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Abstract—A cognitive radio should be capable of finding the best
spectrum band for communication depending on primary transmissions,
the ambient noise level and interference. The first step in achieving this
goal is to sense the existence of primary and secondary transmitters in
various channels. In addition to the problem of signal detection, there is
a need to distinguish between different signals at very low SNR. In this
paper, the spectral correlation function is used for hypothesis testing. The
sufficient statistic for feature vector based detection in the presence of
timing uncertainty is derived. Sequential detection is used to decrease the
average number of samples required for testing. Theoretical expressions
for the stopping time at low SNR are derived for the AWGN channel. In a
fading environment, the performance is evaluated using an approximate
expression for the distribution of spectral correlation function. Monte-
Carlo simulations verify the accuracy of the theoretical expressions.

Index Terms—Cognitive Radio, Detection and Estimation, Cyclosta-
tionarity, Sequential tests

I. INTRODUCTION

A Cognitive Radio (CR) [1] is aware of its radio environment

and chooses its transmission and reception parameters depending

on the other users, their transmit powers, bandwidths, quality of

service requirements, etc. Spectrum Sensing (SS), a topic that has

been very well studied in recent years, involves detection of signals

in a particular band. The decision statistics considered in this paper

are cyclostationary features extracted from the received data. Spectral

correlation makes it possible to reject noise and interference for signal

detection and extraction. It is known that signal detection in low SNR

environment is best done using cyclic features [2].

In a Sequential Detector (SD), one allows the number of samples

used for detection to vary to achieve the required performance [3].

The average sample size for a given target detection performance

depends on the distribution of the samples. In [4], a multiple cyclic

frequency based Generalized Likelihood Ratio Test (GLRT) in a

cooperative environment is discussed. In [5], [6], a single Spectral

Correlation Function (SCF) value is used as the feature of interest

for several variants of the Fixed Sample Size Detector (FSSD). [7]

and [8] discuss the SD performance of a QAM and an OFDM

signal, respectively, and compare their performance with the FSSD.

A hidden Markov-model based signal classification technique using

cyclic frequency profile as feature vector is discussed in [9]. Cy-

clostationarity based cooperative and distributed techniques of signal

detection are presented in [10], [11]. In [12], sequential detection

of cyclostationary signals is proposed. The distribution is derived

empirically and a multiple sequential probability ratio test based

technique of signal detection is proposed to improve performance. A

comprehensive comparison of cyclostationarity, energy and matched-

filter based detection is presented in [13].

The features of the SD discussed in this paper, in contrast to the

existing works is discussed below:

• The use of multiple cyclostationary features in conjunction with

SD is proposed, to significantly reduce the number of samples

required to achieve the same performance as with an FSSD.

• The existing multiple cyclostationary feature vector based detec-

tion techniques are not amenable to theoretical analysis in the

sequential setup. In this paper, by using SCF feature vectors in

a cooperative sequential detection scenario, this paper derives

expressions for stopping time and the probability of detection.

• The theory discussed in this paper is applicable to any narrow-

band cyclostationary signal. It uses the magnitude of the SCF

as the feature of interest for either detection of signal vs. noise

or detection between two signal types. The deflection coefficient

[14] is used as a criterion to identify features.

• The feature vector used in this paper comprises of SCF values at

different frequencies f and cyclic frequencies α. It is shown that

in a cooperative scenario with timing uncertainty, the magnitude

of SCF is a sufficient feature vector.

• Typically, the effect of fading on performance is evaluated as the

probability of detection of a detector designed for an AWGN

channel [6] and/or using a fusion rule [15]. In contrast, this

paper derives an approximate distribution for the SCF in a fading

channel, and uses it to design a detector that achieves near-

optimal performance.

The sequential detector discussed in this paper is compared with

the fixed sample size Maximum Likelihood Detector (MLD). The

theoretical expressions are validated using Monte-Carlo simulations.

