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ABSTRACT
In this paper, We mathematically model the In-Range lo-
calization scheme in the presence of a Mobile Beacon. In
the In-Range localization scheme, a sensor with unknown
location is localized to a disc centered at the position of the
beacon, if the sensor under consideration can successfully
decode a transmission from the beacon. In our approach a
Mobile Beacon guided by a mobility model is used to gen-
erate the virtual beacons, there by eliminating the need to
deploy static beacons that are required in the classical In-
Range localization scheme. For analysis, we consider a Mo-
bile Beacon guided by the Random Way Point (RWP) mo-
bility model with In-Range localization scheme. The main
contribution of this paper consists of mathematical models
for the In-Range localization parameters in the presence of
a Mobile Beacon guided by the RWP mobility model.

Categories and Subject Descriptors
A.1 [Algorithms]: Sensor Networks

General Terms
Algorithms

Keywords
Wireless Sensor Networks, Localization, In-Range Localiza-
tion, Mobile Beacon, Mobility Models, Random Way Point

1. INTRODUCTION
Spatial or location information is of intrinsic interest in

sensor networks; for example, sensors use it in data combin-
ing and estimation. However, such information can neither
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be pre-configured in sensors owing to their ad hoc and possi-
bly random deployment nor can it be centrally disseminated
to sensors because of absence of a centralized coordinator.
Thus, it is imperative that sensors infer their locations au-
tonomously using low cost infrastructure.

Localization is a process that enables nodes of the sensor
network to compute their locations. One possible solution
for solving the localization problem is manual configuration;
but this is highly impossible in large scale deployments. An-
other possible solution is to equip the sensor nodes with GPS
receivers, however it is not considered to be an economically
feasible solution. There are other methods known as bea-
con based approaches for localization in which a few sensors
known as beacons1 would aid the process of localization of
sensors with unknown locations. [2] discusses one such bea-
con based approach that uses In-Range localization with
static beacons. [2] also discusses the drawbacks of local-
ization using traditional ranging techniques over In-Range
localization. Although the beacon based approaches reduce
the cost of sensor network to a great extent, the cost of bea-
cons is still a major component in the total cost. Moreover,
the beacons will have no role to play once they have trans-
mitted their location information and once their neighbors
have decoded the beacon information for localization.

This motivates us to design a localization mechanism which
uses In-Range localization in the presence of a Mobile Bea-
con. The Mobile Beacon would generate virtual beacons
required for In-Range localization. We use RWP mobility
model to guide the motion of the Mobile Beacon because it
is simple to implement in the real world.

The rest of the paper is organized as follows. Section 2
discusses the Related Work. In Section 3, we discuss the
RWP mobility model. In section 4, we give an overview of
the In-Range Localization Scheme in the presence of a Mo-
bile Beacon. Section 5 deals with Mobile Beacon aided One
Dimensional Localization Process. We provide the Local-
ization Mechanism in Section 6. In Section 7, Numerical
Results are discussed. Conclusions are given in Section 8.
Section 9 introduces the Future Research Work. Finally, the
Proofs are presented in Section 10.

1A special node in the sensor network that knows its own
location.
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2. RELATED WORK
[2] introduces the In-Range localization scheme that re-

quires the deployment of beacons along with sensors. It also
discusses the advantages of the In-Range localization over
other existing localization techniques. The effect of static
beacons in the In-Range localization scheme can be equiva-
lently produced by using a single Mobile Beacon. Thus the
use of a single Mobile Beacon eliminates the need for de-
ploying static beacons.

Recently, few schemes [3] [4] [5] [6] have been proposed
that employs Mobile Beacons for localizing sensor networks.
[3] uses four GPS equipped Mobile Beacons, which coordi-
nate based on distance estimates using RSSI for localizing
the sensor network. [4] uses a single Mobile Beacon and de-
pends on RSSI for estimating distance between sensor nodes
and the current position of the Mobile Beacon. Since both
of these schemes are RSSI based, they have disadvantages as
discussed in [1]. [5] proposes a localization scheme using a
Mobile Beacon based on TOA, TOA also has disadvantages
as discussed in [1].

