
AutoLibGen: An Open Source Tool for Standard Cell Library
Characterization at 65nm Technology

Rachit I. K. and M. S. Bhat

Dept. of Electronics and Communication Engineering
NITK Surathkal, Karnataka, INDIA.

Email: rachit.ik@gmail.com, msbhat@ieee.org

Abstract

In this paper, we present the development of an
open source tool, AutoLibGen, for characterising a
standard cell library comprising of basic
combinational circuits. The cells are initially laid out
and the parasitic netlists are extracted. Unlike the
traditional method of computing timing and power
data using non linear delay and power models we use
more accurate Composite Current Source (CCS) based
characterization for very deep sub-micron
technologies. We tested our tool with a library for
65nm. The library file generated by our tool was
successfully compiled by Synopsys Library Compiler
and is used to synthesize a Verilog code using
Synopsys Design Compiler.

1. INTRODUCTION
In the semi-custom design flow, the designs are

built from a library which comprises of the basic
circuits, called cells, which are used in the synthesis
process to build a larger circuit. The library has to be
characterized well to aid the process of synthesis and
to get a reasonable idea of the post layout performance.
In the ASIC design flow, the synthesis tool prepares a
circuit netlist of the RTL code using the components
present in the standard cell library. The timing and
optimization constraints set during synthesis are used
to pick the appropriate cell for a particular gate. Thus
the standard cell library forms the basic building block
of the circuit. The performance of individual cells in
the library have to be robust enough to ensure
satisfactory performance of the overall circuit. Further,
if well characterized, it can give an idea of the post
layout performance of the circuit just after the stage of
synthesis. A library is generally represented in the
Synopsys Liberty (.lib) format [1], [13]. It contains the
characterization data in the form of look-up tables for
different values of input slew and output capacitance.

The process of Library creation can be summarized as
follows.
1) Layouts of the cells are prepared, their netlists

extracted.
2) The netlists are simulated for different values of

input slew, output load and various other operating
conditions.

3) The simulation output is read in. Processing and
validation checks are performed using this data.

4) The processed data is written into a text file in the
.lib format.
The proposed tool aids the process of

characterization from stage 2. It comprises of Tcl
scripts, which build simulation scripts for the parasitic
annotated netlists of the cells in the library. A shell
script then invokes Synopsys HSpice and executes the
simulation scripts. The output data files generated after
simulation are parsed by C++ programs which extract
all the relevant information. The programs then
process the data, validate it, and finally writes them
into a text file in the .lib format (Synopsys library
format). Traditionally, characterization data such as
delays, transition times and power for different values
of input slew and output load for each standard cell are
stored in the form of look-up tables. These are called
Non Linear Delay models (NLDM) and Non Linear
Power Models (NLPM). But these are found to be
inaccurate for technologies below 130 nm. Hence, we
have used the Synopsys Composite Current Source
characterization methodology. The characterization
method follows the guidelines put down by Synopsys
for CCS based characterization and performs
validation checks on the characterized data. We have
also included the Non Linear Delay Models in our
library, as it is needed to annotate the timing data to
the VITAL1 libraries (VHDL Simulation libraries) that
will be generated after compilation of the library [12]-
[16].

1 VHDL Initiative Towards ASIC Libraries

2008 International Conference on Electronic Design December 1-3, 2008, Penang, Malaysia

978-1-4244-2315-6/08/$25.00 ©2008 IEEE.

Authorized licensed use limited to: NATIONAL INSTITUTE OF TECHNOLOGY SURATHKAL. Downloaded on February 25,2021 at 05:25:51 UTC from IEEE Xplore. Restrictions apply.

Rest of the paper is organized as follows. Section
2 describes files / formats required for the automation
of the simulations using scripts. Section 3 describes the
actual automation process using script files. Section 4
mentions the processing done on the simulation output
data before they are written into the library. Section 5
describes the procedure of writing the processed data
onto the library file and preparing the file for synthesis.
Section 6 shows the experimental results.