In the next section, an introduction to cyclostationarity is provided,

and the system model is explained. In Sec.III, the design of SD is

presented and in Sec.(IV), hypothesis testing using MLD is discussed.

In Sec.V, simulation results are presented.

II. BACKGROUND AND SYSTEM MODEL

A. Introduction to Cyclostationarity

1) Spectral Correlation Function: The cyclic autocorrelation func-

tion Rα
x (τ) is defined as [16]

Rα
x (τ) � lim

T→∞
1

T

Z T/2

−T/2

x(t + τ/2)x∗(t − τ/2)e−i2παtdt (1)

A signal exhibits second-order periodicity when Rα
x (τ) is nonzero for

some nonzero frequency α, called the cyclic frequency. The Fourier

transform of the cyclic autocorrelation function is called the Spectral
Correlation Function (SCF):

Sα
x (f) =

Z ∞

−∞
Rα

x (τ)e−i2πfτdτ = Suv(f) (2)
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Here, u(t) = x(t)e−iπαt and v(t) = x(t)e+iπαt are frequency

shifted versions of x(t), and Suv(f) is the cross spectral density of

u(t) and v(t). Sα
x (f) is thus the cross spectral density of frequency

shifted signals u(t) and v(t).

B. System Model

Initially, consider the scenario where one wishes to determine

whether or not a primary signal is present. When the primary signal

is absent, the received signal x(t) is modeled as a complex AWGN

process w(t) with variance σ2
w. When the primary signal is present,

x(t) is modeled as a pure signal ẑ(t), corrupted by the independent

AWGN w(t). The transmitted signal ẑ(t) is assumed unit power and

narrow band, and x(t) can be written as

x(t) = hẑ(t − t0) + w(t) (3)

where t0 is the unknown delay in sampling and h is the fade,

assumed frequency flat and constant for a measurement duration of

computation of the SCF. The cooperative sensing model used in this

paper is the one adopted in [7], where each Secondary User (SU)

computes the Log Likelihood Ratio (LLR) and sends it to the fusion

center for detection. The computation of LLR is explained in Sec. III.

Noise does not exhibit any cyclostationarity, and hence its SCF is

Sα
w(f) = 0 ∀α �= 0. When the signal is present, the cyclic spectrum

of x(t) is

Sα
x (f) = |h|2 Sα

ẑ (f) + Sα
w(f) (4)

where Sα
ẑ (f) is the cyclic spectrum of ẑ(t). Thus, evaluating Sα

x (f)

at an appropriately chosen α �= 0 helps separate the signal from the

purely stationary AWGN.

The SCF is estimated as [17] Sαi
xN′ (k̂, mi)N =

1

PN ′

P−1X
l=0

XN′(k̂ + lN ′, mi +
αi

2
)X∗

N′(k̂ + lN ′, mi − αi

2
) (5)

where XN′(k̂ + lN ′, mi) is the FFT coefficient at frequency mi

computed in the discrete time window, [k̂ + lN ′, k̂ + (l + 1)N ′], P

is the number of FFT windows used for frequency smoothing, k̂ is

the discrete time sample, mi = fiN
′/fs is the discrete frequency

corresponding to the frequency fi, αi is the discrete analog of the

cyclic frequency and is even.1

III. SEQUENTIAL BINARY HYPOTHESIS TESTING

The problem of interest in this paper is to classify between two

different signals or a signal and noise based on the received signal.

The feature vectors can be written as Zk = [zk,1zk,2 . . . zk,ν ] where

ν is the total number of features. Here zk,i corresponds to the ith

feature and kth SU. Thus, the sequential detection is performed by

accumulating mutually independent Log-Likelihood Ratios (LLRs)

that could either come from different SUs, or from a single SU using

samples that are more than the channel coherence time apart. The

joint pdf of zk,i is p(Zk) = p(zk,1)p(zk,2) . . . p(zk,ν), assuming the

features are independent. If p1(Zk) and p2(Zk) are the probability

densities of Zk under hypothesis H1 and hypothesis H2 respectively,

then the Log-Likelihood Ratio (LLR) is

lk = log

„
p2(Zk)

p1(Zk)

«
. (6)

1The notation used here is borrowed from [6] [17].