[6] describes MAL, a mobile-assisted localization method
which employs a mobile user to assist in measuring distances
between node pairs until these distance constraints form a
globally rigid structure that guarantees a unique localiza-
tion. This approach involves measuring distances to nodes
from various positions of the mobile user. Hence it also has
disadvantages as discussed in [1].

3. RWP MOBILITY MODEL
RWP mobility model guides the motion of the Mobile Bea-

con in the sensor field. The Mobile Beacon moves through a
series of points (p1, p2, ..., pk) selected from the deployment
area with uniform probability. The Mobile Beacon moves
from pi to pi+1 with a speed, Vi selected from [Vmin, Vmax]
with uniform probability. The pause time of the Mobile
Beacon at pi+1 is given by

tc −
d(pi, pi+1)

Vi

where,
d(pi, pj) represents euclidian distance between the points pi

and pj .

tc is a constant ≥
max(d(pi,pj))

Vmin
for all pi and pj in the de-

ployment area.

With this definition for pause times of RWP, the virtual
beacons arrive with a uniform rate, 1

tc
.

We define a term called Mobile Beacon Cardinality,

M(t). It represents the cardinality of the set of points visited
by the Mobile Beacon till time t. Mathematically,

M(t) = 1 + �
t

tc
�

4. IN-RANGE LOCALIZATION IN PRES-
ENCE OF A MOBILE BEACON

Consider a randomly deployed sensor network in a ge-
ographical region A; in this paper A ⊂ R. The sensors

are indexed by iε{1, 2, ..., N}(N being the number of sen-
sors in the deployment area) and the virtual beacons by
iε{N + 1, N + 2, ..., N +M(t)} at any instant of time t. We
say that a transmission can be ”decoded” by a sensor when
its signal to interference ratio (SIR) exceeds a given thresh-
old β. The transmission-range is then defined as the maxi-
mum distance at which a receiver can decode a transmitter
in the absence of any co-channel interference. We denote
the transmission range of sensors and that of the Mobile
Beacon by R0. The sensors within a distance of R0 from i

will be called its neighbors. The set of neighbors of i will
be denoted by Ni and their count by ni. By the location of
sensor we mean its co-ordinates and denote it compactly by
vi; in this paper vi is just the x-coordinate of sensor i.

A localization set for a sensor i is a subset of the region
of deployment. Let Xi(t, n) denote the localization set for
the sensor i at time t after n iterations of In-Range local-
ization. Thus the initial localization set, Xi(0, 0) = A for
all iε{1, 2, .., N}. D(v, r) denotes a disk of radius r centered
at v; in one dimension disks are replaced by intervals. O
denotes the origin. If G and H are two sets, G+H denotes
the set addition, i.e., G+H = {g + h|gεG, hεH}.

We define a term called Node Density, λ(t). It repre-
sents the total number of virtual beacons and sensors present
in unit length of the deployment area at any instant of time,
t. Mathematically,

λ(t) =
N +M(t)

A

in one-dimensional sensor networks, A represents the length
of the deployment region.

We define another term called Sensor Fraction, K. It
represents the fraction of sensors present in the pool of sen-
sors and the Mobile Beacon in the deployment area; Math-
ematically,

K =
N

N + 1

The number of iterations of In-Range localization carried
out as soon as a virtual beacon is produced by a Mobile
Beacon is referred to as Iteration Constant.

The following gives the iterative scheme for In-Range lo-
calization. n is the number of iterations and t is the time.
For n ≥ 0, t ≥ 0 and i = 1, 2, ..., N .

