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ABSTRACT
Disease prediction, a central problem in clinical care and manage-
ment, has gained much significance over the last decade. Nursing
notes documented by caregivers contain valuable information con-
cerning a patient’s state, which can aid in the development of
intelligent clinical prediction systems. Moreover, due to the limited
adaptation of structured electronic health records in developing
countries, the need for disease prediction from such clinical text
has garnered substantial interest from the research community. The
availability of large, publicly available databases such as MIMIC-
III, and advancements in machine and deep learning models with
high predictive capabilities have further facilitated research in this
direction. In this work, we model the latent knowledge embedded
in the unstructured clinical nursing notes, to address the clinical
task of disease prediction as a multi-label classification of ICD-9
code groups. We present EnTAGS, which facilitates aggregation
of the data in the clinical nursing notes of a patient, by modeling
them independent of one another. To handle the sparsity and high
dimensionality of clinical nursing notes effectively, our proposed
EnTAGS is built on the topics extracted using Non-negative ma-
trix factorization. Furthermore, we explore the applicability of deep
learningmodels for the clinical task of disease prediction, and assess
the reliability of the proposed models using standard evaluation
metrics. Our experimental evaluation revealed that the proposed ap-
proach consistently exceeded the state-of-the-art prediction model
by 1.87% in accuracy, 12.68% in AUPRC, and 11.64% in MCC score.
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1 INTRODUCTION
Disease prediction plays a pivotal role, both in clinical care and
hospital management. It is a problem that has gained significant
interest in the present-day, owing to the recent developments and
attention towards AI-assisted precision healthcare [35]. Analyzing
recent healthcare reports [17] reveals that more than 83% of the
hospitals in the United States have adopted the structured Elec-
tronic Medical Record (EMR) systems. The number of patients
admitted to hospitals in the United States alone is more than thirty
million, which indicates the availability of large amounts of pa-
tient data. Such availability has boosted research in several clinical
decision-making problems such as length-of-stay prediction, mor-
tality prediction, readmission prediction, phenotyping, and disease
prediction, especially by leveraging the predictive power and capa-
bilities of machine and deep learning models [14, 16, 25, 34, 35, 41].
However, a significant challenge is posed in the cases of developing
countries, where, the adoption rate of EMR systems is quite low.
Most developing countries are yet to define and employ a struc-
tured approach for storing and managing patient information, due
to which, such information is often only available in the form of
informally-written, free-text nursing notes [13, 14].
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These free-text documents noted by caregivers record in detail,
the clinical status of patients during outpatient care or hospital
stay. Medical personnel in such developing countries often resort
to a manual evaluation of these raw clinical notes for causal infer-
ences and decision-making [25]. Therefore, nursing notes contain
valuable clinical information such as lifestyle, history of illness,
symptoms, medications, and treatments, which can be potentially
leveraged for intelligent clinical decision-making. Attempts to man-
ually convert such unstructured nursing notes into EMRs often
result in a loss of crucial patient information and the relevant sub-
jective assessments that are recorded in them [14, 15]. Hence, it is
critical to develop automated methods that can facilitate optimal
modeling of unstructured clinical nursing text, for building clinical
prediction models. Additionally, the availability of large, public pa-
tient databases such as Medical Information Mart for Intensive Care
(MIMIC-II [29] and -III [23]) have further boosted the research in
such clinical prediction and decision-making tasks. However, min-
ing and modeling such raw clinical notes is challenging, especially
due to their rawness, sparsity, high-dimensionality, complex tem-
poral and linguistic structure, rich medical jargons, and abundant
abbreviations [21].

International Statistical Classification of Diseases and Related
Health Problems (ICD, with the most recent versions, ICD-9 and
ICD-10) is the most popular medical coding ontology employed
in hospitals, whose alphanumeric codes classify diseases and a
wide variety of infections, symptoms, causes of injury, disorders,
and others. Such medical coding is typically performed by medi-
cal personnel who are trained to understand nursing notes with
complex clinical terminology and inconsistency; and map these
nursing notes into a set of appropriate codes from a large menu of
options (ICD-9 coding scheme has around 13, 000 codes). Hence,
medical coding is a time consuming, expensive, and inexact pro-
cess, which can be overcome by automatic code assignment models.
Each ICD-9 code represents a unique disease, and similar diseases
are grouped into a diagnostic code group [14, 15, 35]. ICD-9 code
group prediction is a clinical prediction problem that aims at multi-
label classification of patient records into one or more categories
of diseases [7]. Such code group prediction facilitates efficient risk
assessment and timely response, enabling medical professionals to
better manage medical interventions at the point of care [10]. It is
interesting to note that diagnostic code group prediction facilitates
more than just accurate billing [6]; it is actively employed in retro-
spective epidemiology studies [30, 39, 42] and healthcare research
including predictive modeling [3–5, 9, 15, 36].