In terms of the LLRs, the SD scheme can be written as [3]

KX
k=1

lk > a → H2,

KX
k=1

lk < b → H1 (7)

Otherwise, the test continues by taking the next LLR and adding it

to the previous sum. This test is called the Sequential Probability

Ratio Test (SPRT). The k = K at which a decision is made is the

converging sample size and the thresholds a and b are set as

a = log

„
1 − β

α

«
and b = log

„
β

1 − α

«
, (8)

where α and β are the probability of miss detection under H1 and

H2, respectively, which are our design targets.

The Expected Converging Sample Size (ECSS) of the binary

classifier is [3]

E(K|H2) ≈ 1

γ2

»
β ln

β

1 − α
+ (1 − β) ln

1 − β

α

–

E(K|H1) ≈ 1

γ1

»
(1 − α) ln

β

1 − α
+ α ln

1 − β

α

–
(9)

where γ1 = E(lk|H1) and γ2 = E(lk|H2). For small α and β,

α ≈ e−γ2E(K|H2) and β ≈ eγ1E(K|H1). It is shown in the

Appendix B that a sufficient statistic for the present problem is the

magnitudes of SCF values at different cyclic frequencies, i.e., the

feature vector is

Zk =
h˛̨̨

Sα1
xN′ (k, m1)

˛̨̨
, . . . ,

˛̨̨
Sαν

xN′ (k, mν)
˛̨̨i

The time domain samples of a cyclostationary signal are not i.i.d.,

but the SCFs at different frequencies f and cyclic frequencies α

are independent. This independence follows from the independence

of FFT values at different frequency bins. However, the necessary

frequency and cyclic frequency resolution need to be ensured as

described in [17]. The SCF values of the pure signal is assumed

to be known at the receiver.

A. The AWGN Channel

In an AWGN channel, the channel gain h is deterministic and

known. It is shown in the Appendix A that the pdf of zk,i under

hypothesis Hj , j = 1, 2 is zk,i ∼ R(vji, σ
2
ji) where R stands for the

Rician distribution, i.e.,

p(zk,i) =
zk,i

σ2
ji

e
−

z2
k,i+v2

ji

2σ2
ji I0

„
zk,ivji

σ2
ji

«
, (10)

where vji � |h|2μji, I0 is the modified Bessel function of first kind

of order 0, μji = |Sαi
ẑjN′ (k̂, mi)N | and σ2

ji is given by

σ2
ji =

σ4
w

2P

 
1 +

|h|2SẑjN′ (mi + αi
2

) + |h|2SẑjN′ (mi − αi
2

)

σ2
w

!
.

The noise variance σ2
w is assumed to be known at the receiver.

Thus, the LLR for the hypothesis test is

log(λ(Zk)) =

νX
i=1

 
2 log

„
σ1i

σ2i

«
− z2

k,i + v2
2i

2σ2
2i

+
z2

k,i + v2
1i

2σ2
1i

!
,

+
νX

i=1

„
log

„
I0

„
zk,iv2i

σ2
2i

««
− log

„
I0

„
zk,iv1i

σ2
1i

«««
(11)

where vji � |h|2 μji. The expected value of (11) under either

hypothesis is derived in Appendix B as:
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γj =

νX
i=1

„
2 log

„
σ1i

σ2i

«
− 2σ2

ji + v2
ji + v2

2i

2σ2
2i

+
2σ2

ji + v2
ji + v2

1i

2σ2
1i

«

+

νX
i=1

„
(2σ2

ji + v2
ji)v

2
2i

4σ4
2i

− (2σ2
ji + v2

ji)v
2
1i

4σ4
1i

«
(12)

From (12), it can be shown that γ2 > 0 and γ1 < 0, which is

necessary for the SPRT to work.