Yi(t, n+ 1) =
\

kεNi

(Xk(t, n) +D(0, R0)) (1)

Xi(t, n+ 1) = Xi(t, n) ∩ Yi(t, n+ 1) (2)

If i is in the range of k, i is certainly in the region (Xk(t, n)+
D(0, R0)). Since this property holds for each neighbor of i,
i is localized to

T

kεNi
(Xk(t, n)+D(0, R0)). Thus, it follows

that at any instant of time t, the localization set of i after
(n + 1) iterations is the intersection of its localization set
after n iterations and

T

kεNi
(Xk(t, n) +D(0, R0)).

Let L (X) denote a measure of set X; in one dimen-
sion it is the length of X. Define, χi(t, n) = L (Xi(t, n)),
which we call the localization error of sensor i in time t
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and iteration n. χi(t, n) = 0 for all virtual beacons. Let
χ(t, n) = (χ1(t, n), χ2(t, n), ..., χN(t, n)) and consider the
vector valued process {χ(t, n);n ≥ 0, t ≥ 0} which we call
the localization process. Note from (2) that for each i,
χi(t, n) is non-increasing with t and n.

The performance measures which are of interest include

• χ(t, n) = 1
N+1

PN

i=1 χi(t, n)

• v(t, n) =
1+

PN
i=1 1{χi(t,n)<A}

N+1
, where 1{.} denotes the

indicator function.

Thus by definition, χ(t, n) is the average localization error
in the network at the time t with iteration constant n. v(t, n)
is the fraction of nodes localized at the instant of time t with
iteration constant n.

5. MOBILE BEACON AIDED ONE DIMEN-
SIONAL LOCALIZATION PROCESS

We assume N to be very large and model the random
dispersion of sensors on the real line as a one dimensional
poisson point process Ψ of intensity λs; poisson points indi-
cate the locations of sensing nodes. The field of deployment
is assumed to be [−A

2
, A

2
]; in other words A represents the

length of deployment area. The Mobile Beacon starts from
an initial location x1 and then selects a point (say x2) in
[−A

2
, A

2
] with a uniform probability. Then the Mobile Bea-

con moves to the location x2 with a velocity V1, chosen from
[Vmin, Vmax] with uniform probability. At the point x2, the
Mobile Beacon pauses for a time given by tc −

x2−x1
V1

. The
Mobile Beacon would broadcast its location information and
then it is ready to select a new destination x3. The process
continues in this way aiding the generation of virtual bea-
cons.

We assume that each sensor would maintain a list of neigh-
bors. When the Mobile Beacon broadcasts location informa-
tion at xi, the sensors within the transmission range of the
Mobile Beacon would add the current location of Mobile
Beacon i.e., xi to their neighbor list, thus generating virtual
beacons.

Disk D(vj , R0) in R is the interval of length 2R0 cen-
tered at vj ; vj is simply x co-ordinate of j. Thus D(vj , R0)
extends from vj − R0 to vj + R0. χj(t, n) denotes the
length of Xj(t, n). The length of the interval lying to the
right of j is denoted by ∆r

j (t, n) while the length of the in-

terval lying to the left of j is denoted by ∆l
j(t, n); hence

χj(t, n) = ∆l
j(t, n) + ∆r

j (t, n).

For each sensor j, ∆l
j(0, 0) = ∆r

j (0, 0) = A
2

and for virtual
beacons, these values are always 0. In the point process
model, A should be interpreted as the initial uncertainty
preset in each sensor. The evolution (2) in this setting is
as follows. Recall that Nj denotes the set of neighbors of j.
For n ≥ 1 and j = 1, 2, ..., N .

u
r
j(t, n) = arg min(vk + ∆r

k(t, n− 1)) (3)

∆r
k(t, n) = min(∆r

k(t, n− 1),

vur
j
(t,n) + ∆r

ur
j
(t,n)(t, n− 1) +R0 − vj)

(4)

u
l
j(t, n) = arg max(vk − ∆l

k(t, n− 1)) (5)

∆l
k(t, n) = max(∆l

k(t, n− 1),

vj − vul
j
(t,n) + ∆l

ul
j
(t,n)(t, n− 1) +R0)

(6)

χj(t, n) = ∆r
j (t, n) + ∆l

j(t, n) (7)

If Nj is empty, then by convention, the minimum over an
empty set is taken to be ∞ and we define the location of
ur

j (t, n+ 1) to be ∞. Similarly for ul
j(t, n+ 1).

