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ABSTRACT

We propose an algorithm to track moving cells and microbes
in a video. A major challenge in tracking living cells is that
their movement is often nonlinear which causes problems
in case of approaches using the generic particle filter (GPF)
framework. In order to overcome this problem, we propose
the use of an auxiliary particle filtering (APF) algorithm with
dynamic variance adaptation of the posterior distribution to
account for nonlinear movements. The object of interest
in each frame is segmented using level sets. The proposed
tracking algorithm is tested on real data and the tracking
performance is compared with that of GPF and APF without
dynamic variance adaptation. Experimental results show that
the proposed algorithm tracks more accurately compared to
GPF and APF without variance adaption, with lesser number
of particles, thereby reducing the running time.

Index Terms— Particle filter, level sets, dynamic pro-
posal variance, Markov-Chain Monte-Carlo.

1. INTRODUCTION

Tracking of biological cells and microbes have found appli-
cations in several areas such as cell signalling and regulation,
observation of microbes, study of cell motility [1], etc. Ma-
jor challenges in cell tracking are the deforming cell shape
and nonlinear movements. While the problem of cell shape
deformation has been addressed in algorithms that employ
generic particle filters by using level sets [2]-[4], the nonlin-
ear cell movement still remains a challenge. We address the
problem of tracking cells which exhibit nonlinear movements.

One of the important reasons for the limited performance
in practice is that the posterior distribution does not give a
good estimate of the next state. To overcome the problem,
we have to refine the posterior distribution from the knowl-
edge of the observation of the next state [5]. Considering this
factor, auxiliary particle filter (APF) avoids particles from be-
ing moved to low likelihood regions. Thus, the proposed al-
gorithm works well for uneven movements of cells and mi-
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crobes. The user has to initialize a rectangular contour in the
first frame. Thereafter, particle filter predicts the initial rect-
angular contour required to segment the image in each frame.
Images are segmented using distance regularized level sets
[6]. Variance of the particles is a key parameter that we have
relied on in the paper. Variance of particles is varied dynami-
cally based on the kinematics of the object and the error in the
prediction of the next state. Consequently, the system gives
a good prediction of the next state with lesser number of par-
ticles as compared to generic particle filters (GPF) and APF.
Since the proposed method can track sudden movement, one
can drop few frames from processing, thus bringing down the
overall computation time of the system. In [4], particle filters
(PF) estimate the affine parameters of the contour of the ob-
ject. In contrast, particles are spread over the entire object in
our approach. The dimensions of the object is also considered
as a parameter to decide the variance of the distribution. Thus,
the particle spreads according to the deformations. Hence, the
present framework accounts well for deformations, without
any affine transformation of the contour.

2. PARTICLE FILTER

PF is defined by a state model and an observation model. In
the present context, the state model characterizes the kine-
matics of the object. A sequence of images is taken to be the
observation. The PF estimates the state s, of a system at
time ¢ 4+ 1 based on the observations made at time ¢. The fil-
ter propagates the observations at time ¢ as hypothesis at time
t + 1 using a state transition function.

St+1 Qjf(St-|r1/é>’t)7 (D

where s; represents the state at time ¢ and f(s:41/5¢) is the
state transition function which models the transition of the
system from time ¢ to time ¢ + 1. Based on this hypothe-
sis, partial observations are made according to the observation
model. The system is updated using Bayes rule as

(St /Yer1) X D(Yea1/8e41)P(Se11/Yt), ()

where y; is the observation made at time ¢ and p(s;/y:) is
the likelihood function at time ¢. The proportionality constant
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is the normalization constant of the probability density func-
tion (pdf). These two processes are carried out recursively.
Monte-Carlo representation estimates the likelihood function.
The samples of the likelihood function are referred to as parti-
cles and their associated likelihood as weights. The sequence
of states is assumed to be a Markov process. Thus, the PF is
popularly referred to as Markov-chain Monte-Carlo filter. A
frequent problem encountered in PF is the degeneracy phe-
nomenon, wherein all except few particles have negligible
weights. The effect of degeneracy can be reduced by resam-
pling [7]. Resampling eliminates the particles that have negli-
gible weights and duplicates the particles with large weights,
thereby generating a new set of particles. Many variants of
PF have been discussed in [7] and [8]. The basic framework
of the APF suggested in [7] and [9] is amalgamated with im-
provements suggested to GPF in [10]. This idea is further
extended in APF, as discussed in Section 4.

