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Abstract—In this work, we develop image processing and
computer vision techniques for visually tracking a tennis ball,
in 3D, on a court instrumented with multiple low-cost IP
cameras. The technique first obtains 2D ball tracking data from
each camera view using 2D object tracking methods. Next, an
automatic feature-based video synchronization method is applied.
This technique uses the extracted 2D ball information from two
or more camera views, plus camera calibration information. In
order to find 3D trajectory, the temporal 3D locations of the ball
is estimated using triangulation of correspondent 2D locations
obtained from automatically synchronized videos. Furthermore,
in order to improve the continuity of the tracked 3D ball during
times when no two cameras have overlapping views of the ball
location, we incorporate a physics-based trajectory model into
the system. The resultant 3D ball tracks are then visualized in
a virtual 3D graphical environment. Finally, we quantify the
accuracy of our system in terms of reprojection error.

I. INTRODUCTION

In professional sports broadcasts we are familiar with high-

end camera technology being used to enhance viewer expe-

rience. High profile examples include the Hawk-Eye Offici-

ating System as used in tennis, snooker and cricket. Whilst

extremely valuable to the viewing experience, the cost of

such technologies make them only feasible for high profile

professional sports. Such technologies have also been adapted

for sports video analysis and have been extensively used by

coaches for the effective training of athletes. Presently, there

are several commercial technological solutions for sports video

analysis. However, these systems, again, tend to be expensive

to purchase and run.
Recently advances in camera technology, coupled with

falling prices, have meant that reasonable quality visual cap-

ture is now within reach of most local and amateur sporting

and leisure organizations. Thus it becomes feasible for every

field sports club, whether tennis, soccer, cricket or hockey,

to install their own camera network at their local ground. By

enabling sports video analysis with low cost camera networks,

many local amateur clubs and sports institutions will be able

to make use of these types of technologies. In these cases, the

motivation is usually not for broadcast purposes, but rather for

the technology to act as a video referee or adjudicator, and also

to facilitate coaches and mentors to provide better feedback

to athletes based on recorded competitive training matches,

training drills or any other prescribed set of activities.

In this work, we focus using the videos obtained from

such a low-cost camera network to track a tennis ball in 3D

space during a tennis match. Although the obtained 3D ball

tracking data could be used for decision making purposes, as

in Hawk-Eye, we focus on its use as a low-cost tennis analysis

system for coaching. This 3D data can be used for analysis

purposes such as determining the speed of the ball over the

net (a common tennis coach requirement), classification of

type of shots played by the players, or to index the video

frames and classify important events for coaching [1]. One

of the main problems from using low-cost camera networks

is that the individual camera data streams are typically not

synchronized between sensors, as such a need for automatic

video synchronization algorithms exists. In addition, the use

of less expensive cameras can also result in significant optical

distortion [2] being present in the video streams acquired,

hence camera calibration of both camera intrinsics, as well

as extrinsics, is essential. In this work, we also introduce a

physics based model into our system, to predict the position of

the ball when there is a lack of overlapping data from different

camera views. Modelling of the ball trajectory is an essential

part of this system as it provides continuity of the tracked

features, leading to improvised tracking robustness.

The remainder of this paper is organized as follows: Section

II outlines previous work in the area. A high-level overview

of our system is provided section III. In this section, we

subsequently describe the video analysis components that

underpin the ball tracking techniques. In addition, this section

provides details on both the physics based modelling that is in-

corporated into the system and on the visualization framework

developed using OpenGL. Section IV provides quantitative

experimental evaluation of our system in terms of reprojection

error, and incorporates graphical results that provide visual

feedback on the advantages of ball prediction in our system.

Finally, conclusions and directions for future work are outlined

in section V.

II. RELATED WORK

The work of [1] illustrates how a low-cost camera network

can be effectively used for performance analysis if the tennis

ball and player tracks from a match scenario are known.

Our work extend that described by Aksay et. al.[3], where
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Fig. 1. Camera locations around the court.

techniques for 2D ball tracking, feature based automatic video

synchronization and 3D estimation are described. We utilize

the above mentioned techniques and improvise the overall

quality of the system by developing our own algorithm for

prediction in case of temporally missing points in a ball’s

trajectory. For this work. the dataset from the “3DLife ACM

Multimedia Grand Challenge 2010 Dataset ”[4] is utilized.