To facilitate intelligent clinical decision-making, several recent
works have incorporated the predictive capabilities of machine
learning models and deep neural architectures. In 2016, Pirracchio
[34] presented the super learner model, which was an ensemble
of various machine learning models; the model outperformed sev-
eral traditional severity scores such as sepsis-related organ failure
assessment [40], acute physiologic assessment and chronic health
evaluation [24], and simplified acute physiology score [27]. The
author underscored the relevance of machine learning models over
traditional prognostic scoring systems. However, the proposed su-
per learner model was not benchmarked against the recent machine
and deep learning models. Johnson et al. [22] replicated the results

of 28 related and recent works benchmarked on the MIMIC-III data-
base for the task of mortality prediction. Their work stressed on the
significant challenges in reproducing the reported results, owing
to the large variations in the patient cohorts and characteristics
considered by different studies. Furthermore, they highlighted the
need for improvising ways of performance reporting and evalua-
tion of clinical prediction models, in order to take into account the
diversity of various approaches, so as to ensure a fair comparison
of the reported performances. Harutyunyan et al. [16] employed
multi-task deep learning architectures to facilitate the prediction of
four diverse clinical prediction tasks, and benchmarked their results
on the MIMIC-III database. They used Long Short Term Memory
(LSTM) and logistic regression models, but did not benchmark their
performance against existing severity scoring systems or machine
learning models, specifically the super learner.

Purushotham et al. [35] also utilized deep neural models to enable
three clinical prediction tasks, namely, length-of-stay prediction,
mortality prediction, and ICD-9 code group prediction. They uti-
lized feature sets derived from the MIMIC-III database, and bench-
marked their results against a number of severity scoring systems
and machine learning models. Huang et al. [18] used discharge
summaries to predict the top-10 ICD-9 code categories, by mod-
eling the discharge summaries using term weighting, Word2Vec,
and word sequencing with an embedding matrix, and applying
state-of-the-art deep learning classifiers including Convolutional
Neural Network (CNN), LSTM, and Gated Recurrent Unit (GRU), to
achieve the prediction as a multi-label classification task. Zeng et al.
[43] also utilized discharge summaries for ICD-9 code assessment,
by modeling the discharge summaries using word embeddings and
applying a sequential CNN classifier to achieve the prediction as
a multi-label classification task. They employed transfer learning
from the domain knowledge of medical subject headings [31]. Ad-
ditionally, they evaluated their proposed model using evaluation
metrics such as micro-average precision, micro-average recall, and
micro-average F-measure. More recently, Gangavarapu et al. [14]
designed Term weighting of unstructured notes AGgregated using
fuzzy Similarity (TAGS) model, a fuzzy similarity matching method
for aggregating the raw nursing notes of the MIMIC-III database.
TAGS aimed at removing anomalous and redundant patient records,
thus reducing the cognitive burden and improving the predictability
of the underlying models. They utilized vector space (TAGS and
Doc2Vec) and topic modeling (Latent Dirichlet Allocation (LDA))
approaches to effectively model the nursing notes. Their work em-
ployed a wide range of deep neural models for the task of ICD-9
code group prediction, and benchmarked their promising perfor-
mance against state-of-the-art methods.

In this work, we present the Enhanced TAGS (EnTAGS) strategy,
aimed at advancing the research problems addressed in the existing
works, through the aggregation of nursing note data by indepen-
dently modeling the individual clinical notes. We propose that our
designed EnTAGS data modeling approach is aimed at modeling
each record independently, while aggregating the diagnostic code
groups observed across all the clinical notes corresponding to a
patient. We employ Non-negative Matrix Factorization (NMF) to
obtain optimized patient representations from the aggregated in-
formation, upon which the deep prediction models are built. We
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experiment and benchmark the applicability of deep learning mod-
els in both vanilla and hybrid versions, for the clinical task of ICD-9
code group prediction. Furthermore, to enable exhaustive compar-
ison, we employ a prolific baseline approach derived from [14],
that adopts a naive strategy of aggregating all the nursing notes of
a patient by their identification numbers. We juxtapose the find-
ings of our work with both the state-of-the-art TAGS model [14]
and the employed baseline approach, to corroborate the efficacy
and reliability (measured using standard evaluation metrics) of the
proposed strategy and models in automated diagnostic coding of
clinical notes. The rest of the paper is organized as follows: the
proposed methodology is discussed in detail, in Section 2. The ex-
periments conducted and the observations derived in comparison
to the state-of-the-art methods are delivered in Section 3, followed
by concluding remarks in Section 4.