2. SIMULATION SCRIPTS
In this section, we present how to incorporate the

CCS characterization guidelines into HSpice and the
process of automation of HSpice command generation
using Tcl scripts.

A. Inputs

The tool takes as input the files containing the
extracted netlists of the cells and generates a spice
netlist which comprises of the excitation sources,
analyses statements and data recording statements
required for characterization of the cell. The files need
to follow a nomenclature standard so that the software
can recognize the gate and write an appropriate spice
command file. We suggest the following nomenclature
be followed. The files be named as
“[gate][no. of inputs] [drivng strenths (x1, x2 etc)].sp”
e.g. if the cell is a 3 input AND gate with a drive
strength of x4, it will be named as “and3_x4.spi”. The
names to be used for different types of gates is as
shown in table I.

Table I. File Nomenclature
Gate Name
NOT inv_x*.sp

BUFFER buf_x*.sp
NAND nand*_ x*.sp
NOR nor*_ x*.sp
AND and*_ x*.sp
OR or*_ x*.sp

XOR xor*_ x*.sp
XNOR xnor*_ x*.sp

B. Script structure

The characterization task for each cell is divided
into three spice files as given below.

File 1: Dynamic simulations and Noise: This file
performs simulations for computation of dynamic
current waveforms for timing and power, along with
computation of CCS Noise DC Current tables [8]. It
also records the values of delays and transition times

for building the Non Linear Delay Model. This file is
named as gate_name_char.sp. e.g., and2_x1_char.sp.

File2: Noise and Leakage currents: This file
performs simulations for recording the leakage
currents at the gate inputs and at the power and ground
pins. Also, it records the parameters for calculation of
the miller capacitances. This file is named as
gate_name_noise.sp. e.g., and2_x1_noise.sp.

File3: Intrinsic parasitics and Noise: This file
performs simulations for computation of the intrinsic
parasitics of the power and ground pins in additions to
the simulations performed for building the CCS Noise
stage output voltage table. This file is named
gate_name_lkg.sp. e.g., and2_x1_lkg.sp.

3. AUTOMATION
The process of automation of HSpice script

generation is done by Tcl scripts. Two things need to
be known for automatically generating spice
commands: the functionality of the cell and the number
of inputs. Both these parameters can be obtained from
the name of the parasitic annotated netlist file. Tcl
procedures go through the netlist files and from the file
names extract the functionality and the number of
inputs. Using this information, input patterns are
generated, which will be used to put the circuit into all
the possible states required for simulation. Each input
vector in the set of input patterns is such that one input
pin has either a falling or rising input and the other
inputs are held at a non controlling value. Both types
of transitions on all input pins are covered in the input
pattern. Library characterization guidelines advise not
to have multiple input transitions simultaneously. The
characterization bounds for input slew and output load
are also computed [2].

For computing the minimum transition time, the
largest inverter cell in the library is made to drive the
smallest inverter and the output transition time is
recorded. For the sake of simplicity, we compute the
min. transition time as the output transition time, to, of
the smallest inverter in the library, when driven by an
input slew of a minimal value, say 1ns. The min. input
transition time, tmin, is then taken as to. A list of values
of input slew for which the cells will be characterized
is then formed as [tmin, 5tmin, 25tmin, 100tmin]. The
maximum transition time is then decided as 50 times
the min. input transition [16]. The min. output
capacitance, Cmin, is the input capacitance of the
smallest inverter and the max. output capacitance,
Cmax, is the larger of 15 times the min. capacitance and
four times the largest input capacitance. The list of
output loads for characterization is then created as
[Cmin, 2.5Cmin, 5Cmin, Cmax].

Authorized licensed use limited to: NATIONAL INSTITUTE OF TECHNOLOGY SURATHKAL. Downloaded on February 25,2021 at 05:25:51 UTC from IEEE Xplore. Restrictions apply.

