
AN EXPERIMENTAL STUDY OF THE EFFECT OF FREQUENCY OF CO-
OCCURRENCE OF FEATURES IN CLUSTERING

Radhika M. Pai1 , Ananthanarayana V.S.2

1Department of Computer Science &Engg., M.I.T., Manipal-576104, Karnataka, INDIA
2Department of Information Technology, N.I.T.K. Surathkal, P.O. Srinivasanagar – 575025, Karnataka, INDIA.

E-mail : radhikampai@rediffmail.com, anvs@nitk.ac.in

ABSTRACT

In this paper, an attempt has been made to explore

the effect of frequency of co-occurrence of features on
the accuracy of the clustering results. This has been
achieved by incorporating the frequency component in
the clustering algorithm. The frequency, we mean here
is the number of times the sequence of features appear
in the data set. We try to utilize this component in the
algorithm and study its effect on the resultant accuracy.
The algorithm we have used is the PC(pattern count)-
tree based clustering algorithm. The PC-tree is a
compact and complete representation of the data set. It
is data order independent and incremental. It can be
applied to changing data and changing knowledge. i.e.
dynamic databases. This algorithm is based on a
compact data structure called PC-tree. The node of the
PC-tree has, in addition to other fields a count field,
which keeps track of the count of the number of
features shared by the pattern. In the literature, the PC-
tree was used for clustering and the count field was
used only to retrieve back the transactions. In this
paper, we try to make use of this field in clustering. We
have also used the partitioned PC-tree based algorithm
and studied the effect of frequency on the accuracy. We
have conducted extensive experiments with the OCR
handwritten digit dataset, a real dataset and observed
the effect of frequency on the clustering results. The
results of all our experiments are tabulated.

I. INTRODUCTION

Clustering is an exploratory data analysis task and

has been widely applied in many areas such as pattern
recognition and image processing, information
processing, medicine, geographical data processing, and
so on. Most of these domains deal with massive
collections of data. In data mining applications, both the
number of patterns and features are typically large and
cannot be stored in main memory and hence needs to be
transferred from secondary storage as and when
required. This takes a lot of time. In order to reduce the

time, it is necessary to devise efficient algorithms to
minimize the disk I/O operations. Hence, the methods
to handle them must be efficient in terms of data set
scans and memory usage. Several algorithms have been
proposed in the literature for clustering large data
sets[2,3,4]. Most of these algorithms need more than
one scan of the database. To reduce the number of
scans and hence the time, the data from the secondary
storage are stored in main memory using abstractions
and the algorithms access these data abstractions and
hence reduce the disk scans. Some abstractions to
mention are the CF-tree[4], FP-tree[4], PC-tree[8],
PPC-tree[6], kd-trees[5], AD-trees[1]. The PC-tree[8]
and the PPC-tree[6] based algorithms require only a
single database scan and have been used for clustering
of the handwritten digit dataset. In both these
algorithms, the notion of frequency was not used. Most
of the algorithms which use frequency is restricted to
document clustering where the frequency of the
occurrence of words is considered. The use of
frequency for numeric data has not been exploited yet.
Here we try to exploit the notion of frequency for the
clustering of numeric dataset.

II. MOTIVATION FOR THE PRESENT WORK

Till now, work has been carried out on clustering, but

the notion of frequency was till now restricted to the
clustering of documents where the frequency of the
occurrence of words was considered. Here we try to use
the notion of frequency in clustering of numeral
datasets. The reason why we have used the PC-tree is
that the PC-tree already stores the frequency in the form
of “count” value and we try to use this component in
the algorithm so that there is no extra space consumed
for storing the frequency.

 III. OVERVIEW OF THE PC-TREE BASED

ALGORITHM

 The PC-tree[8] is a tree constructed from the data

set. The node structure of the tree has four fields.
They are
‘Feature’ specifies the feature value of a pattern.

1-4244-0779-6/07/$20.00 ©2007 IEEE

Authorized licensed use limited to: NATIONAL INSTITUTE OF TECHNOLOGY SURATHKAL. Downloaded on February 24,2021 at 04:32:51 UTC from IEEE Xplore. Restrictions apply.

‘Count’ specifies the number of patterns represented
by a portion of the path reaching this node.

‘Chld_ptr’ represents the pointer to the following
path.

‘Sib_ptr’ points to the node which indicates the
subsequent other paths from the node under
consideration.

 Figure 1. shows the node format of a PC-tree.

 Figure 1. Node structure of the PC-tree

For completeness, the construction of the PC-tree

and the clustering algorithm based on the PC-tree are
given in Figure 2. and Figure 3. respectively.

