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Abstract

Mining frequent rooted continuous directed (RCD) subgraphs is 
very useful in Web usage mining domain. We formulate the 
problem of mining RCD subgraphs in a database of rooted 
labeled continuous directed graphs. We propose a novel 
approach of merging like RCD subgraphs. This approach builds 
a Pattern Super Graph (PSG) structure .This PSG is a compact 
structure and ideal for extracting frequent patterns in the form 
of RCD subgraphs. The PSG based mine avoids costly, repeated 
database scans and there is no generation of candidates. Results 
obtained are appreciating the approach proposed. 

1. Introduction 

Frequent Structure Mining (FSM) refers to an important class of 
exploratory mining tasks, namely those dealing with extracting 
patterns in massive databases representing complex interactions 
between entities. FSM is not only encompasses mining 
techniques like associations [1] and sequences [2], but it also 
generalizes to more complex patterns like frequent trees and 
undirected graphs [3, 4]. Such patterns typically arise in 
applications like bioinformatics, web mining, and so on. As one 
increases the complexity of the structures to be discovered, one 
extracts more informative patterns. 

Consider the web usage mining (WUM) [5] problem. Given a 
database of web access logs at a popular site, one can perform 
several mining tasks. The simplest is to ignore all link 
information from the logs, and to mine only the frequent sets of 
pages accessed by users. The next step can be to form for each 
user the sequence of links they followed, and to mine the most 
frequent user access paths (set of pages and their order). It is 
possible to look at the entire forward accesses of a user, and to 
mine the most frequently accessed subtrees at that site [6].  
Web user’s behavior pertaining to a web log session is as shown 
in Figure 1 (b) and (c) is represented in graphs. Here each node 
represents web page and edge represents link between source 
page and destination page. Many of the web usage mining 
algorithms till now formulated log data in the form of trees by 
eliminating cycles in the graphs.  
 

 

But user sessions of the log data forms graph. For simplicity or 
in order to reduce the complexity of the structure they form 
trees from graphs. Suppose we convert Figure 1 (b) and (c) to 
tree by removing loops (or cycles) then both gives same output, 
as shown in Figure 1 (a). Cycle’s information is very much 
useful in understanding how web users are taking transition 
from one set of pages to another set of pages. From this one can 
know where most of the users are leaving the site and 
accordingly one can restructure the site. 

Figure 1: Tree and Graphs 

In MoFa [7], gSpan [8], FFSM [9], and Gaston [10] undirected 
graph mining algorithms are discussed as a solution to web 
usage mining or bioinformatics.   

Directed graphs are having explicit information than undirected 
graphs. So directed graphs are useful for analyzing web user 
traversal patterns. In Figure 2 (a), we have an edge between 
vertex 2 and 5. But we do not know whether it represents an 
edge from node 2 to 5 or from node 5 to 2 or both. Figure 2 (b) 
and (c) represents two different user behaviors with respect to 
directed graph mining. But with respect to undirected graph 
mining both Figure 2 (b) and (c) are treated as same and they 
are equivalent to Figure 2 (a). Directed graphs helps in web site 
personalization and caching of next possible pages.  

Web users’ complete behavior can be captured by directed 
graph. Frequent path discovery among web pages visited by 
users helps in making strong recommendations for how to retain 
and increase the visitors.  

The changes in gSpan to handle directed graph mining are 
discussed in [11]. This is the most recent algorithm in directed 
graph mining. But it involves costly operations like DFS-code 
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extension, code adjustment and child generation for directed 
graph along with usual gSpan operations.  

  
Figure 2: Graph and Directed Graphs 

Till now most of researchers have concentrated on directed 
graph mining. But we are focusing on RCD graph mining. 
Rooted Continuous Directed (RCD) graph is an ideal data 
structure to capture the information in user web log sessions 
with respect to an organization. This is because each user has to 
start from the home page of an organization (i.e. root) and there 
is a continuity in terms of visiting next page with respect to the 
current web page. 

In this paper, we propose a RCD graph mining algorithm which 
avoids operations like DFS-code extension, code adjustment 
and child generation for directed subgraph mining. These 
operations are more costlier than simple arithmetic count 
increment operations which is the core part of our RCD graph 
mining algorithm. 

RCD graph mining approach involves merging 'like subgraphs' 
together and properly maintaining their importance in the form 
of a 'count' which is used for extracting frequent patterns. This 
activity involves a single scan of database.  

The major contributions of this paper are as follows: (i) A novel 
and compact data structure called Pattern Super Graph (PSG) is 
constructed, which is an extended graph structure for storing 
crucial, quantitative information about patterns. In this paper, 
we have discussed how this structure is used for efficient 
mining of web logs. (ii) A notion and importance of frequent 
RCD subgraph is introduced and efficient mining of such 
subgraphs are discussed. (iii) We formulated a modified version 
of string encoding format proposed by Zaki [6] to represent the 
RCD graph which is space-efficient.  