A. File1: Dynamic simulations and noise (* char.sp)
Once, the input pattern is generated, the process of

writing the spice commands begin. A new file is
opened for writing with the name as
gate_name_char.sp.

First, the simulator settings are written down into
the file. The simulator settings are such that a good
trade-off between speed and accuracy is achieved. The
input transition time, td and the output capacitance, Cx
are defined as parameters, the values of which will be
given at the end of the file. In an actual design, the
waveform seen at a cell’s input pin arrives from
another cell (of the library) through a complex RC
network. All of the input waveforms along an actual
design path will differ from the pre-set stimulus used
for characterization (in the library). Therefore it is
necessary to create a stimulus waveform that
minimizes the error caused due to this difference. The
CCS characterization guidelines [2] recommend the
use of what is called the Synopsys pre-driver
waveform. It tries to place the introduced error in
between the two extremes, viz.,
• Fast input slew with no RC network effect
• Slow input slew with significant RC network

effect.
The pre-driver waveform can be analytically shown as:

vramp(t) = V dd*(t- tstart)
vstep(t) = V dd* (1- e-(t-t

start
)/RC)

vpredriver(t) = 0.5 (vramp(t) + vstep(t))
The commands for generating pre-driver input

wave are then written into the file.
The parasitic annotated netlist of the cell is then

defined as a subcircuit and these subcircuits are then
instantiated, once for each vector in the input
pattern.Each subcircuit has its own excitation sources,
output capacitance, Vdd and Gnd pins. Having
separate power pins for each subcircuit ensures
accuracy of measurement of current through these
pins. Gate_name_char.sp spice file performs
simulations for computing the dynamic currents at the
input, output and power pins. The dynamic currents at
the output are recorded to build what is called the
Driver Model [2] for CCS Timing. The input currents
are stored to calculate the values of two capacitances
for the CCS Timing Receiver Model [2]. The
simulations for the computation of the noise dc current
tables are also performed in this file. A DC voltage
source is swept from 0 to 1.1Vdd in steps of 0.1Vdd at
the input of the cell the current at the output of the cell
is recorded for each simulation point.

For File1, there are 2n subcircuits for transient
analysis and n subcircuits for dc analysis, hence the
total computational complexity can be given as
Otrans(n) + Odc(n), where Otrans() and Odc() indicate the

order of complexity for a transient analysis and dc
analysis respectively.

B. File2: Noise and leakage currents(* noise.sp)

In this file, simulations are performed for
recording the leakage currents at the gate inputs and at
the power and ground pins. For measuring the leakage
currents, the input is held constant for sometime to
record the steady state current values. Gate leakage
currents are measured for cases where the input is high
as well as low. Power pin leakage currents are
measured for two cases, when the output is high and
when the output is low. The procedure given in [8] is
adopted for performing simulations to get the miller
capacitances between the output pin and each of the
input pins for storing in the library file for noise
analysis. The total number of subcircuits (is a function
of the number of inputs) in this file is given by 2n + 2.
Therefore, the total computational complexity of this
file can be considered as Otrans(n).

C. File3: Intrinsic parasitics and Noise(* lkg.sp)

This file aids the computation of intrinsic
parasitics and the CCS noise stage output voltage
tables. For computation of intrinsic resistances at the
power and ground pins, a dc source having a voltage
of around 0.1Vdd is applied at these pins and the
current through this source for both the output states is
calculated [5]. The resistance is the ratio of the voltage
to the current. For intrinsic capacitances, an ac source
of around 0.1Vdd is applied at the power and ground
pins and the magnitude and phase of the current
through this source for both the output states is
recorded. The capacitance is then calculated as

0

0

IC =
cos()Vω φ

 (1)

AC analysis is performed from 10MHz to 1GHz
and the average of all the values is computed and taken
as the final capacitance [5]. CCS Noise specifications
demand the response of a cell to a ramp input [8], [10].
Transient analysis is performed to get this information.
Distinct subcircuit instantiations are created for
measurement of noise timing data for each input pin
and for each type of transition at the output.

