
An Intelligent Algorithm for Automatic
Candidate Selection for Web Service

Composition

Ashish Kedia, Ajith Pandel, Adarsh Mohata, and Sowmya Kamath S

Department of Information Technology,
National Institute of Technology Karnataka, Surathkal, Mangalore, INDIA

{ashish1294,ajithpandel,amohta163}@gmail.com
sowmyakamath@nitk.ac.in

Abstract. Web services have become an important enabling paradigm
for distributed computing. Some deterrents to the continued popular-
ity of the Web service technology currently are the non-availability of
large-scale, semantically enhanced service descriptions and limited use
of semantics in service life-cycle tasks like discovery, selection and com-
position. In this paper, we outline an intelligent semantics based web
service discovery and selection technique that uses interfaces and text
description of services to capture their functional semantics. We also
propose a service composition mechanism that automatically performs
candidate selection using the service functional semantics, when one Web
service does not suffice. These techniques can aid application designers in
the process of service based application development that uses multiple
web services for its intended functionality. We present experimental and
theoretical evaluation of the proposed method.

Keywords: Web Services Composition, Semantic Search, NLP

1 Introduction

W3C defines a Web Service as a software system that supports interoperable
machine to machine interaction over a network. A web service can be uniquely
identified by a URI and each is described using one or more XML based docu-
ments which define the service interfaces, the functionality provided by it and
also prescribe the manner in which the it interacts with other systems. Large
scale applications can be easily built by composing loosely coupled web services
[10], thus enabling a service oriented architecture.

While developing applications, searching for an appropriate web service that
can provide a required functionality is not trivial. Web Service discovery and
retrieval often becomes a bottleneck. Recent years have not only seen an explo-
sive increase in the number of web services being offered but have also witnessed
a rise in number of standards to describe those service. The problem is fur-
ther compounded by the fact that there is no central repository with all service

descriptions. Web Service standards such as UDDI (Universal Description, Dis-
covery and Integration) which relied on a central registry of all web services is
now obsolete owing to its low benefit/complexity ratio. The requirements have
also escalated. Developers now need a method to dynamically look-up for appro-
priate web service during run-time making service discovery a challenging task.
Semantic Web Technology attempts to automate the web service discovery. Most
of the existing algorithms for automated web service discovery serves to only web
services that have explicit semantic tags associated with their description doc-
ument which is an unreasonable expectation. A large number of existing web
services do not have any semantics tags associated with their description doc-
ument. Approaches to convert existing non-semantic description documents of
web services to corresponding semantic ones are also severely limited.

Our work is focused on studying the existing methods of discovering web
services and develop a method to automatically index a set of web services using
their description documents such that services can be automatically searched
and composed based on user’s need. The rest of this paper in organized as
follows. In section 2 we will discuss the existing work concerning the described
problem. This is followed by section 3 that describes methodologies to index web
services using their description documents. Section 4 talks about the algorithm
to search the indexed web services to find services relevant to the user. In section
5 we propose a methodology to automatically compose multiple web services. In
section 6 we will discuss the results obtained and analyze the proposed method.
Finally, Section 7 concludes our work with a few possible future improvements.

2 Related Work

Yanbin et al [7] have modeled the service discovery problem as an assignment
problem using functional constraints. They have proposed an automatic seman-
tic search algorithm which is loosely based in assignment algorithm. It uses 3
step match making - Service Library Matchmaking, Service Matchmaking and
Operation Matchmaking. Operation Matchmaking can be further divided into
Interface Matchmaking and Concept Matchmaking.

Platzer and Dustdar [8] proposed the construction of a Vector Space to index
descriptions of already existing services. They have used the prevalent informa-
tion retrieval methods over the existing standards to create a multidimensional
”term space”, where each dimension represents a category of web services and
then represent each web service in this space using a vector. The relative position
of these vectors in the said space is used to compute the effective similarity of
the corresponding web services.