At low SNR, σ2
1i ≈ σ2

2i ∝ σ4
w/P and hence γj ∝ P/σ4

w. Thus, for

sufficiently large K, α ≈ (C1)
−PE(K|H2) and β ≈ (C2)

−PE(K|H1)

where C1 and C2 are constants. That is, the performance of SD

depends on the expected number of FFTs, i.e., PE(K|Hj), enabling

one to choose P depending on α and β to meet the performance

requirement. In an AWGN channel, therefore, one can trade-off P

with K without losing performance. Thus, the right choice of P and

E(K|Hi) is dependent on the traffic cost (due to transmission of

LLRs to fusion center), detection time constraint and the number of

SUs.

B. Rayleigh Fading Channel

In a Rayleigh fading channel, h is a random variable whose

magnitude is Rayleigh distributed. In Appendix A, it is shown that

the pdf of the magnitude of SCF in Rayleigh fading channel is

p(zi) =
zi

2μiσiσ2
f

exp

„−z2
i

2σ2
i

«
exp

 
σ2

i

16μ2
i σ

4
f

!

∞X
l=0

„
z2

i

4σ2
i

«l
(2l)!

(l!)2
D−(2l+1)

 
σi

2μiσ2
f

!
(13)

where σ2
f is the variance of fade and Dk(.) is the parabolic cylinder

function. In the above, the hypothesis index j and the SU index k

have been dropped for notational simplicity. Note that (13) is an

approximation which is valid for μi �= 0. If μi = 0, then fading

has no effect on the SCF and its distribution will be same as that

in the case of AWGN. Further, Dl(.) falls rapidly with l and at low

SNRs the first few terms are sufficient for a good approximation. At

low values of μi, the distribution is well approximated by (10), and

hence fading can be neglected. The expected value of LLR can be

estimated empirically and using (9), the expected sample size can be

evaluated.

The next step is the selection of the frequency and cyclic frequency

at which to compute the SCFs for detection. The deflection coefficient

[14] is a simple, convenient metric to pick features that best separate

the hypotheses. With this, the design procedure for the SD is

summarized below:

• For the given pair of signals, select n cyclic features with the

maximum deflection coefficient

(E(zk,i|H2) − E(zk,i|H1))
2

(V ar(zk,i|H2) + V ar(zk,i|H1))

.

• Compute the LLR as given by (6) and add it to the previously

computed cumulative sum of LLRs. In an AWGN channel, the

LLR simplifies to (11).

• Compare the cumulative sum to the thresholds (8).

• The detector stops when the cumulative sum of LLRs cross the

threshold, and the decision rule is (7).

IV. MAXIMUM LIKELIHOOD DETECTOR (MLD)

The hypothesis test of FSSD (here, also called the MLD) in terms

of LLR is

KX
k=1

lk ≥ τ → H2,

KX
k=1

lk < τ → H1 (14)

where all the terms are as explained in Sec. III. The (fixed) sample

size K and threshold τ are chosen suitably to satisfy the required

detection performance under both hypotheses. As in the case of SD,

the independent LLRs lk = log(p2(Zk)/p1(Zk)) are obtained from

different SUs and accumulated in the fusion center.

V. SIMULATION RESULTS

In this section, Monte-Carlo simulation results are presented to

illustrate the performance of the proposed detectors and corroborate

the theoretical analysis. For all simulations, P = N/N ′ = 8 ,where

N ′ is the FFT size and N is the total number of samples. N ′ is chosen

to be 32, to provide the frequency resolution required to distinguish

the cyclic spectral peaks of the signals under consideration. All

signals used in simulation are normalized to unit power. The required

SNR is obtained by scaling the noise variance. Note that the binary

detectors designed in this paper can be used either to distinguish

between two different signal types or for detecting signal vs. noise;

examples of both applications are illustrated here.