To understand the iterative process given by (3), let us
first consider n = 1. Assume that j is a sensor. ∆r

k(0, 0) = A
2

and Xj(t, 1) is decided only by the beacons in its range.
Further, Xj(t, 1) will be determined by the leftmost and
the rightmost beacon in the range of j; the leftmost beacon
will determine ∆r

k(t, 1) and the rightmost beacon will de-
termine ∆l

k(t, 1). Step (3) locates the leftmost beacon; it is
denoted by ur

j (t, 1). Then it is easy to see that ∆r
k(t, 1) =

vur
j
(t,1) + R0 − vj since R0 is the range and vj is j′s loca-

tion. Similarly ul
j(t, 1) denotes the rightmost beacon so that

∆l
k(t, 1) = vj − vul

j
(t,1) +R0.

Now for n ≥ 2, consider a situation in which j has only
one neighbor denoted by s1 with location v1. Suppose that
s1 is a sensor. Further, n−1 iterations are over; j has been
localized to [vj −∆l

j(t, n− 1), vj + ∆r
j (t, n− 1)]. Since j lies

in the transmission range of s1 by virtue of this single con-
straint, j must lies within [v1−∆l

1(t, n−1)−R0, v1+∆r
1(t, n−

1) + R0]. The length of the ”right” side of this interval is
v1 + ∆r

1(t, n− 1) +R0 − vj . It follows that ∆r
j(t, n) will be

the minimum of ∆r
j(t, n−1) and v1 +∆r

1(t, n−1)+R0− vj .

Similar analysis applies to ∆l
j(t, n). Equations (3) and (4)

simply extend this logic to a general case.

Though (3) and (4) are much simplified compared to (2),
χ(t, n) is still not amenable to analysis. We now work with a
typical point of the poisson process, called the tagged node
(denoted by o) and study the ”marginal” process of χ(t, n)
i.e., {χo(t, n)|n ≥ 0, t ≥ 0}, the sequence of localization
errors of the tagged node. The performance measures dis-
cussed in Section IV can be obtained at the tagged node as,
χ(t, n) = Eχo(t, n) and v(t, n) = P (χo(t, n) < A)

5.1 The Marginal Process, {χo(t, n)|n ≥ 0, t ≥ 0}

Since o is a sensor, Xo(t, 0) = A. The value of X0(t, 1)
is decided only by the beacons in the range of o. It is thus
possible to explicitly characterize the distribution of χo(t, 1).
However, for further analysis we will work with a simpler
process, {∆r

o(t, n);n ≥ 0, t ≥ 0}. Note that ∆r
o(t, 1) and

∆l
o(t, 1) are identically distributed though not independent.

By symmetry, this property holds for n ≥ 2.

Proposition 5.1. The probability distribution function of
∆r

o(t, 1) is,

P (∆r
o(t, 1) ≤ y) =

8

>

<

>

:

1 if y > A
2

1 − (1 − 2R0
A

)
M(t)

if 2R0 < y ≤ A
2

1 − (1 − y

A
)M(t) if 0 < y ≤ 2R0

The probability mass at A
2

is
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P (∆r
o(t, 1) =

A

2
) = (1 −

2R0

A
)M(t)

.

Proof. See Section 10

Corollary 5.1.