Cuzzocrea et al [1] have considered both internal structure and component
of web services. They have outlined an algorithm for service discovery that rep-
resents composite OWL-S (Web Ontology Language for Services) documents
using graphs. They proposed an algorithm that matches a group of services with
a query using such graph-based representation. They have not only considered

the similarity of individual services in the matched group but have also taken
into account the flow or control between different services of that group.

Sangers et al [9] have used popular NLP techniques like lemmatization, tag-
ging parts of speech and word sense disambiguation to establish the semantics of
web service description. They also determine the senses of the relevant words in
user’s query and then carry out a match-matching process between users query
and indexed web services. In this method a context aware search is performed
i.e., actual users need is matched with services that performs required computa-
tion. Fethallah et al [2] have outlined a mechanism to use the external interface
(inputs/outputs) of web services. They have used domain ontology to classify
service interfaces and then index the corresponding service conceptually. Once
the services are indexed they use the popular co-sine similarity measurement to
computer the degree of similarity between the query and the indexed services.
The method yielded good result and is relative less resource intensive than the
other existing methods.

Vector space search engine seems like a promising approach however it fails
to account for the service semantics which is an important parameter in service
discovery. Our algorithm tries to establish service semantics using text descrip-
tion and uses it as an additional parameter for service discovery over traditional
vector space search to get the best of both methods. We also focus on serving
user’s need by automatically composing services whenever required.

3 Proposed Methodology

Figure 1 depicts the overall methodology adopted for the proposed system. We
discuss each of these processes in detail below:

 Collect & Parse OWLS Docs

Semantic Indexing Vector Creation

Semantic Similarity

Parse Description Parse Interfaces

Interface Similarity

Overall Relevance

Fig. 1. Proposed Methodology

Pair-wise similarity of interfaces

Filter Pairs with high similarity

Add edge

Services as graph nodes

Check for cycle

Discard edge if required

Fig. 2. Creation of Service Interface
Graph

3.1 Preprocessing Web Service Description Documents

We propose using a combination of two methods for indexing web service de-
scription documents. The first method relies on the exact keywords that defines

the service interface i.e., input and output. The second method relies on natural
language processing techniques to derive the actual functionality provided by
the service.

The OWL-S test collection1 was used as a dataset for performing the ex-
periments. We divided the services into seven popular categories like Economy,
Education, Communication, Food, Travel, Weapon and Medical. It is difficult to
categorize a vast of number of services into these categories strictly and thus we
consider a vector space with 7 dimensions each representing a category of web
services as listed earlier. Each category has a list of keywords associated with it
which is denoted by Ci where 1 <= i <= 7. We also allow a single keyword to
be associated with more than one category.

3.2 Indexing Web Service Description Documents

Web service description files typically have tags like <profile:hasInput> and
<profile:hasOutput> which specify the respective service interface. We use these
interfaces to index the web services. To index a web service, we parse the de-
scription document associated with the service to extract the <profile:hasInput>
and <profile:hasOutput>. After extracting we extract all the keywords used to
describe both the service interface. Let us denote the list of keywords as Wi

and Wo. We define two vectors namely Vi (Service Input Vector) and Vo (Ser-
vice Output Vector). Both the vectors have seven elements (each representing a
category) where each element is the number of keywords common to both the
category and the service input (for Vi) / output (for Vo). Thus for each service
two vectors are created and stored. Mathematically this can be formulated as
shown in Equation 1 and 2.

Vik = |Wi ∩ Ck | ∀ {k | 1 <= k <= 7} (1)

Vok = |Wo ∩ Ck | ∀ {k | 1 <= k <= 7} (2)

3.3 Measuring similarity between services

The overall functionality of a web-service is typically described in a description
document associated with web services using human-readable natural language.
They tend to give more insight about the actual functionality provided by the
web service. Natural language processing techniques can be used to extract the
the real functionality provided by the web service. We have used a simple word
sense disambiguation algorithm to choose the right meaning of all the words in
the text description and then establish a context of the web service which can
be used for matching the service with users requirements. A context is a set of
meanings that represents the functionality provided by a web service.

