 0 1,2,3,4,5,8,9,12,13
,14,15

2 6 1,5,9,10,11,12,13,
14,15,16

3 7 1, 2, 3, 7, 11, 15

51515151

Authorized licensed use limited to: NATIONAL INSTITUTE OF TECHNOLOGY SURATHKAL. Downloaded on February 23,2021 at 11:13:36 UTC from IEEE Xplore. Restrictions apply.

because (i) it is the first feature of the pattern (ii) it is
shared by only one pattern so far

Figure 4. PR-tree construction stages
 . For the node n2 the ‘FLAG’ field value +1
indicates that all the features (i.e. ‘2’, ‘3’ and ‘4’)
between the ‘FEATURE’ field value of the present
node (i.e., 5 of n2) and the ‘FEATURE’ field value of
its immediate parent (i.e., 1 of n1) are present in Pattern
1. For next feature ‘8’ of Pattern # 1, we create a
node with ‘FEATURE’ field value equal to 8. The
‘FLAG’ field value for this node is -1. This is because
there are no features between the ‘FEATURE’ field
value of its immediate parent node (n2) and the
‘FEATURE’ field value of this node. This procedure is
continued for the remaining part of Pattern # 1. In all
the nodes created for Pattern # 1, absolute value of the
‘FLAG’ fields is 1. It indicates that the nodes are not
shared by any other patterns so far. At the end of this
branch we attach a node with ‘0’ in the ‘FEATURE’
field which indicates that Pattern #1 belongs to class
‘0’. We call this node, the label node. The ‘FLAG’
field of this node is not assigned any value for now
(indicated by ‘-’). The ‘FLAG’ field of the last node of
each branch is assigned a value after the construction
of the whole tree.
 Figure 4 (B) shows PR-tree after the insertion of
Pattern # 2. Pattern # 2 shares a common prefix (‘1’)
with Pattern # 1. So, increment the absolute value of
the ‘FLAG’ field for the node n1. Now the new
‘FLAG’ field value for node n1 is -2. The absolute
value of the ‘FLAG’ field i.e., 2 indicates that two
patterns share the node n1. Add the remaining nodes
for Pattern # 2 as the sibling branch of node n2.
 Figure 4(C) shows PR-tree after the insertion of
Pattern # 3. Pattern # 3 contains a common prefix (‘1’,
‘2’ and ‘3’) with Pattern # 1. So we can share the nodes

for these features with Pattern # 1. But we do not have
a node for feature ‘3’, since it is represented implicitly
by the positive ‘FLAG’ field value of the node n2. So a
rearrangement is needed. That is, we need to insert a
node (n2') for feature ‘3’ between nodes n1 and n2, with
3 in its ‘FEATURE’ field and +1 in its ‘FLAG’ field.
After introducing this new node (n2'), we should check
whether the child node i.e., n2 has any siblings. Since
n2 has a sibling, we should shift it such that it becomes
the sibling of the node n2'. After this rearrangement,
increment the absolute values of the nodes representing
the common prefix for Pattern # 3 and Pattern # 1. Add
the rest of the nodes for Pattern # 3 as the sibling
branch of the node n2.
 Use of the ‘FLAG’ field in label nodes and the
values specified in Figure 4 (C) in those ‘FLAG’ fields
will be described in section 3.1.

2.1. Algorithm for the construction of PR-tree

 The Assignment of ‘FLAG’ field values of the label
nodes in PR-tree constructed by the algorithm
presented below is described in section 3.1.
INPUT:
 Tr: Training Data Set.
OUTPUT:
PR-tree constructed for Tr.
ALGORITHM:
Let the root of the PR-tree be T.
For each pattern ti Є Tr

Let Mi be the sequence of positions of nonzero
values in ti
If no branch starting from T corresponding to a
prefix ofMi exists

 Then
 Create new branch by calling Makebranch(ti
,Mi).