The cyclic spectrum of all the signals used in this paper is derived

in [18]. However, in this work, we use pulse shaping using raised

cosine filter for Binary-Phase Shift Keying (BPSK) and Minimum

Phase Shift Keying (MSK) signals. The performance of the BPSK vs.

MSK SD, designed for a target probability of detection of Pd(H1) =

Pd(H2) = 0.9 is shown in Table I. The SD employed here uses

two feature vectors. Note that more than two feature vectors can be

chosen but it would increase the computational complexity without a

significant increase in performance. Eth(K) is the theoretical value

of the ECSS and Epr(K) is the empirical estimate. We see that

the theoretical and experimental values of the ECSS match, and the

target detection performance is nearly satisfied. The expected number

of FFT samples can be computed as PE(K), with P = 8. For

H2: MSK vs. H1: BPSK
AWGN Channel Fading Channel

Pd Eth(K) Epr(K) Pd E(K)
H2 0.88 45.68 44.54 0.85 55.30
H1 0.88 46.63 46.87 0.85 67.13

TABLE I
MSK VS. BPSK SD AT -20DB SNR

comparison with the FSS MLD, the SD is designed to distinguish

between H2:BPSK and H1:noise. It uses a single SCF as its feature

vector. Note that, noise as the input signal to the detector at different

values of SNR is modeled by scaling the variance of the noise relative

to a hypothetical signal at unit power. The distribution of SCF of the

BPSK signal in fading is shown in Fig. 1, and the theoretical and

empirical distribution are found to match well. Figure 2 plots the

number of FFT samples required to achieve the target performance

in presence of hypothesis H2. The graph for H1 is similar and is

omitted. The SNR is fixed at −20dB. In fading environment, since

the SNR is random, its expected value, 10 log
`
2σ2

f/σ2
w

´
, is fixed at
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−20dB. The superior performance in fade when compared to that

in AWGN in Fig. 2 is due to the diversity advantage in combining

independent LLRs. Moreover, the LLR grows very quickly with fade

value, and hence the average LLR with independently faded SCFs

is much higher than that with AWGN, leading to a faster detection

time. In Fig. 2, for the SD, K, the number of LLRs, is a random

variable. MLD1 is the MLD with P = 8 and K chosen to equal the

ECSS of the SD, and MLD2 is the MLD with P equal to the ECSS

of the SD multiplied by 8 and and K = 1. The FFT samples in the

y-axis is the value PE(K). The superior performance of the SD is

clear from the graph. To distinguish between two signals in AWGN,

a knowledge of channel gain is required, since the true value of SCF

is a function of the channel gain. However, in a fading channel, only

the mean channel gain needs to be known at the detector.

10 20 30 40 50 60 70 80
0

0.2

0.4

0.6

0.8

z

P
(z

)

Empirical Distribution
Theoretical Distribution

Fig. 1. Distribution of SCF of BPSK in a fading channel.
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Fig. 2. FFT sample size i.e., PE(K) for different detectors

In summary, this paper investigated binary sequential detection

using cyclostationary properties of the signals, and presented a design

methodology that can be used either for classifying a signal versus

noise or between different signal types. The SD discussed in this

paper allows one to flexibly trade-off between the number of samples

i.e., P at each SU and K, the number of SUs (or independent SCF

values), to achieve a desired performance. The MLD was found to

require a significantly larger number of samples compared to SD,

to achieve the same performance. Detection using independent SCF

values provides spatial diversity and parallel accumulation of LLRs,

which can be subsequently processed in the fusion center, leading to

significant savings in detection time. Future work can consider the use

of overlapping samples in computation of SCF. A possible solution

to the problem of overlapped processing is to use a correction factor

ε to the variance term in (10), as discussed in [6]. In this case, the

optimum SD will involve an optimization over ε, P and K.