The algorithm first extracts the text description and then eliminates fre-
quently occurring words such as conjunctions, prepositions, etc, as they do not

1 Available online at http://projects.semwebcentral.org/projects/owls-tc/

http://projects.semwebcentral.org/projects/owls-tc/

provide any significant information. Domain modeling can also be used to drop
frequently occurring words. After this, all possible synsets of each word are ob-
tained from Wordnet [5]. A context is initialized with all the disambiguated
words i.e., words with single meaning. If no such words are found then a con-
text is established by choosing the most frequently used meaning of a few words
having relatively smaller number of synset. The algorithm simply chooses the
meaning which is conceptually most similar to the already established context.
To compute the similarity between a synset and a context we compute the aver-
age similarity of the given synset with each synset in the context as formulated
by Equation 3.

sim(syn, context) = jcn(syn, si) ∀ si ε context (3)

where, syn is a synset of the given word. To find similarity between synsets
we used the JCN Similarity algorithm [4]. After computing similarity of all the
synset of a given word with the already established context, we choose the synset
with maximum similarity and added it to the context. As such the final context
has the set of most similar lemmas. We indexed each web service using the
previously established context.

4 Searching Candidate Web Services

With every query user specify the required input, output and functionality. Based
on the two methods of indexing, two different corresponding search methods can
be used - Vector Space based Search and Semantic Search.

In the proposed system, the desired input and output specified by the user is
used to construct two search vectors namely Si and So representing the desired
interface in the seven dimensional vector space described earlier. The process
of converting the desired interface to corresponding vector is similar to that of
converting service interfaces to corresponding vectors. Once we have the search
vectors, we search for service vectors similar to search vectors. The similarity be-
tween two given vectors is determined using the cosine similarity score, described
in Equation 4.

sim(V1, V2) =
V1.V2

||V1|| ∗ ||V2||
(4)

where, V1 and V2 are two vectors of same dimension. To find the total sim-
ilarity between a search query and a service we compute the average similarity
of input and output vectors respectively as illustrated in Equation 5.

Total Similarity =
sim(Ri, Si) + sim(Ro, So)

2
(5)

where, Ri and Ro are the input and output vector of an indexed service.
We compute similarity with all the indexed services and then sort the result
according to total similarity. After sorting we assign rank to each service.

The semantic search proceeds by iterating over the indexed services and
selecting the services with similar context. A context of the user’s query is es-
tablished using the same method as described in previous section. The similarity
between two context is computed using the Equation 6.

Semantic Similarity =

∑
sim(ui, vi)

m× n
(6)

where, ui ε User’s Query Context ∀ i = 0, 1, . . . n, vi ε Service’s Indexed
Context ∀ i = 0, 1, . . . m and sim() denotes similarity between 2 given lemmas.
The services are sorted according to the context similarity score and each service
is assigned a rank. The final rank of a service is computed as the average of rank
assigned by each method. We give equal weightage to both the algorithms to
compute the final result. However, the weight of each algorithm can be tuned
according to the specific requirement.

5 Automatic Service Composition

It is often the case that a single service in the database is unable to satisfy
user’s query complete. In such cases we need to find multiple services that can
work together in a given sequence so as to provide the required functionality
to the user. In essence the services have to be automatically composed. Service
composition is performed as follows:

– Searching for suitable web services that can be composed together to act as
a single service

– Arranging the different web services in a particular sequence that yields the
desired output

– Conversion of data-formats so that output of one service matches the input
format expected by the next service in the sequence

Several solutions to this service composition problem have been proposed
based on graphical model of web services [6], [3]. In this section, a methodology
to search for multiple web services that can be composed together to serve the
user’s need, using a graph of interconnected web services is discussed.

