
A  Dynamic Approach for Discovering Maximal Frequent itemsets  
 

Geetha M 
Department of Computer Science and Engineering 

Manipal Institute of Technology 
Manipal, Karnataka, India. 
maiya_geetha@yahoo.com 

R.J.D’Souza  
Department of Mathematical &Computational Sciences. 

National Institute of Technology  Karnataka 
Surathakal, Karnataka, India.  

rjd@nitk.ac.in
 
 

Abstract— We present a novel method, which reads the 
database at regular intervals as in Dynamic Itemsets Counting 
Technique and creates a tree called Dynamic Itemset Tree 
containing items which may be frequent, potentially frequent 
and infrequent. This algorithm requires less time to discover 
all maximal frequent itemsets since it involves a method for 
reducing the size of the database. This method prunes the 
transactions and items of the transactions which are not of our 
interest after every scan of the database. Also, this method is 
independent of the order of the items. 

Keywords- confidence; dynamic; frequent; prunning; Tree 

I.  INTRODUCTION 
The Dynamic Itemset Counting Algorithm (DIC) [1] is 

an improvement over Apriori’s candidate generation 
algorithm. The working of DIC algorithm is explained below 
as given in [2].  

Initially certain “stops” are identified in the database. It is 
assumed that the records are read sequentially as in other 
algorithms, but pause to carry out certain computations at the 
“stop” points. Four different structures are used in this 
algorithm. They are (i) Dashed Box (ii) Dashed Circle (iii) 
Solid Box (iv) Solid Circle. Each of these structures 
maintains a list of itemsets.  The itemsets in the “dashed” 
category of structures have a counter and stop number with 
them.  The counter is to keep track of the support value of 
the corresponding itemset.  The stop number is to keep track 
whether an itemset has completed one full scan over a 
database. The itemsets  in  the “solid” category   structures 
are   not subjected to any counting. The itemset in the solid 
box is the confirmed set of frequent sets.  The itemsets in the 
solid circle are the confirmed set of infrequent sets.  The 
algorithm counts the support values of the itemsets in the 
dashed structure as it moves along from one stop point to 
another. During the execution of the algorithm, at any stop 
point, the following events take place: 

Certain itemsets in the dashed circle move into the 
dashed box. These are the itemsets whose support counts 
reach user defined value during this iteration. 

Certain itemsets enter afresh into the system and get into 
the system and get into dashed circle. 

 The itemsets that have completed one full pass move 
from the dashed structures to solid structure.  

Brin et al mentioned in their paper that this algorithm is 
implemented using Hash Tree used in Apriori algorithm[3], 
but involves some extra information stored at each node. It is 
a tree with the following properties. Each itemset is sorted by 
its items. Every itemset that is being counted has a node 
associated with it, as do all of its prefixes. The empty itemset 
is the root node. All the 1-itemsets are attached to the root 
node, and their branches are labeled by the item they 
represent. Every node stores (i) the last item in the itemset it 
represents (ii) a counter (iii) a marker as to where in the file 
counting is started (iv) its state and (v)  branches if it is an 
interior node. 

The following observations are made from the DIC 
algorithm. 

In [2], it is mentioned that this algorithm needs four 
different data structures dashed box, Dashed circle, Solid 
Circle and Solid Box and each of these maintains a list of 
itemsets. If array data structure is used, then memory has to 
be allocated in advance to store candidate itemsets, frequent 
itemsets, and confirmed frequent and infrequent itemsets. In 
such cases, if the size of the database is very large then large 
number of candidate itemsets is generated and requires much 
space to store all of them. Since it is not known in advance 
how many of these are there, this approach does not seem to 
work well for large databases. If much memory is allocated 
in advance, then if there is less number of candidate itemsets, 
then most of the space allocated is wasted. Also, if user 
wants to know the frequent itemsets with respect to the 
reduced minimum support then infrequent set has to be 
scanned. This takes much time.  