3. AUXILIARY PARTICLE FILTERS

APF is used to track an object in a video, which is a time
series of images. The coordinates of particles at an instant of
time ¢ is represented as z,f”, i ranging from 1 to N, N being

the total number of particles. The corresponding weights of
these particles is represented as wt(z). Let the centroid of the
contour given by level sets be (x.,y.). Let Az, and Ay,
be the displacement of the centroid from time ¢ — 1 to time
t along x and y directions respectively. The energy function
defined for an image in [6] to obtain the contour, is considered
as the likelihood function to update the weights of particles.
The algorithm is as follows:

A rectangular contour initialization is given by the user for
the level sets to segment the image. Draw N samples from
the image energy g(y) given by the level sets. The value of
the image energy evaluated at these pixels are normalized to

construct a pdf, that gives the weights wEQO.

3.1. State model

Particles are propagated from time 7 to time ¢ + 1 as
zt(fgl = zt(i) + v + mii), 3)

where v is the displacement of the centroid of the contour
from the state at ¢ — 1 to state at ¢, given by [Az., Ay,]. miz)
are the samples of a two-dimensional Gaussian distribution
with zero mean and 02, and J%y variances along x and y di-

rections respectively.

3.2. Intermediate Weights

Observe the state s; 1, and compute the intermediate weights
NSO
W(zp )y ) as

(=) o< glyrgr /20w, )

where g(yi41/ zﬁf@l) is the image energy evaluated at the pixel
coordinates predicted by the particles. The weights are nor-
malized appropriately.

3.3. Resampling

Having observed the state at ¢ + 1, retrace back to time ¢ and
resample =" using the intermediate weights to obtain 2").

This is a crucial step, since it selects proper parent particles.

3.4. Updating weights
Propagate the resampled parent particles as

2 () 5 (%)

Zt+1 = Zt + V¢ —+ nEZ) (5)

ni” are the samples of a two-dimensional Gaussian distri-
bution with zero mean and 03, and o3, variances along x
and y directions respectively. This perturbs the particle and
thus spreads the duplicated particles. Evaluate the likelihood
12)(2521) at the new pixel coordinates using g(y:+1/ 2&)1)
Update the weights as

@ _ D)
Wiy = ——5
w(zt-H)

(6)

Normalize these weights so as to construct a pdf. The state
model is updated and the algorithm is repeated recursively.

4. DYNAMIC PROPOSAL VARIANCE

In order to address the degeneracy problem discussed in Sec-
tion 2, we need to continuously adapt the variance of the par-
ticles. This is referred to as dynamic proposal variance and
was put forward in [10]. This idea is made use in the present
work to determine the variance of the proposal distribution as,

01, = V2cAz, and o7, = V2cAyL,. (7

The value of c as suggested in [10] ranges from 0.1-0.2. We
found that this suggested value worked well for our appli-
cation as well. This gives a better spread of particles when
the object is in motion and reduces the chances of tracking
failure. On similar lines, the variance of the Gaussian random
variable that perturbs the resampled particles is varied dynam-
ically based on the amount of degeneracy, which is a measure
of the spread of the resampled particles in (3.3). Variance
adaptation acts as a feedback for the particles based on their
accuracy of prediction. Degeneracy is quantified by consid-
ering the second-order statistics of the intermediate weights.
We make use of the parameter ]\76 ¢ as defined in [7] to quan-
tify the amount of degeneracy.