The rest of the paper is organized as follows. Notion of frequent 
RCD subgraphs with respect to RCD graph is discussed in 
section 2. Section 3 deals RCD graph representation in string 
encoding format. Design and construction of PSG which is a 
compact representation of the web log database is discussed in 
section 4. Section 5 deals with the method of extracting 
frequent patterns from PSG (PSG-mine). Results obtained from 
experimental work are discussed in section 6. Finally, section 7 
provides concluding remarks. 

2 Definitions 

Most of the web users are visiting a set of pages in a web site 
more often. It is interesting to develop a novel and efficient 
method of finding users behavior by extracting highly visited 
set of pages with the order of visit. The order of visit is captured 
using RCD graphs.  Rest of the section gives the related 
definitions with respect to RCD graphs.  

2.1 RCD graph 
A RCD graph G consists of a set of vertices V = {v1, v2, v3 … 
vn}, a set of edges E = {e1, e2, e3… em}, and a mapping � that 
maps every edge onto some ordered pair of vertices (vi, vj). A 
vertex is represented by a point and an edge by a line segment 
between vi and vj with an arrow directed from vi to vj. A RCD 
graph is one which is having a unique vertex (called root node) 
and if that RCD graph is having n number of edges, then the 
first edge should start from root node to any node (say v2) and 
next edge should be from v2 to any node and so on for the 
remaining edges. Figure 3, 2 (b) and (c) are different RCD 
graphs.  

RCD graph is an ideal data structure to capture the information 
in user web log sessions with respect to an organization. This is 
because each user has to start from the home page of an 
organization (i.e. root) and there is a continuity in terms of 
visiting next page with respect to the current web page. 

2.2 RCD subgraph 
 A graph g is said to be a RCD subgraph of RCD graph G, if (i) 
all vertices and all set of the edges (which is non-empty) of g 
are in G, and all edges of g must have same sequence as that of 
G or (ii) g has only root vertex. Figure 3 shows the directed 
subgraphs of the graph as shown in Figure 2 (c). 

Figure 3: Subgraphs of the graph in Figure 2 (c) 

2.3 Frequent RCD subgraph 
Let DB = < T1, T2, T3 … Tn > be a collection of web logs 
pertaining to n user web log sessions. Note that each Ti is a 
RCD graph (refer 2.1). A RCD subgraph S � Ti, for any i (1 < i 
< n) is said to be frequent if number of occurrences of S in DB 
is greater than or equal to user defined minimum support value. 
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Let us consider the RCD graphs shown in Figure 4 (a), (b) and 
(c). Let us assume user specified minimum support = 3. Figure 
4 (d) is a frequent RCD subgraph. 

Figure 4: Directed graphs for subgraph mining 

3 Representation of directed graphs as strings 

We are proposing a modified version of string encoding format 
proposed by Zaki in [6]. This string encoding format constituted 
by referring user web log sessions this format is not only 
complete with respect to user web log sessions but also compact 
in size. This is an intermediate structure to construct PSG from 
user web log sessions which is an RCD graph.  

Figure 5: Examples for graph representation 

The string encoding procedure for RCD graph is as follows. 
Start with the root node of RCD graph, insert it into the string, 
T. Since RCD graph is continuous and directed, insert 
subsequent nodes as they are visited. When ever there is a re-
visit to a node, then add that node to the string with a – sign.   

A directed graph is generally represented in one of the 
following three forms. They are (i) Adjacency Matrix which 
requires n2 binary matrix, where n is the number of vertices, 
(ii)Edge Listing requires which twice the number of edges, (iii) 
Two Linear Arrays which requires 2 arrays of e size where e 
represents number of edges. Our approach requires only e+1 
number of spaces where e is number of edges.  

The technique proposed by M J Zaki in [6] is for tree 
representation. With some modifications we extended it for 
RCD graph representation. The string encoding format for 
Figure 5 (a) is 1 2 3 4 -2 5 -1 6 7 and for Figure 5 (b) is 1 7 6 5 -
1 2 3 4. Zaki’s approach is not applicable for RCD graphs. Even 
if we convert RCD graphs to trees then also it takes more space 
compare to our approach. Figure 6 (a) and (b) are tree 
representation of RCD graphs of Figure 5 (a) and (b) 
respectively. String encoding format for Figure 6 (a) and 6 (b) 
is respectively given as follows: 1 2 3 4 -1 -1 5 -1 -1 6 7 and 1 2 

3 4 -1 -1 -1 -1 7 6 5. Even in worst case our approach takes e+1 
number of spaces but in Zaki’s approach, it is not depends on 
how much to backtrack. If backtrack is only one step at any 
node, then our approach is same as Zaki’s approach.  