APPENDIX A

DERIVATION OF THE DISTRIBUTION OF THE SCF

In (5), by property of Fourier transform, the FFT coefficients

XN′(k̂+lN ′, mi +
αi
2

) and XN′(k̂+lN ′, mi− αi
2

) are independent

if |mi +
αi
2
| �= |mi− αi

2
|. Thus, if mi = 0, the two frequency coeffi-

cients will be dependent and XN′(−αi/2) = X∗
N′(αi/2). Since the

time domain signal at the receiver can be written as in (3), XN′(k̂ +

lN ′, mi +
αi
2

) = hZ(mi +αi/2)+W (mi +αi/2)+iY (mi +αi/2)

and X∗
N′(k̂+lN ′, mi− αi

2
) = h∗Z∗(mi−αi/2)+W ∗(mi−αi/2)−

iY ∗(mi − αi/2). Here, Z(m) and W (m)/Y (m) are the FFTs

of the raw signal and real/imaginary parts of (time-domain) noise,

respectively, and are computed in the time window [k̂+ lN ′, k̂+(l+

1)N ′]. If the noise w(t) is zero mean and has a variance σ2
w then

E(|W (m)|2) = σ2
w/2, E(W 2(m)) = 0, E(|W (m)|2W (m)) = 0

and E(|W (m)|4) = σ4
w/2, and the same results hold for Y (m).

Further, Z(mi+αi/2)Z∗(mi−αi/2) = Sαi
ẑN′ (k̂, mi)N . Using these

properties, it can be shown that E(XN′(k̂ + lN ′, mi + αi
2

)X∗
N′(k̂ +

lN ′, mi − αi
2

)) = |h|2Sαi
ẑN′ (k̂, mi)N . Similarly, the variance of the

product can also be derived. Using the central limit theorem, it can be

shown that the SCF has a complex Gaussian distribution with mean

|h|2Sαi
ẑN′ (k̂, mi)N and variance of 2σ2

i , where

σ2
i =

σ4
w

2P

 
1 +

|h|2 `SẑN′ (mi + αi
2

) + SẑN′ (mi − αi
2

)
´

σ2
w

!
(15)

SẑN′ (mi) is the power spectral density of the pure signal evaluated

at discrete frequency mi. In an AWGN channel, the gain h is

deterministic. In a fading channel, the distribution of SCF is a

function of the random variable h. We assume |h| to be Rayleigh

distributed with parameter σ2
f . A similar method is adopted in [6]

where they derive the distribution of the SCF for a multi-antenna

fixed sample size technique. At low SNR, the variance σ2
i can be

approximated by σ4
w/2P , i.e., it is independent of the fade h. This

approximation is used to design the (near-optimal) SD in this paper.

The phase of the SCF is a random variable which is dependent

on the time of sampling. In [16], it has been shown any time delay

in sampling translates to an equivalent phase rotation of the SCF.

Assuming a uniform distribution for the phase rotation, it has been

shown in the next subsection that the magnitude of SCF is a sufficient

feature vector.

Since the SCF is Gaussian distributed, its magnitude is Rician

distributed with parameters vi = |h|2|Sαi
ẑN′ (k̂, mi)N | = |h|2μi and

σ2
i as given by (15). Since |h| (denoted by r below) is a random

variable the distribution of zi = |Sαi
xN′ (k̂, mi)N | is given by

p(zi) =

Z ∞

r=0

zi

σ2
i

e
− z2

i +r4μ2
i

2σ2
i I0

„
r2μizi

σ2
i

«
r

σ2
f

e−r2/(2σ2
f )dr

where I0(.) is the modified Bessel function of first kind of order 0.

Replacing the Bessel function by its infinite series expansion we get

p(zi) =
A

σ2
f

∞X
l=0

c2l

4l(l!)2

Z ∞

0

r4l+1e−br4−r2/(2σ2
f )dr

where A = zi

σ2
i
e−z2

i /(2σ2
i ), b =

μ2
i

2σ2
i

and c = μizi

σ2
i

. Thus,

p(zi) =
A

2σ2
f

∞X
l=0

c2l

4l(l!)2

Z ∞

0

r2le−br2−r/(2σ2
f )dr
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The above definite integral has a solution in terms of the parabolic

cylinder function Dν(x),[19]. After making suitable substitutions the

probability density function of the SCF can be shown to be

p(zi) =
zi

2μiσiσ2
f

exp

„−z2
i

2σ2
i

«
exp

 
σ2

i

16μ2
i σ

4
f

!