E∆r
o(t) = K[

2R2
0M(t)

A
(1 −

2R0

A
)M(t)−1+

(1 −
2R0

A
)M(t) − 1 +

A

2
(1 −

2R0

A
)M(t)]

Observe from (3) that, for a given ∆r
o(t, 1), {∆

r
o(t, n), n ≥

2} is determined by the (ordinary) sensors in the range of
o. Let Ns

o denote the set of sensors in the range of o and ns
o

their number. Consider now the iteration (3) applied to o
for n ≥ 2.

u
r
o(t, n) = arg minkεNs

o
(vk + ∆r

k(t, n− 1)) (8)

and

∆r
o(t, n) = min(∆r

o(t, n−1), vur
o(t,n)+∆r

ur
o(t,n)(t, n−1)+R0)

(9)
Recall that if Ns

o is empty, by convention minimum over
Ns

o in (8) is infinite and ∆r
o(t, n) = ∆r

o(t, n−1). Now a direct
analysis of (9) amounts to analyzing {χ

o
(t, n)|n ≥ 0, t ≥ 0}

since to find the probability distribution of ∆r
o(t, n), we

need the joint distribution of ∆r
k(t, n − 1), kεNs

o . How-
ever an asymptotically exact approximation for the sequence
{χo(t, n)|t ≥ 0, n ≥ 0} can be obtained as follows.

Since o is a typical point of poisson process, ns
o is poisson

distributed with mean λs2R0. We denote by ok the kth

”sensor-neighbor” of o. For a given ns
o, vok

are independent
uniformly distributed random variables in [−R0, R0]. We
now index these neighbors by iε{1, ..., ns

o} based on the order
statistics of vok

i.e., the sensor corresponding ith smallest
value of vok

’s is indexed i. Thus 1 (arg min1≤k≤ns
o
vok

) is
the leftmost neighbor and the rest in the increasing order
towards right. Location of is denoted by vi;

fv1(x|ns
o = m) =

m

2R0
(1 −

x+R

2R0
)m−1[1]

Now consider a sequence {∆̂r
o(t, n)|t ≥ 0, n ≥ 0} such that

∆̂r
o(t, 1) = ∆r

o(t, 1) and for n ≥ 2,

∆̂r
o(t, n) = min(∆̂r

o(t, 1), v1 + ∆̂r
o(t, n− 1) +R0) (10)

Thus {∆̂r
o(t, n), n ≥ 2, t ≥ 0} can be generated iteratively;

computation of the statistics of ∆̂r
o(t, n) requires only the

statistics of ∆̂r
o(t, 1) and ∆̂r

o(t, n − 1) computed in the pre-
vious iteration. Let F∆r

o(t,n)(x) and F∆̂r
o(t,n)(x) denote the

cumulative probability distribution of ∆r
o(t, n) and ∆̂r

o(t, n)
respectively. Then the following holds.

Proposition 5.2.

limλ(t)→∞|F∆r
o(t,n)(x) − F∆̂r

o(t,n)(x)| = 0 (11)

Since the underlying process for sensor distribution is pois-
son, the equations (9), (10) and (11) would follow from the
discussion presented in [1].

5.2 The Marginal Process, { v(t, n), t ≥ 0 and
n ≥ 0}

Recall that v(t, n) = P (χo(t, n) < A), the fraction of the
nodes that get localized by the time t with iteration constant
n.

Proposition 5.3.

v(t, 1) = (1 −K) +K(1 − (1 −
2R0

A
)M(t)) (12)

and

limλ(t)→∞|(1 −K) +K(1 − (1 −
2nR0

A
)M(t)) − v(t, n)| = 0

(13)

Proof. See Section 10.

6. IN-RANGE LOCALIZATION ALGORITHM
USING A MOBILE BEACON

Algorithm 1: In-Range localization in the presence of a
Mobile Beacon

1. Select a mobility that guides the motion of the Mobile
Beacon.

2. Select an initial point (source) for the Mobile Beacon.

3. Select the next point (destination) as defined by the
mobility model.

4. The Mobile Beacon would move from the source to the
destination with a velocity as defined by the chosen
mobility model.

