
Effective Web Service Discovery Based on Functional

Semantics

Demian Antony D’Mello
1
 and V. S. Ananthanarayana

2

1
 Department of Computer Science & Engineering, St. Joseph Engineering College, Mangalore, INDIA – 575 028

2
 Department of Information Technology, National Institute of Technology Karnataka, Mangalore, INDIA – 575 025

1
 demian.antony@gmail.com

2
 anvs@nitk.ac.in

Abstract—Web service discovery is a mechanism which

facilitates an access to the Web service descriptions. UDDI

facilitates the discovery based on the service functionality through

keyword and category matching. Such discovery techniques do not

consider the semantics and user context as they are too syntactic in

nature. In this paper, we propose a well formed functional

semantics to describe an operation of a Web service. We design the

extendible functional knowledge to map the requested or published

operation descriptions into an abstract operation. The

experimentation shows that, the proposed functional semantics

based discovery mechanism has better performance in terms of

precision and recall.

I. INTRODUCTION

A Web service is an interface, which describes a collection

of operations that are network accessible through standardized

XML messaging [1]. Web service discovery is the mechanism

which facilitates the requester, to gain an access to Web

service descriptions that satisfy his functional requirements.

UDDI [2] is the early initiative towards discovery, which

facilitates both keyword and category based matching. The

main drawback of such mechanism is that, it is too syntactic

and does not represent user’s context and semantics. In

literature, many researchers have proposed different

mechanisms in order to search suitable Web services based on

the functional and non-functional behavior of Web services.

In this paper, we present the Web service discovery

mechanism, which explores more suitable Web services based

on well formed functional semantics of the Web service

operations.

The functional semantics based discovery mechanism

described in [3] provides a unified way to semantically

describe the functionality of Web service for the service

providers and customers. The methodology described in the

paper lacks effective (precise) discovery of Web services. The

major limitations are:

1. The functional semantic description uses only single

domain object instance. Thus the functional semantics

will not represent the usage context of both the request

and published operation in all scenarios. For example,

consider travel scenario. The operation with an action

“reserve” and an object “bus” is interpreted in two ways

(two usage contexts): (a) reserve the bus for one day

excursion. (b) Reserve bus for the travel from place x to y.

2. The functional semantics should support the use of

qualifiers for objects as the qualifiers provide more

information about the participating object of the service.

For example, the operation descriptions like “get prime

number’ includes the qualifier prime.

3. The functional description of an operation sometimes

contains the nouns (action nouns) with no explicit action

associated with the domain object(s).

In this paper, we find the solutions for the key issues with

respect to functional semantics based Web service discovery.

The key contributions of this paper are:

1. The design of domain independent, extendible functional

knowledge for the discovery process.

2. A well formed semantic rules to describe the functionality

of Web service operations.

3. Matching mechanism for the Web service discovery

based on the functional semantics.

The rest of the paper is organized as follows: In the next

section, we present the definitions involved in describing

functional semantics of Web service operations. Section 3

describes the functional knowledge structure to store the

abstract operation descriptions and Web service publishing. In

section 4, we discuss the experiment results. Section 6 draws

the conclusions.

II. FUNCTIONAL SEMANTICS FOR WEB SERVICE OPERATIONS

A Web service is a network accessible software interface

having collection of operations that aim at providing some

kind of value to the consumers of the Web service. Thus Web

service operation is nothing but the execution of appropriate

action on specific object to provide value to the requester. The

following definitions help to frame the functional semantics to

describe the Web service operations.

A. Functional Semantics Terminology

Definition 1. Generic Action is an action used to perform the

operation on an object or to get some kind of service in terms

of object. For example in travel scenario, “perform bus

booking” description involves the generic action “perform”

which is commonly used across multiple domains.

Definition 2. Specific Action is an action performed on an

object in a given domain to render service to the requester. For

example in travel scenario, the description “reserve train

ticket” involves the specific action “reserve” which is specific

to travel, entertainment and accommodation domains.

Definition 3. Domain Object is an object of specific domain

for which the required action is sought by the Web service

operation. For example bus, hotel, room, ticket, taxi, flight etc

are the objects found in travel and tourism domains.

We classify domain objects as major objects and sub-

objects based on the association among them. The major

objects are the entities (objects) that constitute the service

domain. For example taxi, hotel, train etc are a few major

2009 International Conference on Advances in Computing, Control, and Telecommunication Technologies

978-0-7695-3915-7/09 $26.00 © 2009 IEEE

DOI 10.1109/ACT.2009.11

1

Authorized licensed use limited to: NATIONAL INSTITUTE OF TECHNOLOGY SURATHKAL. Downloaded on February 26,2021 at 04:31:30 UTC from IEEE Xplore. Restrictions apply.

objects of the travel domain. The sub-objects are a part of

specific major object in some domain of interest. For example

ticket, room, seat etc. are a few sub-objects found in travel

domain as “seat” and “ticket” is a part of major object “train”.