This dataset includes 9 video streams of a competitive singles

tennis match scenario from 9 IP cameras placed at different

positions around an entire tennis court – see Figure 1. This

dataset also includes chessboard images and 3D locations of

some known objects in the scene for camera calibration. w

III. ALGORITHMIC DESIGN

Figure 2 represents our system at a block level. We use

videos acquired from both side-view cameras and the overhead

camera (see Figure 1) in the dataset for 2D ball detection and

tracking, as explained in Section III-A. Camera calibration

parameters are acquired from each individual camera using

the Matlab camera calibration toolbox [5]. Once the 2D

ball tracking information is acquired from each of the 2D

camera views, each cameras video stream is synchronized

with respect to overhead camera – see Section III-B. Once

synced, the 2D ball tracking is extended into 3D space using

the camera calibration information as explained Section III-C.

A physics based trajectory model, which is required to provide

continuity in obtained 3D data ball tracks, is then employed.

The algorithmic description of trajectory modelling is provided

in Section III-D. Finally, a virtual tennis court is created

using OpenGL and visualized the motion of the ball, which is

explained in detail in Section III-E.

A. 2D Ball Detection and Tracking

Previous work on object tracking, have included techniques

such as frame differencing, optical flow, mean-shift and vari-

ous other methods. However, in this work, we adopt a simple

frame differencing and thresholding method. This approach is

appropriate in the given context as the data set video sequences

consists of a static background with the only moving objects

Fig. 2. Block diagram of the system.

being tennis ball and players. The process of extracting the ball

trajectories begins with detection of ball candidates for every
video frame, S(n). This is a similar approach to the work

one described in [3]. All of the moving parts of the frame

that satisfy certain colour and size constraints are initially

considered as ball candidates. In this approach, we firstly

change the colour space of the image from RGB to YCbCr.

Moving parts are then detected by utilizing the luminance

(y) adjacent frame difference. For the nth luminance frame,

Sy(n), we obtain the moving parts by thresholding the image,

M(n), calculated as:

M(n) = abs[Sy(n+1)−Sy(n)].abs[Sy(n)−Sy(n−1)] (1)

where the . in the above equation represents element by

element multiplication. In this way, the real moving parts

of S(n) are heavily emphasised in M(n). Using 3 adjacent

frames to detect moving parts in the middle frame, as in

equation 1, is necessary step so that ambiguities in the location

of moving parts are avoided.

To eliminate false candidates from the obtained locations,

distance, colour and size constraints are applied. We first

eliminate false candidates based on the colour information.

The blue-difference, Cb, and red-difference, Cr, chroma com-

ponents of the tennis ball are inspected over different frames

and for different cameras. Empirical values for Cb and Cr
are set and moving pixels outside this range are eliminated

for consideration. Next, we apply a morphological dilation

operation to enhance the size of the moving pixels and will

result in blobs close to each other becoming part of one,

larger, blob. Dilation is advantageous for identifying the blobs

corresponding to players and tennis ball, as after dilation blobs

corresponding to players will be much larger compared to the

blobs corresponding to balls. Hence, by empirically setting

a threshold value on the blob size, larger (player) blobs can

be removed. The final constraint considered when eliminating

false ball candidates is based on distance between tennis ball

positions in two consecutive frames. A maximum distance is
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(a) (b) (c)

Fig. 3. Results of Object Tracking using frame differencing and thresholding;
(a) Original Frame; (b) Dilated Moving Pixels (c) Ball Blob.

set and any moving pixels outside this distance are eliminated.

This way, only one coordinate (corresponding to centre of

mass of tennis ball) is extracted for each frame. Figure 3(b)

and (c) shows the processing results of the candidate detection

technique on an input frame.

B. 3D Estimation and Video Synchronization
As the tennis videos in the data set are recorded at different

frame rates, there is no guarantee that the individual video

recordings were started at same time. In addition, as the

individual sequence lengths differ slightly, some frames may

have been dropped in each sequence during the recording

process. This is typical of such low cost cameras. As such,

there is need to synchronize these videos before the 2D ball

tracks from multiple cameras can be used for 3D estimation.