2 PROPOSED METHODOLOGY
Figure 1 depicts the pipeline designed to facilitate ICD-9 code group
prediction from clinical nursing notes using the proposed EnTAGS
approach. In the following subsections, we elucidate on the stages in
the pipeline proposed to facilitate diagnostic code group prediction.
For experimental validation and benchmarking of the proposed
strategy, we utilized the MIMIC-III database [23], made available by
the Massachusetts Institute of Technology Lab for Computational
Physiology, which comprises of diverse health data of more than
40, 000 Intensive Care Unit (ICU) patients.

2.1 Patient Cohort Selection
The MIMIC-III relational database is a freely accessible large critical
care database that consists of tables corresponding to deidentified
healthcare data associated with over 40, 000 ICU patients. In the
database, there are 2, 083, 180 note events (noteevents table), from
which 223, 556 are nursing notes corresponding to 7, 704 distinct
ICU patients, whose diagnostic codes are recorded in the diag-
noses_icd table. The statistics of the nursing note text corpus uti-
lized in this work are summarized in Table 1. In this study, we
consider two preliminary criteria aimed at selecting potential sub-
jects from the MIMIC-III database. First, all the records of patients
with age below 15 (extracted using the patients and admissions
tables) are discarded from the study. Second, in order to facilitate
disease prediction with the earliest recorded symptoms, only the
nursing notes corresponding to the first admission of a patient to a
hospital were considered. These two criteria were defined in-line
with the conditions considered in the existing benchmarking mod-
els [14, 15, 22, 25, 35]. The dataset obtained after cohort selection

Table 1: Statistics of the nursing note corpus of MIMIC-III.

Parameter Total

Clinical nursing notes 223, 556
Sentences in the clinical nursing notes 5, 244, 541
Words in the clinical nursing notes 79, 988, 065
Unique words in the clinical nursing notes 715, 821

MIMIC-III 
database

Cohort selection 
of nursing notes

Data cleaning

Data aggregation
(EnTAGS)

Modeling NMF 
topics

CNN LSTM CNN?LSTM GRU

ICD-9 code group 
prediction

Bag of 
words

Term 
weighting

Figure 1: The proposed workflow employed in facilitating
ICD-9 code group prediction from clinical nursing notes.

consisted of nursing notes corresponding to 7, 638 patients, with a
median age of 66 years.

2.2 Data Cleaning and Aggregation
Following the patient cohort selection, we cleaned the obtained
dataset by removing faulty entries introduced due to a variety of
factors such as inconsistency, incorrect mapping of diagnostic codes,
duplicate entries, and others. First, all the entries with a value ‘1’ set
for the iserror attribute (signifies a faulty record) were identified are
removed. Next, all the duplicate patient records were discarded. Post
this processing, the resulting dataset comprised of nursing notes
corresponding to 6, 532 patients. To obtain a canonical form, the
raw clinical text in the nursing notes was cleaned and normalized
by removing symbols and special characters, and trimming extra
spaces between the words (tokens). File references to images (e.g.,
CT_Scan.jpg) present in the nursing notes were removed, and case
folding was performed. In our study, we aim at building a robust
classifier to tackle the inconsistency in the nursing text (e.g., pat,
pt, and patient), and tokens of all sizes were retained to represent
important patient information such asmg,CT, and others. Following
this, to convert the tokens into their base forms, we performed
stemming and lemmatization. Additionally, we performed stopword
removal to eliminate high-frequency general words such as while,
were, being, and others, using the NLTK stopword corpus [8].
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Table 2: Comparison of the baseline (with TW−NMF) model
against Doc2Vec and LDA approaches employed in the state-
of-the-art work [14].

Metric
Baseline with
TW−NMF

Doc2Vec from
[14]

LDA from
[14]

ACC 0.8065 ± 0.0033 0.8005 ± 0.0017 0.8034 ± 0.0016
AUPRC 0.6231 ± 0.0073 0.6076 ± 0.0033 0.6181 ± 0.0011
AUROC 0.7707 ± 0.0050 0.7600 ± 0.0010 0.7649 ± 0.0011
CE 18.5063 ± 0.1488 18.6485 ± 0.0539 18.6243 ± 0.0679
F1 0.6739 ± 0.0075 0.6655 ± 0.0022 0.6643 ± 0.0013
LRL 0.4244 ± 0.0095 0.4388 ± 0.0019 0.4361 ± 0.0018
MCC 0.5616 ± 0.0083 0.5386 ± 0.0032 0.5542 ± 0.0022