∞X
l=0

„
z2

i

4σ2
i

«l
(2l)!

(l!)2
D−(2l+1)

 
σi

2μiσ2
f

!
(16)

APPENDIX B

SUFFICIENCY OF THE FEATURE VECTOR IN AN AWGN CHANNEL

In the analysis that follows, the channel considered will be an

AWGN channel. The extension to fading channel is straightforward

and is omitted due to lack of space. Let μr = Re(Sα
ẑN′ (k, m)N ),

μi = Im(Sα
ẑN′ (k, m)N ), x = Re(Sα

xN′ (k, m)N ) and y =

Im(Sα
xN′ (k, m)N ) then μ =

p
μ2

r + μ2
i where the subscript related

to feature vector is dropped. Then x + iy ∼ CN(μr + iμi, 2σ2) as

derived in Appendix A.

Assuming a sampling delay of t0 at the receiver, the pure SCF will

be given by [16] |Sα
ẑN′ (k, m)N |ej(φ−2παt0) = μejθ . The time delay

is unknown to the receiver, and as sensing can start at any instant of

time at the different SUs, the phase of SCF is uniformly distributed

on [0, 2π). Let θ = φ−2παt0. The effective distribution of the SCF

is given by the integral

p(x, y) =

Z 2π

0

1

(2π)2σ2
exp

 
−
˛̨
x + iy − μeiθ

˛̨2
2σ2

!
dθ

p(x, y) = A

Z 2π

0

exp (b cos(θ) + c sin(θ)) dθ

= A

Z 2π

0

∞X
k=0

(b cos(θ) + c sin(θ))k

k!
dθ (17)

where A =
1

(2π)2σ2
exp

„
−x2 + y2 + μ2

2σ2

«
,

b = μx/σ2, and c = μy/σ2. The integral above has a closed form

solution as given by (3.661(1),3.661(2)) in [19]. Further, using the

relation (2k)!!(2k − 1)!! = (2k)! and (2k)!! = 2kk! we can show

that

p(x, y) = 2πA
∞X

k=0

(2k − 1)!!

(2k)!(2k)!!
(b2 + c2)k

=
1

2πσ2
exp

„
−x2 + y2 + μ2

2σ2

«
I0

“ μ

σ2

p
x2 + y2

”
The expected value of any function of x2 + y2 is given by

E(f(x2 + y2)) =

Z ∞

0

Z ∞

0

f(x2 + y2)p(x, y)dxdy

By translating the integral to polar coordinates with z =
p

x2 + y2,

we get

E(f(z2)) =

Z ∞

0

f(z2)
z

σ2
exp

„
−z2 + μ2

2σ2

«
I0

“μz

σ2

”
dz

Thus, since the SCF is complex Gaussian with independent real and

imaginary parts, the magnitude of SCF, z will be Rician distributed.

The correlation coefficient of the real and imaginary parts of SCF can

be proved to be equal to zero. The above results show that taking the

magnitude of the SCF is the same as evaluating the LLR using the

SCF with unknown timing (phase), and averaging over the pdf of the

unknown phase angle. The stopping time of the SD is a function of

the expected value of the LLR. Therefore, choosing the magnitude of

the SCF as the feature of interest results in no loss of performance.

The next step is to find a theoretical approximation for the expected

value of the LLR. Using a Taylor series expansion, it can be shown

that log(I0(x)) ≈ x2/4. At low SNR, the value of vji/σji in (11)

will be small, as it is directly proportional to the SNR. Further,

E(z2
ji) = 2σ2

ji + v2
ji [20]. Thus, the expected value of LLR under

either hypothesis can be derived to be (12).
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