5.1 Constructing a Service Interface Graph

A DAG (Directed Acyclic Graph) is constructed to model services and the rela-
tion between their interfaces. Each node in this graph represents a web service.
A node has several incoming and outgoing edges. An edge from node ’A’ to node
’B’ signifies that the output yielded by service ’A’ is similar to the input accepted
by service ’B’ i.e., service ’A’ and ’B’ can be composed together. To construct
the graph we first compute the equivalent input and output vector of all the
service in the database. Then, we match the output of each service to the input
of every other service i.e., determine the co-sine similarity between the output

vector of first service and input vector of second service. If the similarity is found
to be greater than a pre-determined cut-off then the two services are connected
via an edge from first one to the second. After the addition of each edge, the
graph is checked for cycles. If any cycles are found to exist in the graph, the
newly added edge is discarded. Figure 2 illustrates a flow chart showing all the
steps involved in creation of the said graph.

The main objective of this process is, to model Web services such that the
service composition problem can be treated as a simple graph traversal problem.
Thus, it is essential to have an acyclic graph. The similarity cut-off for adding
edges is chosen to be 0.9. A high value is chosen to ensure that there is almost a
perfect match between the interfaces. This cutoff can be determined dynamically
based on the average similarity of interfaces and several other domain-dependent
factors.

5.2 Executing a Service Composition Query

Once the graph is constructed, it has to be traversed for each query. Firstly, an
input and output vector corresponding to the user’s query is computed. Then a
keyword based query as described in previous section is executed. The resultant
services are sorted according to the input similarity - and top results (top k) are
filtered. This gives the top k start-points of potential composition. For each of
these input services, the graph is traversed using the well known DFS (Depth
First Search) Algorithm starting from the input service as source. For every node
visited, the similarity between the node’s output vector and user’s query output
vector is determined. Among all the nodes visited, the node with best output
vector is selected. The path between the corresponding source node and the
node with best output yields the best composition possible for the corresponding
source service.

6 Experimental Results and Analysis

The results that we obtain are very encouraging. We are able to obtain very
relevant web services given an interface. We have obtained this results with a
very small set of keywords in each field (average 40 each). As such, with a large
set of keywords in each category we should be able obtain much better results.
A few sample Query and their corresponding results have been listed in Table
1. The cosine similarity values obtained for each service in the result set is also
mentioned.

In this section, an estimate of the asymptotic run-time complexity analysis
of all the major steps involved in our proposed algorithm is presented. The
first step is to parse the description document of a service which is dependent
on the length of the description document. Since the length of the description
document is roughly same for all services, this step takes constant time. To
construct the vectors that can represent the service in 7-D vector space we
have to search through all the keywords belonging to all the categories. Thus

Table 1. Observed results for some sample queries

Input Output Services and Similarity

Car Price 3wheeledcar price service (1.0), car price service (1.0),
citycity arrowfigure service (1.0), lenthu rentcar service (0.972)

Missile Range missile lendingrange service(0.971), missile givingrange(0.933),
ballistic range service(0.918)

Location Distance sightseeing service(1.0), DistanceInMiles(0.908),
calculate betwee Location(0.903), surfing service(0.901)

Medical Bed hospital investigatingaddress service(0.789),
medicalclinic service(0.670),

SeePatientMedicalRecords service(0.640)

constructing vectors take O(C) time, where C is the number of keywords across
all categories. Thus the complexity of indexing N services is O(NC). The next
step is construction of DAG. The input vector of each service is matched with
output vector of every other service. Thus the complexity of graph construction
is O(N2), where N is the number of service. The check for cycle formation is
linearly dependent on the number of nodes in graph and thus it doesn’t add
anything to the complexity. However, the graph is constructed only once when
the server is started and thus we can afford it to be slower. Whenever a new
service is added to the database i.e., A new node is appended to the graph,
it’s input and output has to be matched with every other service and thus the
complexity of adding new node will be O(N).