In this study, we adopted a strategy of aggregating voluminous
clinical data that diverges from that employed in the state-of-the-art
models. Unlike in TAGS [14] and the other benchmark methods
[25, 35], we do not aggregate multiple nursing notes of a patient,
recorded across several monitoring episodes of an admission. We
consider each record independent of the other, while merging the
diagnostic code groups across all the nursing notes maintained
for that patient. Such a choice of not independently modeling the
diagnostic code groups corresponding to nursing notes was made
to handle the large number of near-duplicate clinical notes (notes
with little variation in the text but corresponding to the same tran-
scription) that were mapped to different diagnostic code groups.
This approach of independently modeling the nursing notes of the
patients is termed as EnTAGS. Thus, employing EnTAGS would
effectively handle near-duplicate clinical notes, in turn aiding the
predictability of the underlying models. Despite the vitality of En-
TAGS in enhancing clinical decision-making, the consideration
of each patient record mapping to all the corresponding diseases
has a major shortcoming of causing false alarms in the prediction.
However, we still explore EnTAGS as a potential alternative to the
existing modeling strategies because: 1) independent modeling of
patients’ nursing notes considerably reduces false negatives and 2)
such aggregation is suitable in scenarios where failing to predict
an existing disease has much more severe consequences than in-
accurately predicting a disease that may not be present, but has a
significant possibility of occurring in the future.

Furthermore, utilizing the proposed EnTAGS facilitates the un-
derlying deep neural classifiers to learn to classify each nursing
note with respect to the given diagnostic code labels, while the
state-of-the-art methods [14, 35] aggregate all the nursing notes
recorded for a patient (to facilitate prediction), and they do not
employ any specific backtracking mechanisms to focus on which
specific portions of the aggregated nursing note maps to which
possible diagnostic code group. Hence, the models trained using
naively aggregated patient data learn predictions over the entire
aggregations rather than individual nursing notes. In contrast, the
proposed EnTAGS strategy facilitates the mapping of the individual
nursing note to all possible disease labels. We argue that such inde-
pendent modeling can better map similar (as those observed while
training) individual nursing notes at prediction time to accurate

disease labels. For instance, consider the data of a patient with
four in-patient evaluations, corresponding to four distinct nursing
notes. Now, suppose that only the first nursing note is employed in
diagnostic code group prediction, the EnTAGS approach would be
able to capture the episode-specific characteristics in this nursing
note, better than the methods that are trained on aggregated nurs-
ing notes. Additionally, since the ICD-9 code groups across all the
nursing notes of a patient are merged, the underlying model would
be able to predict the diseases corresponding to the first episode, as
well as those observed in the later episodes (corresponding to sec-
ond, third, and fourth clinical notes)—since the model would have
been trained to predict all the disease labels in an admission, for a
given nursing note. Additionally, in hospitals, the EnTAGS strategy
could be potentially employed as a forecasting tool intended on
predicting hospital readmission, since it can aid the deep classifier
in learning to predict all the possible diagnostic code groups for a
given nursing note. Finally, the proposed EnTAGS approach utilizes
one-hot representations of the diagnostic code groups, which can
be extended to include fuzzification of diagnostic code groups, with
higher importance (weighting scheme) for the current diagnostic
code groups and reducing importance for present and past dis-
ease code groups, based on suitable distributions of the underlying
patient data.

2.3 Feature Modeling of Nursing Notes
Each nursing note in the preprocessed corpus consists of a varying
number of tokens, and to handle the complexity, high-dimensionality,
and sparsity of the data, these free-text nursing notes have to be
transformed into a machine-processable form. Traditional methods
such as Bag-of-Words (BoW) and Term Weighting (TW) present
the statistical distributions of the underlying corpus, and therefore
suffer from high-dimensionality and sparsity—they also neglect
the crucial semantic information in the clinical notes. Thus, it is
necessary to utilize optimal patient representations that capture
the semantic information in the clinical text, while overcoming
the problems of high-dimensionality and sparsity, to realise the
capabilities of deep neural learning for effective prediction.

In our work, we utilize NMF [28], a topic modeling approach,
for modeling and deriving clinical concepts from the nursing notes.
NMF is a group of algorithms utilized in multivariate analysis and

ACC AUPRC AUROC F1 MCC LRL
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Figure 2: Comparison of the baseline approach (modeled us-
ing NMF) with the models in the state-of-the-art work [14].
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linear algebra, where a matrix S is factorized into two matrices
W and H, such that all the three matrices contain non-negative
elements. NMF is utilized in a variety of applications in signal
and data analytics [2, 11, 19, 20, 28, 32, 33], one of which involves
modeling of topics from free-text. Given a BoW or TW matrix of
the nursing notes, say S, with dimensions N ×W , where N is
the number of nursing notes andW is the vocabulary size of the
underlying corpus, NMF decomposes S into two matrices:A andB
with dimensionsN×T andT×W respectively. Here,T is the number
of topics, which was heuristically determined to be 100, and is used
throughout this study. To summarize, the NMF decomposition of a
BoW or TW matrix would yield components that are considered
as the “clinical concepts” extracted from the notes, which then
facilitate the decomposition of nursing notes into a weighted sum
of topics. In this study, we utilized the implementations in the
Python Gensim package [37, 38]. NMF can be applied on the BoW
or TW statistical modeling of the corpus, and in this study, we
experiment with both these distributions.