The total number of subcircuits in this file is a
function of the number of inputs in the cell and can be
given as 2n+4, with transient analysis performed on 2n
subcircuits, dc analysis and ac analysis on 2 subcircuits
each. Therefore, the total computational complexity of
this file given by Otrans(n)+Odc(1)+Oac(1), where
Otrans(), Odc() and Oac() are the order of complexity for
a transient, dc and ac analysis respectively.

Authorized licensed use limited to: NATIONAL INSTITUTE OF TECHNOLOGY SURATHKAL. Downloaded on February 25,2021 at 05:25:51 UTC from IEEE Xplore. Restrictions apply.

4. DATA PROCESSING
As mentioned earlier, there are three spice files for

each cell, viz. *_char.sp, *_noise.sp, *_lkg.sp. After
simulation, each of these spice files generate a .lis file
with the same name for each cell, i.e., *_char.lis,
*_noise.lis and *_lkg. These files are parsed by a C++
program to extract the required information as
explained in the following sections. The CCS
validation guidelines [4], [7], [10] have been followed
for processing and validating the simulation data.

A. *_char.lis

The Noise dc current values are stored in a 2-D
array and they do not require any processing. The
dynamic currents have to be segmented and validated
for their correctness before they are stored and the
CCS Timing Receiver model capacitances have to be
calculated. These are done as follows:

Dynamic currents (output): The output current is
the current flowing in charging the output capacitor.
The output current waveform has a lot of data samples
and only a few data samples need to be stored to get
the required level of accuracy and to reduce the size of
the library file. We have followed the Synopsys
characterization guidelines for segmentation of the
current waveform with a few minor modifications. The
algorithm used for segmentation is given below.
1) Let ns = n/15, where n is the total number of

samples of the current waveform.
2) Obtain one value from every set of ns values in the

waveform data.
3) Integrate the sampled waveform using equation 2.

-1 -1
0.5 () (- out n n n n

out

V I I t
C

= +)t (2)

4) Check whether the result is within 5% of the
expected value (Vdd for rising transitions and 0 for
falling transitions).

5) If yes, STOP, else decrement ns by 1
6) Repeat steps 2-5.

We will have a minimum of 15 values in every
output_current_ rise and output_current_ fall group.

Dynamic currents (Power and Ground (PG) pins):
The current through the power and ground pins also
have to be stored. These values are stored in the
pg_current_rise and pg_current_fall groups in the .lib
file. Just like the output current data, these too have a
large number of values and are segmented before
committing it to the library file.

Unlike output currents, since the PG currents have
bigger variations due to short circuit component during
segmentation process, they are first converted to a
step-wise format by dividing the original waveform
into a number of buckets. For each bucket the average

current is captured as a list of current values (I, t), as
shown in figure 1.

Fig. 1. Stepwise Power and Ground (PG) current
waveform

Smaller the bucket size is, higher the accuracy of

the current waveform approximation, however
requiring more number of current points to be saved in
the library. Points are selected from the stepwise
current waveform such that the charge difference
between the piecewise linear current and the stepwise
current is within the recommended error tolerance on
the charge (2%). Charge is calculated by integrating
the current waveform using the GNU scientific library.
We begin with an initial bucket size of n/20 points,
where n is the total number of values stored for PG
current, and keep decreasing the bucket size till we
achieve the desired accuracy. Figure 2 shows the
segmentation schematic.

Fig. 2. Segmenting the PG current waveform for
piecewise linear representation

Receiver Model capacitances: The receiver model
capacitances are calculated from the input current
waveform using the expressions given below (also
refer to figure 3). The GNU scientific libraries were
used for computation of the integral.

Authorized licensed use limited to: NATIONAL INSTITUTE OF TECHNOLOGY SURATHKAL. Downloaded on February 25,2021 at 05:25:51 UTC from IEEE Xplore. Restrictions apply.