- 1

Nefs = ———7—=- (8)
e ()2
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We define a parameter J as

Negy
—

Value of g greater than a certain threshold signifies that a suf-
ficient number of particles estimated the next state appropri-
ately. Since this reflects good prediction, the variance of the
prediction noise is taken to be of small value. However, if
B falls below a threshold, it signifies that many particles col-
lapsed over few pixels on resampling, indicating a possible
error in prediction. Hence, a larger value of variance has to
be taken to perturb the particles. The variances o3, and 03,
are taken as

p= C))

O'SI = koxg and agy = koyq, (10)

where x4 and gy, are the horizontal and vertical dimensions
of the rectangle that fits the object contour. Constraining the
variance to be a function of object dimensions is advanta-
geous as the tracking process then adapts to object deforma-
tions over time. The following values of k; were empirically
determined after optimizing the value for best tracking per-
formance over a set of 18 videos.

0.05 if 3> 0.75,
ke =401 if0.5<=p8<=0.75, (11)
0.15 if 8 < 0.5.

A large deviation from the suggested values led the PF to di-
verge or collapse and lose track of the object.

5. EXPERIMENTAL RESULTS

In this section, we compare the tracking performance of GPF,
APF, and the proposed method. The algorithms are evaluated
in terms of average execution time per frame and the number
of particles needed to track accurately. All the videos have a
frame rate of 20 fps. The results pertain to a MATLAB im-
plementation of the code on a 2.5GHz Intel Core i5 processor.
Tracking results on various videos are illustrated using a se-
ries of images in Fig. 1. The tracking problem was considered
by processing alternate frames during which, GPF deviated at
certain points due to nonlinear motions. On the other hand,
APF worked well for these conditions, and could track with
lesser particles. With the inclusion of variance adaptation, the
particle requirement dropped further to the values given in Ta-
ble 1. Consequently, there was a reduction in the computation
time which is given in Table 2.

The image sequence of Colpidium in row 1 of Fig. 1 re-
flects that the present framework can work well with rota-
tions, although we have not considered an affine parameter
for the same. In row 2, we show the image sequence of a
tracked Phacus. Phacus tends to contract or elongate dur-
ing its locomotion. These deformations can be clearly per-
ceived in the figure. Robustness to the sudden movement can

be clearly observed in the plots of the centroid of the con-
tour in Fig. 2. At the points of abrupt motions, GPF and
APF gave a poor estimate of the centroid. However, our ap-
proach proved robust for the same. The plot labeled ‘ground
truth’” was obtained by manually initializing the contour for
level sets in each frame. Experimental results are available at
www.brthvnitk.wix.com/celltracking.

Object Resolution | GPF | APF Our
Tracked Approach
Euglena 85 x 65 75 60 40
Phacus 85 x 65 80 70 50
DNA 320 x 240 90 70 50
Granulocyte | 320 x 240 75 50 40
Leukocyte 320 x 240 90 60 50
DNA 320 x 240 110 80 60

Table 1. Number of particles for different approaches

Object Tracked | GPF | APF | Our Approach

Euglena 0.427 | 0.33 0.254
Phacus 0.419 | 0.325 0.283
DNA 3.821 | 3.365 2.897
Granulocyte 3.762 | 3.218 2.587
Leukocyte 3.189 | 2.767 2.171
DNA 3.373 | 2.869 2.262

Table 2. Computation time

6. CONCLUSIONS

We proposed an APF-based algorithm for tracking deform-
ing objects, and demonstrated its robustness to nonlinear cell
movements. The tracking performance of the proposed algo-
rithm was compared with that of GPF and APF. Apart from
the improved ability to track nonlinear movements of cells,
the proposed algorithm can operate accurately using lesser
number of particles and at lower frames rates making it com-
putationally faster than the GPF and basic APF framework.

As a part of future work, level sets could be replaced with
segmentation algorithms that incorporate shape priors. This
is of interest in cases when there are other objects in the close
vicinity of the object of interest.
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Fig. 2. Plots of y-coordinate of the tracked Phacus, Colpidium and DNA against the frame number. Red: ground truth, Green: GPF, Magenta:
APF, and Blue: Our approach. (color in electronic version).
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