 Add it to T as a branch.
 Else

Consider the branch Eb with longest prefix
pattern corresponding to Mi among all the
branches. Let prefix of Mi corresponding to
this branch be M'i and the rest of the sequence
of values in Mi be M"i (i.e., M'i concatenated
with M"i should give Mi)
If there is no node in Eb with ‘FEATURE’
field value equal to last value of M'i

 Then
 Introduce a node corresponding to the last
 value of M’i and rearrange the tree
 appropriately.
 Else
 No rearrangement required.
 Endif

52525252

Authorized licensed use limited to: NATIONAL INSTITUTE OF TECHNOLOGY SURATHKAL. Downloaded on February 23,2021 at 11:13:36 UTC from IEEE Xplore. Restrictions apply.

Let E'b be the part of the branch Eb
corresponding to M'i. Put the Values of M'i in
E'b by incrementing the absolute values of
corresponding ‘FLAG’ fields without
changing the sign. Let E"b be the part of the
branch Eb corresponding to M"i. Create E"b by
calling Makebranch(ti, M"i). Add E"b as a new
path following E'b.

 Endif
Endfor
Makebranch (pattern t, sequence of positions of
nonzero values M)
Let B be the branch corresponding to M.
Initially B is empty.
For each value p in M

 If p is the position corresponding to the first value
of a sequence of consecutive nonzero values in
pattern t

 Then
 Create node X with ‘FEATURE’ field value
 equal to p and ‘FLAG’ field value equal to -1.

 Else
 If p is the position corresponding to the last
 value of a sequence of consecutive nonzero
 values in pattern t.

 Then
create node X with ’FEATURE’ field value
equal to p and ‘FLAG’ field value equal to +1

 Else
If p is the position corresponding to a nonzero
 value which is not a part of a sequence of
 consecutive nonzero values in pattern t

 Then
 create node X with ‘FEATURE’ field
 value equal to p and ‘FLAG’ field value
 equal to -1.

 Endif
 Endif
 Endif
 If node X is created with ‘FEATURE’
 field value equal to p
 Then
 If B is empty
 Then
 Add node X as the first node in B
 Else
 Add node X as the child of the
 last node in B.
 Endif
 Endif
Endfor
Add the label node at the end of B with ‘FEATURE’
field value equal to the class of the pattern t.
Return B
End Makebranch

3. Rareness

Training data contains training patterns for each
class. Some of the patterns in the training data may not
have a close resemblance with the patterns in the
training data of the same class. We call such patterns
‘rare patterns’; since the patterns similar to them are
rare in the training data and we call this property as
‘rareness’. In Figure 1, if there were more patterns of
class ‘9’, similar to Pattern A, then they would have
replaced some patterns in 8 nearest neighbors of
Pattern D shown in Figure 2 and Pattern D would have
been correctly classified into class ‘9’ rather than class
‘7’. To handle this we use the concept of rareness.

3.1. Realization of rareness of a training
pattern

 One of the methods for finding the rareness of a
training pattern is by calculating the number of
common features between the training pattern under
consideration and each of the training patterns of its
class. Sum of these common features divided by the
number of training patterns in the class will give the
average number of common features between the
training pattern under consideration and the training
patterns in its class. Let the reciprocal of this quantity
be ‘R’. We call ‘R’, the ‘rareness factor’. ‘R’ provides
a measure of rareness.
 Following example illustrates the calculation of ‘R’.
Consider the 4X4 patterns given in Figure 1 for class
‘9’ and class ‘7’. For the sake of brevity let us assume
that there are no other patterns in the training data
other than the patterns shown in Figure 1 for class ‘9’
and class ‘7’. We can compare each of these patterns
with each pattern in the training data of the same class
to find out the value of their ‘R’. A simple way to do
this is by using the matrices shown in Figure 5.

Figure 5. ONELIST and ZEROLIST matrices for

patterns shown in Figure1.

53535353

Authorized licensed use limited to: NATIONAL INSTITUTE OF TECHNOLOGY SURATHKAL. Downloaded on February 23,2021 at 11:13:36 UTC from IEEE Xplore. Restrictions apply.