 If it is implemented as it is given in [1] following things 
have to be observed.  Given a collection of itemsets, the form 
of hash tree structure is heavily dependent on the sort order 
of the items. During the first interval of M transactions only 
1-itemsets are counted and the tree structure does not depend 
on the order. After the first interval, the order of the items is 
changed and tree is built from there. This technique incurs 
some overhead due to the re-sorting.  

This motivated us to propose the following simpler 
method. This method reads the database at regular intervals 
as in DIC and creates a tree containing items which may be 
frequent, potentially frequent and infrequent. This algorithm 
requires less time to discover all maximal frequent itemsets 
since it involves a method for reducing the size of the 
database. This method prunes the transactions and items of 

2009 International Conference on Computer Engineering and Technology

978-0-7695-3521-0/09 $25.00 © 2009 IEEE

DOI 10.1109/ICCET.2009.153

62

Authorized licensed use limited to: NATIONAL INSTITUTE OF TECHNOLOGY SURATHKAL. Downloaded on February 26,2021 at 04:36:26 UTC from IEEE Xplore.  Restrictions apply. 



the transactions which are not of our interest after every scan 
of the database. Also this method is independent of the order 
of the items. 

II.  PROPOSED METHOD 

 Structure And Generation of Dynamic Itemset Tree 
The proposed method uses the concept of a tree called 

Dynamic itemsets tree DT and allocates memory at run time. 
Every node consists of four parts 

Item number 
count 
stop number  
status of the node i.e whether particular item is  
   confirmed frequent(Cf) / frequent(f) /infrequent(if) 

/active(ac) and two pointers, child and sible pointers. 
 

 
Figure1 .  Node Structure 

    Let D be a given transaction database containing n items 
and assume m to be the number of stop points. Initially, the 
tree DT contains n nodes; each corresponds to every 1– item 
and status of the node is assumed to be ‘ac’ i.e. active. The 
transactions are read sequentially one after another. For every 
item in the read transaction, its counter is incremented in the 
tree DT. This process is continued until the next stop point is 
reached. Before the next set of transactions are read, certain 
computations like finding itemsets which satisfy user defined 
minimum support are identified and also possible candidate 
itemsets are  generated. A new node is created for every 
element of un matching part of candidate itemsets in DT .  
This node is then added to the tree  DT T as a child of  last 
matching item  of  the candidate itemset  with status as 
active, the count value as 0 and stop number as the current 
stop number. If  some of the itemsets become frequent before 
it has completed one pass of the database then its status has 
to be changed to ‘f’ i.e. frequent. 

    The itemsets if they have completed one full pass then 
their status is made ‘ Cf’ or  ‘ if ’  depending on whether they 
are  confirmed frequent or infrequent respectively. This 
procedure is continued until the status of all nodes in DT  
become either‘Cf ’ or ‘if ’. 

 Pruning Technique 
    Once the complete scan is made for some itemsets, they 
will be either confirmed to be frequent or infrequent 
itemsets. From this step onwards all the transactions which 
contain infrequent itemsets are pruned from the database in 
order to avoid scanning the irrelevant items in the database. 
The following points are to be noted in this case. 
(i) The counting for all 1 - itemsets starts from the 

beginning of the database. These itemsets complete one 
full pass at the end of the database. Therefore, during 
the second scan of the database, while constructing the 
Dynamic Itemset Tree by reading the transactions 
interval wise, items which are not frequent in every 
transaction read are removed.   

(ii) For all other itemsets once they complete the full   pass, 
in the next iteration, the irrelevant elements are 
removed from the database. 