Following a detailed comparison of the baseline model built on
NMF with other vector space and topic modeling techniques bench-
marked by [14] (observe from Table 2 and Figure 2 that the baseline
modeled using NMF outperforms other modeling strategies), NMF
was chosen to model the topics in the nursing notes. Since our ulti-
mate goal is to develop time-aware intelligent prediction systems,
it is important to remark that a direct comparison of the baseline
with the TAGS model [14] is irrelevant, as the TAGS approach mod-
els each nursing note using 14, 650 dimensions, while the baseline
model facilitates 100-dimensional embeddings (99.32% lower). The
TAGS strategy considers every word in the vocabulary, while our
models built on NMF utilize the clinical information of a nursing
note condensed into a 100-dimensional vector. Additionally, the
time taken to train the deep neural models on TAGS-aggregated
information would be much higher than that with our proposed
strategy. However, since EnTAGS considers each nursing note in-
dependent of the other, the number of nursing notes input for
feature modeling and training is much higher than that with TAGS.
It can be inferred that the training of large amounts of nursing
notes with each note embedded as a 14, 650-dimensional vector is
computationally expensive and impractical both in terms of mem-
ory requirements and the time required for feature modeling and
training. Therefore, the TW modeling approach employed in TAGS
method cannot be replicated with the proposed EnTAGS strategy.
Potential alternatives to embed the free-text include Doc2Vec and
LDA methods experimented in [14], as their dimensions (500 and
100 respectively) and training times are comparable. We observed
that the NMF topic modeling outperformed the Doc2Vec and LDA
models of the state-of-the-art by 0.75% and 0.39% respectively (in
terms of Accuracy (ACC)), and hence we chose NMF to model the
features of the EnTAGS-aggregated patient information, instead of
Doc2Vec or LDA.

2.4 ICD-9 Code Group Prediction
ICD-9 codes are a taxonomy of diagnostic codes employed in the
classification of diseases, based on a large number of symptoms, dis-
orders, infections, and others. ICD medical ontology is widely used
by the healthcare professionals. Every health condition is mapped
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(a) CNN.
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(b) LSTM.

Figure 3: A schematic overview of the vanilla neural archi-
tectures employed in this study.

to a unique diagnostic code, and thus the number of such diagnostic
codes is very large in number. Consequently, assigning ICD-9 codes
to patient records is a tedious task, and previous research works
have underscored the importance of automated prediction models
for ICD-9 code group prediction, in place of individual ICD-9 code
prediction [14, 26]. Since accurate ICD-9 code group prediction
can improve the predictability of the corresponding ICD-9 codes
by narrowing down the co-domain of the classification mapping,
diagnostic code group prediction serves as a preliminary step to
ICD-9 code prediction. Therefore, there has been a significant inter-
est in developing automatic code group assignment models, and it
has remained a long-standing research challenge [7, 12, 14–16, 35].
Each code group1 consists of a number of similar diseases. In our
work, we aim at predicting the ICD-9 code groups as a multi-label
classification problem, where each record in the modeled nursing
note corpus is mapped to one or more code groups. The supple-
mental V codes and reference codes are classified into the same code
group, so as to reduce the computational complexity of training
resulting from the large presence of these codes in the dataset. In
total, there are 20 distinct ICD-9 code groups, making the problem
a 20-class, multi-label classification problem.

We employed four different deep learning architectures to facil-
itate the ICD-9 code group prediction task. These neural models
include two vanilla and two hybrid versions: CNN, LSTM, cascaded
CNN−LSTM, and partitioned GRU. The implementations in the
Python Keras package with Tensorflow backend [1] were used in
1The code ranges used for mapping can be accessed online at: http://tdrdata.com/ipd/
ipd_SearchForICD9CodesAndDescriptions.aspx.
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(b) Partitioned GRU (two segments).

Figure 4: A schematic overview of the hybrid neural architectures employed in this study.

this study. All the deep neural architectures aimed at minimizing
a binary cross-entropy loss function. Additionally, we utilized the
Adam optimizer to train the neural models. Batch size was set
to 128 for all the models, and the vanilla versions and cascaded
CNN−LSTM were trained for eight epochs, while the partitioned
GRU model was trained for 27 epochs. To obtain the optimal set of
hyperparameters, we employed grid search.