Inputs:
 let TR be the database.
 let root of the PC-tree be T.
 For each pattern, ti € TR
 let mi be the set of positions of non-zero values

in ti.

 if no sub-pattern starting from T exists
corresponding to mi

 then
 create a new branch, with nodes having

'feature' fields as values of mi and
 'count' fields with values set to 1.
 else
 put the values of mi in an existing branch, eb by

incrementing corresponding 'count' field values of the
nodes in eb. put the remaining values of mi by
appending additional nodes with 'count' field values set
to 1 to the branch eb.

 Figure 2. Construction of the PC-tree

The PC-tree can be used as an abstract representation

for the training patterns in supervised clustering. The
test data patterns are used for testing . The clustering
algorithm using PC-tree is given in Figure 2.

Generate PC-tree using TR

 For each si € TS

 find ni, set of positions of non-zero values
corresponding to si.

 for each branch bj € PC-tree
 Count the number of common features

between ni and bj . let it be Cij.
 find k largest counts in descending order. let them

be Ci1, Ci2, ...Cik, and let the corresponding branches in
the PC-tree be b1, b2, ... , bk.

 Compute the weight, wl = 1-(Cil – Cik) / (Ci1 – Cik) ,
for each l=1,....k.

for n = 1 to number of classes do
 sumn = ∑k

m=1(wm) where (om == n)

label = ox, if sumx is maximum, for x=1 to no of

classes.
 if (label == label of si) then
 correct = correct + 1.
CA = (correct/ |TS| x 100) |TS| is the number of

test patterns.
 Figure 3. PC-tree based clustering algorithm

IV. THE PROPOSED METHOD

 In the proposed method, the construction of the PC-

tree remains the same. In the recognition phase, we
match the incoming test data set with all the branches of
the PC-tree and find the branch which matches more
with the test data set by computing the distance and
recording the minimum distance. We call this the
nearest neighbour branch of the test set. In this way we
compute the K-nearest neighbours and record the
distance and the label. In addition to this, our proposed
algorithm also records the frequency count of the
nearest branches as the minimum of the count values of
all the features in that branch. This frequency is used in
computing the weightages. In the first method, we
multiply the formula for computing the weightage by
the frequency and take it as the weightage for that
entry.

In the second method, we repeat each entry in the k-
nearest neighbour list as many times as the frequency
and take the resultant k-nearest neighbours.

The resultant algorithms are given in Figure 4. and
Figure 5. respectively.

Generate PC-tree using TR

 For each si € TS

 find ni, set of positions of non-zero values
corresponding to si.

 for each branch bj € PC-tree
 Count the number of common features

between ni and bj . let it be Cij.
 find k largest counts in descending order. let them

be Ci1, Ci2, ...Cik, and let the corresponding branches in
the PC-tree be b1, b2, ... , bk and let the frequency of the
corresponding branch be lcount1, lcount2, lcountk.

Compute the weight, wl = (1- (Cil – Cik) / (Ci1 – Cik))
* lcounti, for each l=1,....k.

for n = 1 to number of classes do
 sumn = ∑k

m=1(wm) where (om == n)

Feature Count Chld_ptr Sib_ptr

Authorized licensed use limited to: NATIONAL INSTITUTE OF TECHNOLOGY SURATHKAL. Downloaded on February 24,2021 at 04:32:51 UTC from IEEE Xplore. Restrictions apply.

label = ox, if sumx is maximum, for x=1 to no of
classes.

 if (label == label of si) then
 correct = correct + 1.
CA = (correct/ |TS| x 100) |TS| is the number of

test patterns.
Figure 4. Proposed method 1

Generate PC-tree using TR

 For each si € TS

 find ni, set of positions of non-zero values
corresponding to si.

 for each branch bj € PC-tree
 Count the number of common features

between ni and bj . let it be Cij.
 find k largest counts in descending order. let them

be Ci1, Ci2, ...Cik, and let the corresponding branches in
the PC-tree be b1, b2, ... , bk and let the frequency of the
corresponding branch be lcount1, lcount2, lcountk.

Repeat the each of the k largest counts , depending
on the lcount value of each entry.

Takee only the k-nearest neighbours , after repeating
the entries.

 Compute the weight, wl = 1- (Cil – Cik) / (Ci1 – Cik) ,
for each l=1,....k.

for n = 1 to number of classes do
 sumn = ∑k

m=1(wm) where (om == n)

label = ox, if sumx is maximum, for x=1 to no of

classes.
 if (label == label of si) then
 correct = correct + 1.
CA = (correct/ |TS| x 100) |TS| is the number of

test patterns.
Figure 5. Proposed method 2

V. EXPERIMENTAL RESULTS

We have conducted the experiments on the OCR

handwritten digit dataset. There are 6670 patterns in the
training set, 3333 patterns in the test set and 10
classes.[6,7,8]. Each class has approximately 670
training patterns and 333 test patterns. Each pattern
represents a digit which is in the binary matrix form of
order 16 x 12. The binary matrix form of the digit is
treated as transactions by considering the positional
value of the features having value as 1. Thus each
handwritten digit pattern has a maximum of 192
features. The results of the proposed method 1 and
proposed method 2 is shown in Table 1.