We implemented the feature based automatic video synchro-

nization technique explained in [3]. This method requires that

the estimated 3D coordinate features for each frame be known

in order to determine the de-synchronized timing. Hence, its an

inter-dependency problem where 3D ball track coordinates are

required to synchronize the videos, and synchronized videos

are required to calculate the accurate 3D coordinates of the ball

tracks. In order to overcome this issue, we use the following

technique. Firstly, we calculate a 3D ball trajectory point-by-

point by triangulating [6] two 2D trajectories from the two

videos to be synchronized. This 3D trajectory is then back-

projected onto each one of the 2D camera views. Assuming

that the camera calibration is accurate, back-projected 3D

trajectories should be almost identical to the 2D original

camera trajectories when the time shift used is close to the

real de-synchronization of the videos. However, due to issues

such as non-ideal calibration data and outlier 3D trajectories,

the measure, LM(Δ), suggested in [3], is used to find out the

best matching time shift Δmax.

LM(Δ) =
L(Δ)
D(Δ)

, L(Δ) = count(||or − bp|| < TL) (2)

D(Δ) =
Σ||or − bp|| < TL

L(Δ)
(3)

where ||or−bp|| is the Euclidean distance between the original

point and back projected point and Δ is the tested time

shift. D(Δ) is normalized Euclidean distance between points,

calculated using only those points whose reprojected points

are within distance of some empirically set value of TL. The

required time shift is

Δmax = argmax(LM(Δ)) (4)

Fig. 4. Plot of LM(Δ) vs. Framedelay

Figure 4 shows the plot of LM(Δ) for different frame delays

in a test scenario. We choose the value of frame delay

that corresponds to the maximum value of LM(Δ). In this

work, all the videos were synchronized with reference to

the overhead camera, since this camera has a field of view

covering the whole of the tennis court.

C. Robust 3D Tracking

A disadvantage of considering only two cameras for the

3D reconstruction is that we do not tend to get a continuous

temporal 3D ball track stream, due to lack of availability

of the synchronized 2D data in two views through all the

frames. To overcome this drawback, we employed a robust

3D tracking method using the 3D coordinates obtained from

different camera pairs at different points in time. We combine

the tracking data from these multiple cameras to calculate

a more stable, robust and accurate 3D ball trajectory. Let a

2D coordinate of the tennis ball at time instance, t, in the

ith camera view be p2D,i = [xi(t), yi(t)]T . We calculate 3D

points using triangulation of the 2D points in each camera

(p2D,i) with the 2D point in the overhead camera (the 9th
camera) (p2D,9), using backprojection technique described in

[6]:

p3D,i = triangulate(p2D,i, p2D,9). (5)

The triangulate point from each camera pair, calculated

at a given time instant, will correspond to one real-world

3D coordinate. Ideally, the acquired 3D coordinate should

be identical across all camera pairs. However, due to several

factors such as camera calibration errors, 2D tracker errors or

triangulation approximation, each of the 3D points will tend to

differ slightly. As such, some formal technique for combining

these multiple 3D points is required. In this work, we use a

weighted averaging to find a robust and accurate 3D point,

p3D, across all acquired 3D coordinates.

p3D =
∑

i wi ∗ p3D,i∑
i wi

(6)

where wi is the measure for the level of accuracy of each 3D

point p3D,i and is calculated as the inverse Euclidean distance

between the original 2D point (p2D,9) and the back projected

2D point (bp2D,i) on the 9th camera view, as shown below;

wi =
1
di

=
1

||p2D,9, bp2D,i|| (7)
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D. Physics Based Trajectory Modelling

In order to increase the continuity in the tracked features,

the temporal prediction of the ball coordinates through times

when no 3D ball information is available is required. This

prediction is achieved by considering the trajectory of the ball

to be that of a projectile. Projectiles are particles which are

propelled under gravity through air, such as objects thrown

by hand or shells fired from a gun. Typically, mathematics

describe projectiles with both horizontal and vertical velocity

components, and are subject to a downward vertical accel-

eration (i.e. acceleration due to gravity). To simplify the

problem, a few assumptions have been made. Parameters like

air resistance and ball spin, which would require modification

in the modelling, have been neglected. We consider following

kinematic equations of motion to predict the position of the

ball in case of missing 3D points:

v = u+ at (8)

s = ut+
1
2
at2 (9)

v2 = u2 + 2as (10)

where v is the velocity at any time t, u is the initial velocity, a
is acceleration, and s is the distance travelled in time t. In our

problem, as air resistance and ball spin are not considered,

only the Z component of acceleration exists (-gravity), so

the X and Y components of acceleration are set to zero.