In Figure 5, for class ‘9’ and class ‘7’, each entry in the
ONELIST matrix of a particular class indicates the
number of training patterns of the corresponding class
which have a nonzero value in the corresponding
position. Similarly, each entry in the ZEROLIST of a
particular class indicates the number of training
patterns of the corresponding class, which have a zero
value in the corresponding position. The following
three steps calculate value of ‘R’ for a training pattern.
Step 1: Check the value at each position one by one in
the training pattern. If the value is nonzero, take the
corresponding entry from the ONELIST of the class of
the training pattern. Else, if the value is zero we take
the corresponding entry from the ZEROLIST of the
class of the training pattern. Add these entries together
to get the total number of common features between
the training pattern under consideration and each of the
training patterns in the class.
Step 2: Divide the final sum obtained in Step 1 by the
number of patterns in the class of the training pattern.
Step 3: Calculate the reciprocal of the value obtained
in Step 2. This value is ‘R’ for the training pattern.

 Table 3 illustrates Step 1, Step 2 and Step 3 for

Pattern A, Pattern B and Pattern C shown in Figure 1.
The column headed by Step 3 contains the value of ‘R’
for the corresponding patterns.
 In Figure 4 (C), the values stored in the ‘FLAG’
field of the last node of each branch are the values
obtained in Step 1 described above for the patterns
represented in Table 2. These values can be calculated
and stored in a single scan of the tree after the whole
tree is constructed with the help of ONELIST and
ZEROLIST. Using these values, ‘R’ can be calculated
during classification.

4. PR-tree based Classifier (PRC)

 So far in this paper, we have explained the concept
of rareness and how rareness can cause
misclassification of patterns. But, rareness need not be
the cause of all the misclassifications. So, we need to
use certain criteria to consider the rareness of patterns
for classification. In this section, we present an
algorithm, which does this. Here we find the ‘k’
nearest neighbors in the PR-tree for the test pattern.
Then we find the cumulative weight corresponding to
each class. Next, we find the difference between the
highest and second highest cumulative weights. This

gives a measure of closeness between the cumulative
weights for the two classes. Then this difference is
compared with a small constant called threshold. If the
difference is greater than threshold then the test pattern
is classified into the class with highest cumulative
weight. Otherwise, the value of ‘R’ for each of the ‘k’
nearest neighbors is found out. Then, either (i) if the
pattern with highest ‘R’ belongs to the class with
second highest cumulative weight, the test pattern is
classified into the class with second highest cumulative
weight, or (ii) if the pattern with highest ‘R’ does not
belong to the class with second highest cumulative
weight, test pattern is classified into the class with
highest cumulative weight.
 The constant threshold is the maximum difference
between the highest and the second highest cumulative
weights of the classes, required to consider the rareness
of the patterns for classification. Value of threshold
needs to be calculated experimentally. Generally, this
is close to 1. Very high values for the threshold may
cause decrease in classification accuracy because of the
over consideration of rareness. Minimum value for
threshold is zero. Incase it is zero the algorithm just
resolves the tie between the cumulative weights for
two classes when the two highest cumulative weights
are equal.

The classification algorithm proposed is given
below.

INPUTS:
1. Ts – Test patterns
2. K – Number of nearest neighbors
3. NOC – Number of classes
4. T – PR-tree corresponding to the set of training
patterns
5. Threshold
OUTPUT:
Class label, Label i for each test pattern si belonging to
Ts according to the classification algorithm.
ALGORITHM:
 For each pattern, si belonging to Ts let ni be the set of
 positions of non-zero values corresponding to si.

For each branch bj belonging to PR-tree T
count the number of common features
between ni and bj, let it be cij. (Note that the
feature which is absent in both ni and bj is also
counted as a common feature). Find K largest
counts in non increasing order; let them be ci1,
ci2, ci3 …cik and let corresponding branches in
the PR- tree be b1, b2, b3 … bk.
Let o1, o2, o3 …ok be the labels associated
with branches b1, b2, b3 …bk.
 Compute the weight Wp

 = (cip – cik) / (ci1– cik), for each p = 1, 2, 3 …
k.

Table 3. Illustration of calculation of ‘R’
Pattern Step 1 Step 2 Step 3

A 55 55/4 4/55
B 61 61/4 4/61
C 64 64/4 4/64

54545454

Authorized licensed use limited to: NATIONAL INSTITUTE OF TECHNOLOGY SURATHKAL. Downloaded on February 23,2021 at 11:13:36 UTC from IEEE Xplore. Restrictions apply.