2

1
1

2

t

int
I dt

C
V

= ∫ and

3

2
2

2

t

int

dd

I dt

V V
= ∫C

Fig. 3. Receiver Model Capacitance calculation

B. *_ lkg.lis

Intrinsic parasitics: The *_lkg.lis file has the
values of current from the disturbance dc source
(section III-C). The value of resistance is obtained by
dividing the voltage of the disturbance source by the
current measured. On similar lines, the magnitude and
phase of the current through the disturbance ac source
are stored in the .lis file, from which the intrinsic
capacitance is computed using equation 1.

Noise output voltage timing tables: As mentioned
in section III-C, the response of the cell for a ramp
input needs to be recorded. The .lis file stores the
values of time for five different values of output
voltage during the transition. These values are read and
systematically stored in an array, for the sake of ease
of processing.

C. *_noise.lis

The static leakage currents and the values of miller
capacitances are computed from the data in this file.

Leakage currents: The leakage currents at the
gates and at the power and ground pins for different
states of the standard cell are stored directly in the .lis
file in a suitable array format.

Miller capacitances: The .lis file contains the
values of voltage change at the input for a particular
voltage change at the output. Miller capacitances for
all the inputs for both rising and falling output
transitions are computed using these values as
mentioned in [8].

5. LIBRARY PREPARATION
The job of writing the processed data into the

library file (.lib – Liberty format of Synopsys) is done
by C++ programs [2-3], [6], [9]. The data of a cell is
processed by executing a shell script which processes
the C code and writes the cell data into the library one
at a time.

The data from the .lis files are not acquired in the
order in which they are supposed to be written. Also it
is not possible to collect all the data at one go and then
write them together, since many variables are reused
between iterations. Hence a number of intermediate
files are created during processing and before storing
the final library data. The cell group information like
area, leakage currents and intrinsic parasitics is written
into a file mylib.lib. The pin group information
including receiver model groups are written into a file
pins.lib. The dynamic currents at the power and ground
pins are written into files mylibdynij.lib where i
indicates whether the pin is Vss (0) or Vdd (1), and j
indicates whether the output state is 0 or 1.The timing
group information is written into files named as
mylibtimeij.lib, where i indicates the input pin number
(1, 2, etc.) and j indicates the nature of output
transition, fall (f) or rise (r). e.g., mylibtime1f.lib
indicates input pin 1 - output falling transition file.

The mylibdyn*.lib files are concatenated in the
order 00, 01, 10, 11 into a file called mydyn.lib. The
files mylib.lib mydyn.lib pins.lib are concatenated into
a file mylibtemp.lib, which is then concatenated with
the timing information files, mylibtime1f.lib
mylibtime1r.lib mylibtime2f.lib... to give a file
finallibn.lib, wherein n indicates the number of the cell
being processed. The file file1.lib contains the library
group information that applies to all the cells in the
library. Once all the files have been processed, the files
file1.lib finallib*.lib are concatenated to give the final
library finallibfinal.lib, which can then be renamed
according to the name given by the user.

A. Library Compilation

To make the library file usable for synthesis, we
need to compile it into the .db format using Library
Compiler from Synopsys [11] for use with Design
Compiler It also generates libraries for post-synthesis
simulations. The script for generating synthesis and
simulation libraries is shown below.

read_lib mylib65.lib
#Synthesis library - mylib65.db
write_lib mylib65 -format db \
-output mylib65.db
#VHDL simulation library - mylib65.vhd
write_lib mylib65 -format vhdl \
-output mylib65.vhd

Authorized licensed use limited to: NATIONAL INSTITUTE OF TECHNOLOGY SURATHKAL. Downloaded on February 25,2021 at 05:25:51 UTC from IEEE Xplore. Restrictions apply.

Successful compilation confirms the syntactical
correctness and the correctness of the values stored.