2.4.1 Convolutional Neural Network. CNNs are deep feed-forward
neural networks which reduce processing (while training) through
parameter sharing—such sharing drastically reduces the number
of hyperparameters to be learned and optimized by the network.
CNNs can capture the local information (in the form of features) in
the nursing notes effectively through the use of a number of filters.
In our work, we employed a vanilla CNN model that comprises
one dense layer of 289 nodes with ReLU activation function, one
convolutional layer with a convolution window size of 3 × 3 and
a feature map size of 20. The final output from the convolution
layer is subjected to a sigmoid activation that yields the multi-label
prediction. The vanilla CNN architecture employed in this study is
presented in Figure 3a.

2.4.2 Long Short Term Memory. LSTMs are a special type of re-
current neural networks that solve the vanishing gradient problem
typically observed in the traditional recurrent networks. They cap-
ture long-term dependencies very effectively, which plays a crucial
role in ICD-9 code group prediction. Each nursing note is a con-
tinuous piece of text, and since LSTMs treat the nursing note as a
time sequence, they can effectively capture dependencies between
various parts of the nursing note and map them to the correspond-
ing ICD-9 code groups. In our work, the utilized LSTM architecture
involved a dense layer of 289 nodes with ReLU activation function.
We then reshaped the obtained 289 features into 17 time-steps with

17 features each, which was then passed on as the input to an LSTM
layer with 300 recurrent units. The final output obtained from the
LSTM cell was subject to a sigmoid activation, thus yielding the
multi-label prediction. The LSTM model architecture utilized in
this work is depicted in Figure 3b.

2.4.3 Cascaded CNN−LSTM. CNNs capture local dependencies in
the nursing notes effectively, while LSTMs are efficient in handling
long-term dependencies. Therefore, a cascaded CNN−LSTM hybrid
neural architecture would be able to capture both these types of
interactions in an effective manner. The cascaded CNN−LSTM
model architecture employed in our work is shown using Figure 4a.
In the neural model, we employed a dense layer of 289 nodes with
ReLU activation function, followed by a convolution layer with
3 × 3 convolution window size and 20 feature map size. The final
convolved output was flattened, and the obtained output was passed
onto a dense layer of 289 nodes with ReLU activation function. The
resulting 289 features were reshaped into 17 time-steps with 17
features in each time-step, which was then fed as the input to an
LSTM layer with 300 recurrent units. The resulting output from
the LSTM cell was then subject to a sigmoid activation, to facilitate
the multi-label prediction.

2.4.4 Partitioned Gated Recurrent Unit. GRUs are an alternative
to LSTMs, with slight changes in their implementation. Similar to
LSTMs, GRUs also capture long-term dependencies effectively. In
this study, with GRUs, we employ a deeper neural architecture than
that in the previously presented neural architectures, termed as
the “partitioned GRU” neural model. First, we segment the input
into 20 distinct non-overlapping partitions. Each input partition
is then subject to a dense layer with nodes as many as half the
number of records in the partition, which is then followed by a
dropout of 0.1 and a dense layer of 20 nodes, again followed by
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Table 3: The benchmarking results of the proposed EnTAGS approach using four deep neural architectures.

Classifier ACC AUPRC AUROC CE F1 LRL MCC

Bo
W
−
N
M
F CNN 0.7965 ± 0.0007 0.6688 ± 0.0018 0.7860 ± 0.0020 18.5327 ± 0.1412 0.7187 ± 0.0041 0.3898 ± 0.0045 0.5750 ± 0.0013

LSTM 0.7921 ± 0.0005 0.6638 ± 0.0018 0.7794 ± 0.0017 18.6699 ± 0.0822 0.7093 ± 0.0030 0.4024 ± 0.0040 0.5652 ± 0.0016
CNN−LSTM 0.8048 ± 0.0021 0.6806 ± 0.0031 0.7911 ± 0.0024 18.3760 ± 0.0919 0.7240 ± 0.0034 0.3825 ± 0.0046 0.5897 ± 0.0042
GRU 0.7945 ± 0.0063 0.6698 ± 0.0057 0.7772 ± 0.0080 18.9530 ± 0.3058 0.7039 ± 0.0114 0.4081 ± 0.0143 0.5666 ± 0.0137

TW
−
N
M
F CNN 0.8174 ± 0.0006 0.6948 ± 0.0014 0.8091 ± 0.0014 17.9663 ± 0.0562 0.7489 ± 0.0016 0.3499 ± 0.0032 0.6181 ± 0.0008