    If {A, B, C} is a candidate large 3- itemset then all its 
subsets have to be frequent. Therefore, all its 2-item subsets 
should belong to L2, the set of all frequent 2-itemsets. This 
fact suggests that a transaction can be used to determine the 
set of large (k+1)-itemsets only if it consists of (k+1) large 
k-itemsets in Lk obtained in the previous pass. This means 
that, if the number of candidate itemsets is very close to that 
of large itemsets, while counting k-subsets, the transactions 
can be efficiently trimmed by eliminating items which are 
found to be irrelevant for later large itemset generation. 
Also, if a transaction contains some large (k+1) itemsets, 
any item contained in these (k+1) itemsets will appear in at 
least k of the candidate k-itemsets in Ck. As a result, an item 
in  transaction t  can be  trimmed  if it does not  appear  in at 
least k of the candidate  k–itemsets in t.  For example,  
 
(i) If L1= {2, 3, 5, 6, 7} and   t = 2, 3, 4 
Only large subsets for this transaction are {2}, {3}. 
Therefore, this transaction can be used for determining 
candidate 2-itemsets since it contains 2 large 1-itemsets 
from the previous iteration. 
Also, count [2]=1, count[3] =1 and count[4] =0. Since the 
item 4 does not satisfy the necessary condition, it has to be 
deleted from this transaction. 
 
(ii) If L2 = { { 2, 3}, {2, 6}, {5, 7}}  and  t =2,3,5,6,7   
Only large subsets for this transaction are {2, 3},  {2, 6},  
{5,7} 
Therefore, this transaction can be used for determining 
candidate 3-itemsets since it contains 3 large 2-itemsets 
from the previous iteration.  
Also, count [2]= 2,  count[3]= 1,  count[5]= 1,  count[6]= 1 
and count[7]= 1. 
As items 3, 5, 6, 7 do not satisfy the necessary condition, 
they are to be deleted from the transaction. Therefore, 
transaction size is reduced. 

(iii) If L2 ={{ 2, 3}, {2, 6}, {5, 7}}   and t =2,3,5  
Only large subsets for this transaction is  {2,3}  

63

Authorized licensed use limited to: NATIONAL INSTITUTE OF TECHNOLOGY SURATHKAL. Downloaded on February 26,2021 at 04:36:26 UTC from IEEE Xplore.  Restrictions apply. 



Since this transaction does not have sufficient number of 2-
large itemsets to find 3-large itemsets, this entire transaction 
from the database can be deleted.  

Dynamic Itemsets Tree Algorithm 
 
(i)   Construction Dynamic Itemsets Tree  

Input:  

The given database D, the tree DT containing nodes 
corresponding to every 1- itemsets. Current stop-number = 
0; status =’ac’, s = user defined minimum support 
Output:  
The tree  DT   with frequent and infrequent itemsets. 
Do until status of all the nodes is equal to ‘if ’ or ‘Cf ’  
begin 
         for every transaction t in D till the next stop do   
          begin  
                   if any infrequent itemsets found   
prune t in D 
remove nodes from DT , corresponding to the irrelevant 
items. 
increment the counters of items of t in DT   
end 
      increment the current-stop-number by 1 
      for each itemset I in DT   do 
       begin  
            if status = ‘Cf ’   ,  flag=0;  continue. 
             else 
                  if count [I ] ≥  s   and  status  =‘ac’      
                   change the status field of this itemset   to ’f ’                         
                   generate new itemsets and put them into   
                   tree by extending the prefixes of those  
                   itemsets with counter value=0 ; 
                    stop_number=current stop-number  
                    and status =’ac’ 
                   else if status=’ac’ and  
                   stop_number=current  stop _number   
                             set   status  =’if ’ 
                                 if status =’f ’ and  
                                    stop_number=current _stop_number   
                                    set   status = ‘Cf ’  
           end 
             if (flag= 0)  then   return   tree DT  
             else  
                 continue;  
end 

 
 

(ii)    Reducing Dynamic itemset Tree to contain 
only maximal frequent itemsets 

Input:  The Dynamic itemset Tree DT  
Output: The Reduced Dynamic itemset Tree DT  with only 
maximal frequent itemsets. 