6. RESULTS
To test AutoLibGen, layouts of and2_x1, inv_x1,

inv_x2, nand3_x1, nor2_x1 and or2_x2 cells using
65nm technology is prepared. The parasitic annotated
netlists were extracted and a library mylib65.lib was
created using our software. Verilog code for a small
circuit as shown in figure 4 was written and
synthesized using Synopsys Design Vision. The
expressions for the output is given by,

1 1 (2 3 4)(5 6out in in in in in in= + ⋅ ⋅ +) (3)

2 (5 6) 7out in in in= + ⋅ (4)

Fig. 4. Logic circuit diagram for the Verilog code

The code is synthesized using mylib65.db with the

default optimization options. The synthesized circuit is
shown in figure 5. The timing, area and cell reports
were successfully generated. This confirms the
correctness of the library developed using our tool.

Fig. 5. Synthesized circuit

A. Limitations

Although the synthesis process correctly uses
gates from the library generated using AutoLibGen,
there are some limitations with the library generation
process. These are listed below.
1) Currently, AutoLibGen tool supports only the

following basic gates: NAND, NOR, AND, OR,
NOT, BUFFER.

2) Gates should have a symmetric structure.
3) It is necessary to have an inverter in the library

(for deciding the points of characterization).
4) Does not support gates with multiple outputs.

7. CONCLUSIONS
In this work, we have proposed a software tool,

AutoLibGen for Library Characterization at 65nm
node supporting the basic gates NAND, NOR, AND,
OR, NOT and BUFFER cells. It characterizes the cells
for timing, power and noise using the Composite
Current Source methodology, which is found to be a
lot more accurate for VDSM designs than the
traditional Non Linear Delay and Power models. The
software uses HSpice for performing the simulations
for characterization. The tool is tested using HSpice
version 2006.03-SP1, Library Compiler version
2007.12, Design Compiler version 2007.12 from
Synopsys. The testing was successful and no errors
were encountered. Since, the cells are characterized
and written into the library sequentially, the memory
requirement does not increase with the number of cells
in the library. Hence, there is no limit on the number of
cells that can be contained by the library.

REFERENCES
[1] Liberty User Guide, Vol. 1 (Version 2007.03)
[2] Synopsys CCS Timing Library characterization

guidelines, Version 3.1
[3] Synopsys CCS Timing Liberty Syntax, Version 1.2
[4] Synopsys CCS Timing Library Validation Guidelines,

Version 2.0
[5] Synopsys CCS Power Library characterization

guidelines, Version 3.0
[6] Synopsys CCS Power Liberty Syntax, Version 3.0
[7] Synopsys CCS Power Validation Document, Version

2.0
[8] Synopsys CCS Noise characterization guidelines,

Version 1.2
[9] Synopsys CCS Noise Liberty Syntax, Version 2.0
[10] Synopsys CCS Noise Validation Document, Version 2.0
[11] Library Compiler User Guide, version 2007.12
[12] HSpice Simulation and Analysis Users Guide, Version

Y-2006.09, Sept. 2006
[13] Kai Zhang, Wang Dong-hui and Li Yungang, “Library

building for Sub-Micron CMOS process”, Proc. Fifth
International IEEE Conference on ASIC 2003, pp.
1369–1372.

[14] Binay Ackaloor and Dinesh Gaitonde, “An Overview of
Library Characterization in Semi-Custom Design”,
Proc. IEEE Custom Integrated Circuits Conference,
1998, pp. 305–312

[15] Hashimoto, M., Fujimori, K. and Onodera, H.,
“Standard Cell Libraries with Various Driving Strength
Cells”, Proc. Asia and South Pacific Design Automation
Conference, 2003, pp. 589–590

[16] www.vlsitechnology.org

Authorized licensed use limited to: NATIONAL INSTITUTE OF TECHNOLOGY SURATHKAL. Downloaded on February 25,2021 at 05:25:51 UTC from IEEE Xplore. Restrictions apply.