LSTM 0.8129 ± 0.0015 0.6908 ± 0.0024 0.7992 ± 0.0012 18.2588 ± 0.0398 0.7347 ± 0.0020 0.3694 ± 0.0021 0.6062 ± 0.0028
CNN−LSTM 0.8282 ± 0.0023 0.7089 ± 0.0046 0.8157 ± 0.0019 17.6853 ± 0.0566 0.7562 ± 0.0021 0.3392 ± 0.0036 0.6368 ± 0.0042
GRU 0.82486 ± 0.0021 0.7089 ± 0.0019 0.8073 ± 0.0040 18.3412 ± 0.2126 0.7434 ± 0.0057 0.3569 ± 0.0079 0.6273 ± 0.0050

a dropout of 0.1. The resulting 20 outputs corresponding to the
20 partitions are then concatenated and flattened, thus obtaining
a 400-dimensional vector corresponding to a nursing note. The
intuition behind such partitioning is to capture local interactions in
various segments of the nursing notes. The obtained 400 features
are reshaped into 20 time-steps with 20 features each, which is
then fed as the input to a GRU layer with 400 recurrent units. The
output from the GRU layer is flattened, which is then followed by
four dense layers of 200, 100, 50, and 20 nodes respectively—we
employed a dropout of 0.1 after each dense layer, except after the
final dense layer (of 20 nodes). After the final dense layer, batch
normalization was applied. The purpose of having dropout and
batch normalization was to avoid overfitting on the training data,
and to normalize the mean and standard deviation of the neural
network weights while training such a deep model. Each one of the
dense layers in the entire partitioned GRU network was followed
by the ReLU activation function, and the final output was subject
to a sigmoid activation, thus yielding the multi-label prediction. A
sample architecture with two partitions (rather than 20 partitions
as employed in our work) is shown in Figure 4b.

3 RESULTS AND DISCUSSION
For the experimental validation of the proposed models and the
strategy employed in this study, we utilized a high-end server run-
ning Ubuntu OS with 56 cores of Intel Xeon processors, 128 GB
RAM, 3 TB hard drive, and two NVIDIA Tesla M40 GPUs. Moreover,
to facilitate the benchmarking of the proposed strategy and models
against the state-of-the-art work [14], we employed seven stan-
dard evaluation metrics: accuracy, Area Under the Precision-Recall
Curve (AUPRC), Area Under the ROC Curve (AUROC), Coverage
Error (CE), F1 score, Label Ranking Loss (LRL), andMatthews Corre-
lation Coefficient (MCC) score—the choice of these seven evaluation
metrics was in accordance with those employed in the state-of-the-
art work [14]. Apart from accuracy, evaluation metrics including
AUPRC and MCC score play a pivotal role in the accurate assess-
ment of the reliability of the proposed prediction systems, owing to
the fact that the underlying patient data is class imbalanced. From
the obtained results, we observe that the performance obtained
from EnTAGS-aggregated, TW−NMF-modeled patient information,
classified using the cascaded CNN−LSTM deep neural model, out-
performs all the other modeling strategies with respect to each of
the seven evaluation metrics. In this study, we report promising

results of our proposed EnTAGS modeling strategy, with an accu-
racy of 82.82%, AUPRC of 70.89%, and MCC score of 63.68%. This
performance obtained as a result of EnTAGS aggregation and NMF
modeling reflect the fact that the underlying deep neural networks
are able to learn optimal representations over individual nursing
notes in an effective way and are able to leverage those representa-
tions to facilitate efficient predictions of ICD-9 code groups. Table 3
tabulates the results of the proposed EnTAGS modeling approach,
classified using the proposed (four) deep neural classifiers on the
clinical nursing notes modeled using NMF built on BoW and TW
statistical representations of the underlying data.

It is interesting to note from Table 3 that, despite the use of
NMF-modeled (permutation invariant) data with deep neural classi-
fiers (CNNs and recurrent networks) that exploit the local structure
and dependencies in the data, we observe improved performance
across all the evaluation metrics. Such boosted performance can be
attributed to the fact that NMF facilitates disentanglement of the
hidden structure of the underlying data by learning features that
exhibit sparse part-based representations of the data (decompos-
ing data into parts). Additionally, since NMF forces the encoding
of the data to be non-negative, the sparse part-based representa-
tions are indeed additive representations of data, which can be
exploited to improve the performance neural network. Further-
more, non-negative decomposition of voluminous free-text BoW or
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Figure 5: Comparison of the best performing neural model
(CNN−LSTM on EnTAGS-aggregated NMF-modeled patient
data) with the state-of-the-art TAGS model [14].
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Table 4: Comparison of the best performing model (CNN−LSTM on EnTAGS with TW−NMF) with the state-of-the-art TAGS
model [14] and the best performing baseline (CNN on NMF) model.