5. The Mobile Beacon would broadcast the current lo-
cation information to the sensors and the sensors in
the transmission range of the Mobile Beacon would
add the current location of the Mobile Beacon to their
neighbor list (flags this entry as a virtual beacon).

6. Execute the In-Range localization algorithm at each
sensor and also compute the values of localization error
and percentage of nodes localized.

7. Repeat steps 3-7 till the desired accuracy in terms of
localization parameters is obtained.

7. RESULTS AND DISCUSSION
In the simulation, we take λs equal to 1 per m. A is ob-

tained as follows. Since we generate 1000 poisson points for
the random sensor placement model, the initial uncertainly
for each sensor is then the expected length of this place-
ment, i.e., A = 1000

λs
and the initial location is its center.
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Figure 1: Variation of localization error with time -
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Figure 2: Variation of localization error with time -
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The transmission range of the Mobile Beacon and that of
the sensors is taken as 25 units with the value of constant
tc equal to 50 seconds.

Figure 1 shows the variation of average localization error
with the time (in seconds). For the iteration constant equal
to 1, the analytical results match extremely well with the
simulation results. For iteration constant ≥ 2, the analyt-
ical results could be computed iteratively from the scheme
given by (10). Figure 2 shows the simulation results for the
cases with the iteration constants 1, 2 and 3.

Figure 3 shows the variation of percentage localization
with time (in seconds) when the iteration constant equal to
1. For the iteration constant equal to 1, the analytical re-
sults match extremely well with the simulation results. For
iteration constant ≥ 2, the analytical results obtained from
(13) gives an asymptotically tight upper bound for the sim-
ulation results. Figure 4 shows the simulation results for the
cases with the iteration constants 1, 2 and 3.

8. CONCLUSION
We considered the In-Range localization algorithm in pres-

ence of a Mobile Beacon guided by the RWP mobility model
and obtained mathematical models for the localization pa-
rameters: localization error and percentage localization. The
algorithm proposed in this paper uses the concept of Mobile
Beacon there by eliminating the need to deploy static bea-
cons in the sensor network. RWP is an easy to implement
mobility model in the real world and the In-Range localiza-
tion scheme relies only on a basic communication capability
of the sensors and does not involve any ranging techniques.
This paper also attempts to provoke the research in devel-
oping mobility models that work well with In-Range local-
ization.

9. FUTURE RESEARCH WORK
Our future research work would concentrate on extend-

ing the proposed work to planar sensor networks. The fu-
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ture work would also concentrate on developing and math-
ematically modeling a heuristics based mobility model for
In-Range localization. Research work has to be done on
identifying and mathematical modeling of new localization
parameters that can act as performance metrics for localiza-
tion algorithms.

10. PROOFS
Proof of Proposition 5.1: Recall from the definition of

Mobile Beacon cardinality that at any given instant of time
t, M(t) virtual beacons would be generated by the Mobile
Beacon. By using RWP mobility model, these M(t) virtual
beacons would follow the uniform probability distribution
function in [−A

2
, A

2
].

It is intuitive that, ∆r
o(t, 1) is decided by the left most

beacon in the transmission range of o. If there are no bea-
cons in the transmission range of o then ∆r

o(t, 1) would be A
2

which happens with a probability of 1− ( 2R0
A

)M(t). If there
are beacons in the transmission range, then ∆r

o(t, 1) would
be between 0 and 2R0. Let 0 < y ≤ 2R0, the probability
that ∆r

o(t, 1) assumes a value ≤ y is given by the probability
of finding a beacon in the range [−R0,−R0 +y], which hap-

pens with a probability of [1−(1 − y

A
)M(t)]. Hence the proof.

Proof of Proposition 5.3: At any given instant of
time t and iteration constant n, the upper bound for the
probability that the tagged node, o is localized is given by
the probability of finding at least one beacon in the range
[−nR0, nR0]. The proof follows from the previous statement
when applied for RWP mobility model case.
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