For n=1 to NOC
 Sumn = ∑ km= 1 (Wm) where (om==n)
 Endfor

Label_x = x, if Sumx is highest, for each x = 1
to NOC

 Label_y = y, if Sumy is second highest,
 For each y = 1 to NOC
. Difference = Sumx - Sumy

If ‘Difference’ is less than or equal to
threshold

 Then
Let f1, f2, f3,…..fk be the ‘FLAG’ field
values of the label nodes in the branches
b1, b2, b3, ….. bk respectively.
Let C1, C2, C3 …Ck be the class of the
patterns corresponding to the branches b1,
b2, b3 …bk respectively.
Compute the rareness factor Rz = number
of training patterns for class Cz / fz ,

 For each z = 1, 2, 3 … k.
 Rarest = od, If Rd is highest,

 For each d = 1 to k.
 If (Rarest == Label_y)
 Then
 Labeli = Label_y
 Else
 Labeli = Label_x

 Endif

 Else
 Labeli = Label_x

 Endif
 Endfor
Endfor

 5. Experiments

PCC [3] strikes a balance between the design time

and the classification time unlike other classifiers like
neural networks [1] and genetic algorithms [2]. PCC
also has advantages over conventional classifiers (like
nearest neighbor, k-NNC) with respect to storage
space, processing time (PT) and classification accuracy
(CA) [3] (processing time is the sum of design time
and classification time). So, we chose to conduct
experiments by comparing PRC with PCC for two
different sets of handwritten digit data. Each set of data
consists of a test set and training set of digits ‘0’ to ‘9’
written by different people. Value of the constant
threshold is maintained equal to 1 for all experiments
with PRC.
 Table 5 provides the results of the experiments on
first data set [3]. Test data consists of 3333 patterns.
The dimension of test and training patterns is 16x12.

Table 6 provides the results of the experiments on
third data set (taken from MNIST handwritten digit
database). Test data consists of 10,000 patterns. Test
and training patterns are of the dimension 28X28.

6. Conclusion

 In this paper, a compact data structure, PR-tree and
an efficient classifier based on it, PRC are proposed. It
is observed that PRC has advantages over other
classifiers with respect to processing time, memory
requirements and classification accuracy. The future
direction of our research includes finding out the best
criteria for determining the value of threshold.

7. References

[1] M. Prakash and M. Narsimha Murty,
”Growing subspace pattern recognition methods and their
neural network models". IEEE Transactions on Neural
Networks 8 (1) (1997) 161-168.

[2] L.I. Kuncheva, L.C. Jain, “Nearest neighbor classifier:
Simultaneous editing and feature selection”, Pattern
Recognition Letters. 20 (1999) 1149-1156

 [3] V.S. Ananth Narayana, M. Narsimha Murty and D.K.
Subramaniam, “An Incremental Data Mining Algorithm for
Compact realization of Prototypes”, Pattern Recognition,
34:2249-2501,2001.

 [4] E. Fix and J.L. Hodges, Jr. “Discriminatory analysis:
Non-parametric Discrimination: Consistency Properties”,
Report Number 4, USAF School of Aviation Medicine,
Randolph Field, Texas, 1952.

Table 5. Results with first data set
Classifier

Total

processing
time

(in Sec)

Size of
PR-tree

(in Bytes)

CA
(%)

No. of
training
patterns

PRC, k=16 62.36 29,94,784 94.449 6670
PCC, k=15 64.82 44,08,064 93.669 6670
PRC, k=16 38.30 18,45,504 92.619 4000
PCC, k=15 39.91 27,17,712 91.95 4000
PRC, k=16 19.54 9,57,216 90.57 2000
PCC, k=15 20.71 14,06,512 89.55 2000

Table 6 . Results with third data set
Classifier Total

processing
time

(in Sec)

Size of
PR-tree

(in Bytes)

CA
(%)

No. of
training
patterns

PRC,k=11 4073.90 4,40,58,240 96.90 60,000
PCC,k=11 5034.90 18,98,02,800 96.55 60,000

55555555

Authorized licensed use limited to: NATIONAL INSTITUTE OF TECHNOLOGY SURATHKAL. Downloaded on February 23,2021 at 11:13:36 UTC from IEEE Xplore. Restrictions apply.