Evaluation
metric

EnTAGS with
TW−NMF TAGS [14] Baseline with

TW−NMF
EnTAGS Improvement
TAGS [14] Baseline

ACC 0.8282 ± 0.0023 0.8130 ± 0.0005 0.8065 ± 0.0033 1.87% 2.70%
AUPRC 0.7089 ± 0.0046 0.6291 ± 0.0027 0.6231 ± 0.0073 12.68% 13.77%
AUROC 0.8157 ± 0.0019 0.7817 ± 0.0023 0.7707 ± 0.0050 4.35% 5.84%
CE 17.6853 ± 0.0566 18.1300 ± 0.1088 18.5063 ± 0.1488 2.45% 4.44%
F1 0.7562 ± 0.0021 0.6803 ± 0.0024 0.6739 ± 0.0075 11.16% 12.21%
LRL 0.3392 ± 0.0036 0.4124 ± 0.0047 0.4244 ± 0.0095 17.75% 20.08%
MCC 0.6368 ± 0.0042 0.5704 ± 0.0020 0.5616 ± 0.0083 11.64% 13.40%

TW representations can provide flexible and interpretable features
that can facilitate classification. It is important to understand that
patient information captured in nursing notes is often heteroge-
neous in nature, obtained from multiple sources containing a wide
variety of distinctive qualities. Hence, it is by identifying the oc-
currences of such distinctive qualities that a neural network can
facilitate accurate prediction of the associated code groups. The
usefulness of NMF in addressing the difficulties of the code group
prediction task has been confirmed, as it outperforms the model-
ing approaches resulting from state-of-the-art embedding systems
(see Figure 2). Moreover, owing to the high-dimensionality of the
nursing note data, it is easier to train efficient neural models from
NMF representations than from raw text. Therefore, we argue that
feature learning through NMF modeling is particularity well-suited
to train deep neural models, as such techniques have the advantage
of adapting to the underlying data and the task at hand.

To enable exhaustive comparison, we juxtapose the results ob-
tained using our models and strategy against those employed in
the state-of-the-art work (TAGS model) [14]. The benchmarking of
the proposed EnTAGS strategy with TAGS and the baseline model
is shown in Table 4 and Figure 5. As can be seen from the tabulated
results, the proposed EnTAGS model outperforms TAGS and the
baseline with respect to all the evaluation metrics. We observed
an improvement of 12.68% (11.64%) in AUPRC (MCC) over the
TAGS model and 13.77% (13.40%) in AUPRC (MCC) over the base-
line model. The percentage improvement of the proposed strategy
over TAGS and baseline models across other evaluation metrics is
tabulated in Table 4. Figure 5 presents a graphical representation
corroborating the superior performance of the proposed EnTAGS
approach against the state-of-the-art method2.

4 SUMMARY
The clinical task of diagnostic code group prediction is an active
research area, and utilizing clinical nursing notes presents an un-
precedented opportunity to facilitate the task as a multi-label clas-
sification problem. In this study, an efficient data aggregation strat-
egy, EnTAGS, which extends the efforts of the state-of-the-art was
presented. The proposed EnTAGS aggregation strategy aimed at
2Due to scale variations of CE compared to other metrics, we have not graphed CE in
Figure 5; however, the results concerning CE are shown in the Tables 3 and 4.

modeling the nursing notes of a patient independent of one another,
while aggregating the diagnostic code groups recorded across all
the notes of that patient. Moreover, we utilized NMF-based feature
modeling (with BoW and TW distributions), which was aimed at
capturing the semantic information present in the clinical nursing
notes of the patient. We analyzed that feature learning through
NMF is particularity well-suited for code group prediction, owing to
the heterogeneity of the patient data and the ability of NMF to adapt
to such data and the task at hand. We utilized EnTAGS-aggregated,
NMF-modeled representations of the patient data to train four deep
neural architectures, CNN, LSTM, cascaded CNN−LSTM, and par-
titioned GRU, for the task of ICD-9 code group prediction as a
multi-label classification problem. From our experimental valida-
tion, we observed that the NMF topic modeling on the TW statistical
representation of the nursing notes, when trained using the cas-
caded CNN−LSTM classifier, resulted in superior performance in
comparison to other modeling strategies—we obtained promising
results of 82.82% in accuracy, 70.89% in AUPRC, and 63.68% in
MCC score; and outperformed the state-of-the-art model by 1.87%
in accuracy, 12.68% in AUPRC, and 11.64% in MCC score.

In the current study, ICD-9 code groups of a patient are encoded
as one-hot representations. As a part of the future work, we aim at
focusing on extending the proposed EnTAGS strategy to account
for some sense of fuzzy learning and disease predictability, through
fuzzification of diagnostic code groups, with higher importance
(weighting scheme) for the current diagnostic code groups (cor-
responding to the latest patient record) and reducing importance
(non-zero varying weights) for present and past disease code groups
(corresponding to the earlier or later records of the patient), based
on suitable distributions of the underlying patient data. We also
indent on extending the strategy and models presented in this study
to other clinical prediction tasks such as length-of-stay prediction,
hospital readmission prediction, (in- and out-patient) mortality
prediction, phenotyping, and diagnostic code prediction.
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