Definition 4. Domain Noun is a noun which is specific to the

service domain. For example reservation, availability, vacancy

etc. are the domain nouns found in travel domain.

We classify domain nouns as action noun and simple noun

based on the action represented by the domain noun. An

action noun is a domain noun which has related specific action.

A simple noun doesn’t represent implicitly any specific or

generic action. For example in travel scenario, the noun

“reservation” is an action noun whereas the domain noun

“availability” is simple noun.

Definition 5. Qualifier is a word which adds the value to the

object or to the action noun. For example operation

description “find air distance” has a qualifier “air”. Similarly,

“get prime number” contains a qualifier “prime”.

Definition 6. Abstract Operation is an operation description

which is an equivalent form of multiple operation descriptions.

All operation descriptions are transformed into their

corresponding abstract operation(s) during Web service

advertisement for the effective discovery. The important

property of abstract operation description is that, it does not

allow generic action together with an action noun to be

present in its description.

B. Description of Abstract Web service Operations

The functional semantics approach uses the natural way of

expressing the functionality of Web service operations i.e.

operations are described in terms of actions, objects and nouns.

Both the provider and requester of Web service use restricted

natural form to express the Web service functionality i.e.

operation description. Thus functionality of an operation can

be described in the following three formats.

(i) OPDesc = {(Generic Action)(Qualifier)*(Domain

Object)
+
(Domain Noun)}

(ii) OPDesc = {(Specific Action)(Qualifier)*(Domain Object)
+
}

(iii) OPDesc = {(Qualifier)* (Domain Object)
+
 Action Noun}

Consider the travel scenario; the following operation

descriptions follow the rules of functional semantics.

(a) reserve train ticket (b) bus ticket booking

(c) check train availability (d) do flight ticket reservation

All operation descriptions are preprocessed before being

mapped into abstract operations. The following rules guide the

preprocessing of operation descriptions.

Rule 1: If the action noun is present along with the generic

action then the generic action is replaced by the specific action

which is related to the action noun and the action noun is

eliminated from the description.

Rule 2: If the action noun is found in the operation

description with no generic or specific action then the specific

action of the action noun is considered as action eliminating

the action noun.

As an illustration, consider the operation description as

“do train ticket booking”. The description contains generic

action and action noun. The generic action is now replaced by

“reserve” which is related specific action for action noun and

the action noun is removed from the description. This results

in a preprocessed operation description “book train ticket”

which is considered as an abstract operation.

III. FUNCTIONAL KNOWLEDGE STRUCTURE AND ABSTARCT

OPERATION MAPPING

To perform Web service discovery based on the functional

description of Web service operations, we design an

extendible functional knowledge which contains

interdependent knowledge structures to represent the complete

functional knowledge for all categories of Web services. The

interdependent knowledge structures are: Object List, Action

List, Qualifier List and Noun List.

1) Object List: Object list is a sorted list with finite elements

where each element contains four fields i.e. information items.

They are- object name, object identifier, object type and a

pointer to the sorted related object list having similar/related

names of a specific object. The object name refers to domain

object for which action is to be sought, object identifier is a

unique identification string and object type refers to either

major (M) or sub-object (S). The object list and related object

list can be implemented as dynamic array which are sorted

based on the object name.

2) Action List: Action list is a sorted list with finite elements

each containing three fields namely action name, action

identifier and a pointer to the sorted related action list

containing similar action words for a specific action. The

action list and related action list can be implemented as

dynamic arrays.

3) Qualifier List: Qualifier list is a sorted list with finite

elements each containing three fields namely qualifier name,

qualifier identifier and a pointer to the sorted related qualifier

list containing similar qualifier words for a specific qualifier.

The qualifier list and related qualifier list can be implemented

as dynamic arrays.

4) Noun List: Noun list is a sorted list with finite elements

each containing five fields namely noun name, noun identifier,

noun type, a pointer to its corresponding action (if any) and a

pointer to the sorted related noun list containing similar noun

words used to describe specific noun. The noun list and

related noun list can be implemented as dynamic arrays sorted

based on the noun name. The noun type refers to two noun

categories i.e. action noun (A) and simple noun (S).

Figure 1 depicts the partial functional knowledge structure

showing interdependent structures having knowledge about

different domains. The functional knowledge is augmented by

the providers in order to improve the hit rate of their

advertised services during the discovery to improve business.