Further experiments were conducted by generating
some synthetic training set and observing the effect of

frequency on the accuracy. All the results of the
experiments are tabulated in Table 1.

We also have conducted the experiments by using
the PPC-tree based clustering algorithm[6]. The PPC-
tree based clustering algorithm is similar to PC-tree
based algorithm, but it partitions the dataset vertically
and constructs the PC-tree separately for each partition.
The test pattern is likewise partitioned and matched
with each partition independently. those results are also
tabulated in Table-1.

Other experiments were conducted by giving the
training set as input more than once and multiplying the
entries in the nearest neighbour list based on this value.
All the results of the experiments are tabulated.

 All the above mentioned experiments were
conducted on an Intel Pentium 4 machine with 248 MB
RAM and 2.4 GHz clock frequency running LINUX .

VI. CONCLUSION

In this paper, a detailed experimental study is

conducted to observe the effect of frequency of the
occurrence of features on the accuracy of clustering
results. The experiments have been conducted on the
handwritten digit dataset and two different algorithms
were used by incorporating the frequency component in
the algorithm. The results of all the experiments are
tabulated. Several variants of the algorithms were tried
by generating the synthetic set, duplicating the entries
in NN-list, by trying with different number for K
neighbours and so on. The results tabulated are for the
values of K for which the Accuracy is maximum.
Though the results are slightly lesser in accuracy than
mentioned in literature, nevertheless, the experiments
still highlight that the frequency component plays a
vital role in clustering though not for this dataset as the
frequency in most of the cases was 1 except for a
particular label for which the frequency was above 20.

REFERENCES

[1] Andrew Moore, Mary Soon Lee, (1998), “Cached

sufficient statistics for efficient machine learning with
large datasets”, Journal of Artificial Intelligence
Research 8 (1998), pages 67-91.

[2] Anil K.Jain, Richard C.Dubes (1988),
“Algorithms for Clustering Data”, Prentice Hall
Advanced Reference Series.

[3] A.K.Jain, M.N.Murty, P.J.Flynn(1999), “Data
Clustering: A Review”, ACM Computing Surveys, vol.
31, No.3, September 1999, pages 264-323.

[4] Arun K, Pujari(2001), “Data Mining
techniques”, University Press 2001.

[5] Friedman J.H., Bentley J.L., Finkel R.A.(1997),
“An algorithm for finding best matches in logarithmic
expected time”,ACM trans. Math software 3 (3), pages
209-226

Authorized licensed use limited to: NATIONAL INSTITUTE OF TECHNOLOGY SURATHKAL. Downloaded on February 24,2021 at 04:32:51 UTC from IEEE Xplore. Restrictions apply.

[6]P.Viswanath, M.N.Murthy(2002), “An
incremental mining algorithm for compact realization
of prototypes”, Technical Report, IISC, Bangalore.

[7] M.Prakash, M.Narasimha Murthy(1997),
“Growing subspace pattern recognition methods and
their neural network models, IEEE trans. Neural
Networks 8(1) 161-168.

[8] V.S.Ananthanarayana, M.Narasimha Murty,
D.K.Subramanian(2003), “Tree structure for efficient

data mining using rough sets”, Pattern Recognition
Letters, vol.24(2003),pages851-86.

 [9] R.O.Duda , P.E.Hart (1973), “Pattern
Classification and Scene Analysis”, Wiley, New York.

[10] T.Ravindra Babu, M.Narasimha Murthy(2001),
“Comparison of Genetic Algorithms based prototype
selection scheme”, Pattern Recognition 34 (2001),
pages523-525

Table 1. Results of all the Experiments

Clustering Algorithm Used Modified algorithm % Accuracy
PC-tree based Clustering Alg. Proposed method 1 93.39
 Proposed method 2 91.89
 Proposed method1 with synthetic set1 93.58
 Proposed method1 with synthetic set2 93.03
 Duplicating the training set and

duplicating the NN based on freq.
93.12

 Duplicating the training set and
duplicating each of the entry in NN

93.09

 triplicating the training set and
triplicating each of the entry in NN

93.64

 triplicating the training set and
triplicating each of the entry in NN
with synthetic set1

93.76

 triplicating the training set and
triplicating each of the entry in NN
with synthetic set2

92.97

Partitioned PC-tree based
Clustering Alg.

Proposed method 1 94.72

 triplicating the training set and
triplicating each of the entry in NN

94.78

 triplicating the training set and
triplicating each of the entry in NN

94.54

Authorized licensed use limited to: NATIONAL INSTITUTE OF TECHNOLOGY SURATHKAL. Downloaded on February 24,2021 at 04:32:51 UTC from IEEE Xplore. Restrictions apply.