Traverse DT   in preorder 
for every frequent itemset  I  in DT   do 
begin 
          if  I is contained in any superset g in DT   
          delete node corresponding to I 
end 
 

 
(iii)    Discovery of maximal frequent itemsets 

Input: The Dynamic Itemset Tree DT with only maximal 
frequent itemsets. 
   Output: Maximal frequent itemsets MF   
   Initially,  MF = { ϕ  } 
     Traverse DT  from root to leaf in preorder  
     begin 
          for every maximal path Mp from root to leaf do  
                 begin 
                          MF = MF ∪   Mp  
                  end 
       end 
 

III.  THEORETICAL ANALYSIS  
 
A Construction Dynamic Itemsets Tree  

(i) The construction of Dynamic Itemset Tree requires a 
minimum of one database scan,  same as that of 
Dynamic Itemset Counting Technique. 

(ii) The number of transactions scanned by this method is 
clearly less than DIC algorithm since it employs a 
pruning technique to reduce the size of the transaction 
database at every pass of the database. If there are N 
transactions and if DIC algorithm requires k scans of 
the database to discover all frequent itemsets then 
Dynamic Itemset Tree  algorithm requires less than or 
equal to k scans but takes less time to achieve the same.  

(iii) The candidate generation step requires the same 
amount of time as that of DIC algorithm. But due to 
pruning technique the candidate itemsets which are not 
of interest are deleted from the tree. i.e for every  pass 
if m itemsets are found to be infrequent,  then at least m 
nodes are to deleted from the tree. If the algorithm 
requires k scans to discover all maximal frequent 
itemsets then at least km nodes are deleted from the 
tree. Therefore removal of irrelevant items is in O(km).  

(iv) If infrequent items are not deleted from the tree then 
the Dynamic Itemsets Tree DT  constructed will contain 
both frequent and infrequent itemsets with count. 
Therefore, it is possible to discover all maximal 
frequent itemsets, border set and closed itemsets at 
different user defined minimum support. This support 
can even be Reduced Minimum Support. But in this 
case, since irrelevant items remain in the tree, these m 
irrelevant nodes are scanned at every stop. If there are k 

64

Authorized licensed use limited to: NATIONAL INSTITUTE OF TECHNOLOGY SURATHKAL. Downloaded on February 26,2021 at 04:36:26 UTC from IEEE Xplore.  Restrictions apply. 



database scans and j stops for one scan, then the tree 
has to be scanned (jmk) times. Therefore this step is in 
O(jmk). Hence this is greater than the time required for 
deletion of irrelevant nodes. 

(v) For a given database, if  DIC creates n nodes in k 
passes, then this algorithm creates (n- km) nodes  of 
same size in k passes.  Hence the space utilized by 
Dynamic Itemset Tree is less when compared to DIC 
algorithm and requires less time to scan DT   than hash 
tree constructed by DIC. 

 
 

 
B   Reducing Dynamic itemset Tree to contain only 

maximal frequent itemsets 
    This step depends on the number of leaf nodes. If there 
are m leaves in the tree, then the number of comparison 
operations performed to reduce the tree to contain only 

maximal frequent itemsets are ⎟
⎠
⎞

⎜
⎝
⎛ +

2
)1(mm

 in addition to  

m tree scan operations are required.  Therefore this step is in 
O(m2 ) 

 
C Discovery of maximal frequent itemsets 
    This step depends on the number of leaf nodes in the tree 
DT .  If there are m leaf nodes in DT then there are m 
maximal frequent paths in a tree. Further this step requires 
only one scan of DT.  If there are n nodes in a tree then  
number nodes scanned  in this step is in O(n). 

 

IV.  ILLUSTRATION 
 

Consider a sample database shown in Table 1 with the user 
defined minimum support =2 transactions, number of 
stops=2 and number of transactions per stop =2.  
 