To transform Web service operation description to its

abstract operation equivalent, a separate list is maintained

called Abstract Operation List (AOL). The structure of AOL is

defined below.

5) Abstract Operation List: The abstract operation list is a

sorted dynamic array with finite elements each representing a

abstract operation. The element contains operation identifier,

2

Authorized licensed use limited to: NATIONAL INSTITUTE OF TECHNOLOGY SURATHKAL. Downloaded on February 26,2021 at 04:31:30 UTC from IEEE Xplore. Restrictions apply.

operation pattern and Web service count; where operation

pattern is a string of finite length which contains fixed length

identifiers of objects, nouns, qualifiers and actions. The Web

service count refers to the number of Web services having an

operation which maps to the abstract operation. The operation

pattern is generated for each abstract operation defined in

AOL. Let M be the fixed length for identifiers of actions,

nouns, qualifiers and objects. The first M characters represent

the action identifier; next, the sets of M characters represent

the qualifier identifiers (optional), finally the sets of M

characters of operation pattern represent the domain object

identifiers followed by the noun identifier (optional).

Figure 1. Functional Knowledge Structure for Discovery

A. Web Service Description based on Functional Semantics

Let Profile(WS) be the profile of the Web service to be

published into UDDI registry. Profile(WS)={service-desc,

binding-desc} where, service-desc refers to service specific

descriptions like service name, business name, operation

descriptions etc and binding-desc refers to binding details like

URL for the access. service-desc = {service-name, business-

name, OPList} where, OPList is the list of operations and their

descriptions supported by the Web service. OPList = {opr1,

opr2…oprN} where, opri is the description of an operation. opri

= {opr-name, desc-list, info-list} where desc-list is the

functional semantics of operation description in the defined

format and info-list is optional additional information to

update the extendible functional knowledge. desc-list={action,

qualifier(s), object(s) noun} where qualifiers and noun are

optional. info-list = {action-set, qualifier-set, object-set, noun-

set} where, action-set contains similar action words, qualifier-

set contains similar qualifier names for a given qualifier and

object-set contains similar object names and noun-set contain

similar noun names.

IV. EXPERIMENTS AND RESULTS

We have conducted several experiments as a proof for the

functional semantics based matchmaking concept. We use a

collection of 19 Web services having total of 30 distinct

operations from XMethods [4] service portal

(http://www.xmethods.com) and divided them into THREE

categories (Email and IP Address related services, Zip code,

Phone and Address related services, Weather services). We

frame 33 service discovery requests based on their short

natural language descriptions from Web Service Definition

Language (WSDL) files (operation names). We compare the

performances of proposed mechanism with FunWSDS system

[3]. The recall of the proposed mechanism is high as

compared to FUNWSDS system. Both the mechanisms

exhibit 100% precision if the published and requested

operations are described with incorrect functional semantics.

Figure 2 show the average recall values for the experiments

conducted for three different service categories.

Figure 8. Performance Evaluation (Average Recall)

V. CONCLUSION

Web service discovery is an important activity which

explores functionally similar services for the given service

discovery request. In this paper, the authors propose a well

defined functional semantics to describe the Web service

operations for the publishing and discovery. The paper

designs an extendible functional knowledge structure for the

effective Web service discovery. Several experiments are

conducted for the Web service descriptions listed in

XMethods portal. The experimentation reveals that, the use of

functional semantics in Web service operation description will

improve the effectiveness (Recall and Precision) of Web

service discovery.

REFERENCES

[1] H. Kreger, “Web Services Conceptual Architecture (WSCA 1.0)”,

Published May 2001, [online] Available: www.ibm.com/software/

solutions/webservices/pdf/wsca.pdf, [visit: April 2007].

[2] Riegen, C.V. (Ed), 2002. UDDI Version 2.03 Data Structure Reference

[online]. OASIS Open 2002-2003. Available from:

http://uddi.org/pubs/DataStructure-V2.03-Published-20020719.htm

[Accessed 8 November 2007].

[3] Lei Ye, Bin Zhang, “Discovering Web Services Based on Functional

Semantics”, In Proceedings of the 2006 IEEE Asia-Pacific Conference

on Services Computing (APSCC'06), IEEE 2006.

[4] XMethods, [online] Available: http:\\www.xmethods.com, [visit:

February 2009].

3

Authorized licensed use limited to: NATIONAL INSTITUTE OF TECHNOLOGY SURATHKAL. Downloaded on February 26,2021 at 04:31:30 UTC from IEEE Xplore. Restrictions apply.