In our approach, we consider the X, Y and Z components

of velocities separately and apply above equations to each

component to predict position of the ball in case of missing

points in ball trajectory.

The coordinates are predicted using following steps: Say,

frames i to i+ k require prediction

1) For the frame i with no 3D coordinate estimated, the

X,Y,Z components of velocities are found out using

tracked 3D points in frames i− 1 and i− 2.
2) Using this velocity information and the equations of

motion, the 3D coordinate in the frame i is predicted.
3) Step 1 & 2 are carried out for all consecutive frames

(up to frame i+ k).
4) Predicted points are retained only if the predicted point

in frame i + k is within some tolerable distance of the

estimated 3D coordinate in the frame i+ k + 1.
Since the prediction model is very simple, the algorithm we

developed predicts the co-ordinate of the ball incrementally.

This approach reduces the accumulated error at the end of a

trajectory.

E. Visualization Framework

If the developed algorithms are to be effectively used for

performance analysis by coaches or as a decision making

tool, a 3D graphical user interface (GUI) is essential, as the

visualisation makes the system more intuitive and appealing.

We have developed a GUI using OpenGL [7], one of the most

widely used and supported 2D and 3D graphics application

programming interfaces (APIs). It is hardware independent and

(a) Viewpoint 1p

(b) Viewpoint 2

Fig. 5. Visualization of ball trajectory from two different viewpoints.

very portable, hence it can be widely adopted across many

platforms. The developed visualisation includes virtual tennis

court, with an interface for selecting different camera views

and zooming features – see Figure 5.

IV. EXPERIMENTAL RESULTS

To evaluate our approach, we quantify the accuracy of our

system in terms of reprojection error, which is defined as

the distance between the actual 2D pixel coordinates and the

reprojected pixel coordinates calculated using L1 Norm.

TABLE I
REPROJECTION ERRORS

Camera Combinations Reprojection Error
Camera 2 & 9 10.5891
Camera 4 & 9 7.2260

Camera 2, 4 & 9 12.8549

Table I shows the reprojection error obtained for different

combinations of cameras used for 3D ball tracking (see

Figure 1 for camera label positions). As the number of

cameras considered for analysis increases, the number of

tracked points also increases, but at the cost of reprojection

error. Unfortunately, for the tracked points with inclusion of

prediction model, the reprojection error can not be calculated

since ground truth data for comparison of such points is not

available.

A graphical representation of the tracking results obtained

for various techniques is shown in Figure 6. In this figure,

time is on the horizontal axis, and times at which the ball is

tracked is highlighted with a horizontal line, with times when

the ball track is lost (i.e. not tracked) represented by a gap.

From this figure, we can see that with increasing the number

of cameras for tracking, the continuity in the tracked features

also increases (compare row 3 to rows 1 and 2). The second

last row represents continuity when prediction modelling is

included. We can observe that some of the gaps are filled

after incorporating prediction in the system. The additional

temporal segments of ball tracks, that were acquired solely by

prediction can be seen in the final row of this figure.
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Fig. 6. Continuity of tracked features for different conditions

(a)

(b)

Fig. 7. Original (red) and reprojected (green) trajectories of the ball; (a)
without prediction, and; (b) with prediction

The advantage of incorporating trajectory modelling is also

illustrated in Figure 7, where trajectories with and without

prediction are depicted. Notice how the tracked trajectory of

the ball (in green) is increased in (b) when compared to (a).

V. CONCLUSIONS AND FUTURE WORK

In this paper we presented algorithms associated with 2D

and 3D object tracking and video synchronization. We also

presented a basic, physics-based modelling technique designed

to increase the continuity of the tracked features. We believe

that, though the prediction model is very basic, it could be the

first step towards development of a complex modelling system.

In future work, an accurate modelling of the ball trajectory

could be developed to ensure the continuity of the tracked

features, by considering real-time scenarios like ball spin and

air resistance.
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