 
Table 1 . Sample Database for the construction of Dynamic Itemsets Tree 

Transaction ID Item Numbers 
T1 1, 2, 3, 4 
T2 1, 2, 3, 5 
T3 1, 4 
T4 1, 3, 4 

 
 
    Applying the method to the above sample database, 
without removing infrequent candidates, the Dynamic 
Itemsets Tree obtained is shown in the Figure 1. The tree in 
Figure 2 with 12 nodes contains all the information required 
to find maximal frequent itemsets, infrequent itemsets for 
different user defined minimum support. For this purpose, 
initially sufficiently small user defined minimum support s 
can be chosen, so that it will possible to find maximal 

frequent itemsets for all values of thresholds greater than s.  
In the Figures 2 and 3,  n*  indicates that an itemsets has 
entered the tree at the nth stop  in the second scan of the 
database. 
 
 
 

 
 

Figure 1 . Dynamic Itemsets Tree with frequent and infrequent itemsets 
corresponding to Table 1 

 

    From the above tree it can be seen that the itemsets {5}, 
{2, 4} are infrequent itemsets. Hence deleting the nodes 
corresponding to them reduces the size of the tree. Since 
Dynamic Itemsets Tree method attempts to discover only 
maximal frequent itemsets, only nodes corresponding to the 
maximal frequent itemsets are to be kept on the tree. Hence 
the nodes corresponding to the itemsets {4}, {1, 3} and {2, 
3} are deleted from the tree. The final tree with respect to 
sample database given in the Table 1 is shown in  Figure 3. 
 

 

 
 

Figure 2. Dynamic Itemsets Tree for the Table 1 

 

65

Authorized licensed use limited to: NATIONAL INSTITUTE OF TECHNOLOGY SURATHKAL. Downloaded on February 26,2021 at 04:36:26 UTC from IEEE Xplore.  Restrictions apply. 



 

    Since Dynamic Itemsets Tree algorithm involves the 
technique for reduction of tree and database size , it can also 
be applied for both sparse and large databases. The 
algorithm DIC is not recommended for large data sets since 
it involves storing of large number of candidate itemsets , 
which results in space overhead problem.  

 

V. CONCLUSION 
 

    This new method for discovering maximal frequent 
itemsets from large as well as sparse databases does not 
depend on order of the items. It has been proved 
theoretically that this method is space, time efficient and 
works for increased minimum support.  

This approach right now does not work for reduced 
minimum support. i.e if  minimum support is reduced, then  
the tree does not contain enough information  to discover all 
maximal frequent itemsets with respect to that reduced 
minimum support. This can be achieved using the Dynamic 
Itemset Tree with infrequent and frequent items. But this 
involves space overhead problem. Therefore, as a future 
enhancement, a variation of the method could be developed 
to handle Reduce Minimum Support efficiently.  

 

VI. REFERENCES 
 

[1] Sergey Brin, Rajiv Motwani , Jeffrey D.Ullman , Shalom 
Tsur(1997) “ Dynamic Itemset counting and implication 
Rules for Market Basket Data”, ,” Proc. ACM SIGMOD 
Conf. Management of Data..Canada,255-264. 

[2] Arun K Pujari(2003)– “Data mining Techniques”: 
Universities Press(Indis) Private Limited. Hyderbad, India. 

[3] Rakesh Agarwal, Ramakrishnan Srikant(1994), “Fast  
algorithms for mining association Rules”, In proceedings of 
the 20th International Conference on Very Large databases,  
Santigo,  478-499 

[4] J. Han and M. Kamber(2004), “Data MiningConcepts and 
Techniuqes”: San Franscisco, CA:. Morgan Kaufmann 
Publishers 

 

 
 

66

Authorized licensed use limited to: NATIONAL INSTITUTE OF TECHNOLOGY SURATHKAL. Downloaded on February 26,2021 at 04:36:26 UTC from IEEE Xplore.  Restrictions apply. 