The next step is executing user’s query. The complexity of constructing query
vector is again O(C). Finding Co-Sine similarity between query vector and a
service takes constant time. Thus the overall complexity of vector space search
is O(N + C). Constructing query context will also take constant time since the
number of keywords given by user as a part of their query will typically have a
constant upper-bound. Again the time complexity of traversing the whole data-
set and compute context similarity is O(N). Once we filter top K result we have
to rank them which takes O(K logK) time. In a practice, each node will have
very few outgoing edges on an average. Thus, assuming the number of edges in
the graph is proportional to the number of nodes, the time complexity to execute
a service composition query is O(N).

7 Conclusion and Future Work

In this paper, a novel approach for automatically determining service composi-
tion candidates for a given user requirement is presented. The proposed method
offers a lot of scope for further improvements. Firstly, we have manually labeled
each category with corresponding keywords but the system should be able to
learn keywords for each category automatically over time using Machine Learn-
ing techniques. Secondly, the weightage to results obtained from multiple ap-

proaches can be tuned for different domains to obtain better results. Thirdly,
domain modeling concepts can be used to improve the word sense disambigua-
tion of the synsets obtained. Certain synsets that have no relevance in a given
domain can easily be eliminated by this approach. As the information content
of different words is also domain dependent, words frequently encountered in a
given domain can be discarded while parsing the description documents. This
can help in further optimization and improvement in the performance of the
proposed methodology during the process of determining service composition
candidates.

References

1. Cuzzocrea, A., Fisichella, M.: Discovering semantic web services via advanced
graph-based matching. In: Systems, Man, and Cybernetics (SMC), 2011 IEEE
International Conference on. pp. 608–615. IEEE (2011)

2. Fethallah, H., Chikh, A.: Automated retrieval of semantic web services: a matching
based on conceptual indexation. Int. Arab J. Inf. Technol. 10(1), 61–66 (2013)

3. Hashemian, S., Mavaddat, F.: A graph-based approach to web services composi-
tion. In: Applications and the Internet, 2005. Proceedings. The 2005 Symposium
on. pp. 183–189 (Jan 2005)

4. Jiang, J.J., Conrath, D.W.: Semantic similarity based on corpus statistics and
lexical taxonomy. CoRR cmp-lg/9709008 (1997), http://arxiv.org/abs/cmp-lg/
9709008

5. Miller, G.A.: Wordnet: a lexical database for english. Communications of the ACM
38(11), 39–41 (1995)

6. Oh, S.C., On, B.W., Larson, E., Lee, D.: Bf*: Web services discovery and compo-
sition as graph search problem. In: e-Technology, e-Commerce and e-Service, 2005.
EEE ’05. Proceedings. The 2005 IEEE International Conference on. pp. 784–786
(March 2005)

7. Peng, Y., Wu, C.: Automatic semantic web service discovery based on assignment
algorithm. In: 2010 2nd International Conference on Computer Engineering and
Technology. vol. 6 (2010)

8. Platzer, C., Dustdar, S.: A vector space search engine for web services. Third
European Conference on Web Services (2005)

9. Sangers, J., Frasincar, F., Hogenboom, F., Chepegin, V.: Semantic web service
discovery using natural language processing techniques. Expert Systems with Ap-
plications 40(11), 4660 – 4671 (2013), http://www.sciencedirect.com/science/
article/pii/S0957417413001279

10. Truong, H.L., Dustdar, S.: A survey on context aware web service systems. Inter-
national Journal of Web Information Systems 5(1), 5–31 (2009)

http://arxiv.org/abs/cmp-lg/9709008
http://arxiv.org/abs/cmp-lg/9709008
http://www.sciencedirect.com/science/article/pii/S0957417413001279
http://www.sciencedirect.com/science/article/pii/S0957417413001279

	An Intelligent Algorithm for Automatic Candidate Selection for Web Service Composition
	Introduction
	Related Work
	Proposed Methodology
	Preprocessing Web Service Description Documents
	Indexing Web Service Description Documents
	Measuring similarity between services

	Searching Candidate Web Services
	Automatic Service Composition
	Constructing a Service Interface Graph
	Executing a Service Composition Query

	Experimental Results and Analysis
	Conclusion and Future Work