Figure 6: Example for  trees 

4 Pattern Super Graph (PSG): Design and Construction 

PSG is constructed by merging string encoded format of 
different user’s web log sessions with respect to an 
organization. PSG consists of two types of nodes namely Visit 
Node and Re-visit Node. Visit Node consists of the following 
fields: Label, Count, Child Pointer, Sibling Pointer, Re-visit 
Pointer and Back Pointer. The Label field is used to hold web 
page number. Count field is used hold the number of patterns 
till to this Visit Node from the first Visit Node where that 
pattern starts.  Incrementing of Count field value is done at the 
time of merging string encoded format of different user’s web 
log sessions. Child Pointer points to one of its child node which 
is either a Visit or Re-visit Node. Sibling Pointer of a Visit 
Node points to its sibling. Back Pointer points to a Visit Node 
where it is emerged. Each Re-visit Node consists of the 
following fields: Label, Count and Next Pointer. Label field is 
used to hold web page number of a visited node which is to be 
re-visited. Count field is used to hold the number of patterns till 
to this node from where that pattern starts. Next Pointer points 
to the next Re-visit Node if any. Re-visit Node provides the 
page number to be re-visited and the re-visiting is done with the 
help of Back Pointers. With the help of Re-visit Node and Back 
Pointer we are capturing the looping information. PSG structure 
is shown in Figure 7.  

Figure 7: structures of PSG 
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We illustrate the process of PSG construction for a given user 
web logs sessions which are represented in string encoding 
format is given in Table 1.  

Table 1: Database of user sessions 

Session-Id String encoded format of session Graph 

1 1 2 4 -2 5 -2 6 -2 7 8 

2 1 2 9 -2 5 -2 7 8 -2 6 

3 1 3 4 5 -1 2 7 8 -1 2 9 

Consider the first string encoded format of user web logs of a 
session graph (i.e. Session-Id = 1). The PSG corresponding to 
this is given in Figure 8. After merging the second user web log  
session of graph (i.e. Session-Id = 2) with the PSG as shown in 
Figure 8, the resultant PSG is shown in Figure 9. Note that 
updating Counter field of Visit Node and Re-visit Node may be 
done during merging of user web log sessions. Figure 10 shows 
the resultant PSG after merging user web log sessions (i.e. 
Session-Id = 3) to PSG shown in Figure 9. Note that the 
construction of the PSG from string encoded format of user web 
log sessions requires single scan on string encoded format of 
user web log sessions. 

Figure 8: PSG for first user session 

Figure 9: PSG of two user sessions 

Figure 10: PSG of three user sessions 

4.1 Completeness and compactness of PSG  
There are several important properties of PSG that can be 
derived from the PSG construction process. PSG is the 
complete representation of RCD subgraphs of the database of 
the string encoded format of user web log sessions (say DB2). 
The DB2 is complete representation of the database of web logs 
(say DB1). By transitive property, we can say that PSG is 
complete representation of the RCD subgraphs of DB1.  Each 
RCD subgraph in DB2 is mapped to one of the path in PSG. 
Different RCD subgraphs in PSG are distinctly placed. Suppose 
two or more RCD subgraphs are identical, and then the PSG 
maintains those set of identical RCD subgraphs as a single RCD 
subgraph and update its count of occurrence accordingly. So 
PSG is a compact representation of DB1. The size of a PSG is 
bounded by sum of unique RCD subgraphs of the graphs of 
DB1, and the height of the PSG is bounded by maximum height 
of the RCD subgraph among the DB1. Results obtained 
(discussed in section 5) are showing the compactness of the 
PSG. As the number of sessions increases the compactness of 
PSG also increases. This is because as the number of users 
visiting the site increases, we can expect more similar kind of 
behavior of visiting the same set of pages.  

The size of a PSG is bounded by the size and nature of its 
corresponding database. This is because there is often a lot of 
sharing of subgraphs among graphs pertaining to different 
user’s web log sessions. The size of the PSG is usually much 
smaller than its original database, DB1. Even in the worst case, 
maximum size of the PSG is less than that of DB1. This is 
because at least root node is common to all RCD graphs. 

5 Mining frequent RCD subgraph from PSG 

In this section, we are exploring the compact information stored 
in the PSG. We propose a frequent RCD subgraphs extraction 
algorithm, PSG-mine, for mining the complete set of frequent 
RCD subgraphs from PSG. 
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In this mining process, we have to handle two categories of 
RCD subgraphs. First category is subgraphs having only one 
path. Another category is subgraphs having multiple paths i.e., 
the path sharing common prefixes. Extraction of the first 
category of subgraphs needs to traverse along that subgraph to 
its last node and check its support i.e., the Count field value the 
of last node (Visit or Re-visit Node). If support is more than 
user specified value, then extract that RCD subgraph and put it 
in frequent subgraph list, L. For RCD subgraphs having 
multiple paths, first move to the node where there is a diversion 
(i.e., to the node which has many child nodes). While moving, 
add nodes in the path to a temporary array, T in FIFO order. At 
diverted position, select non-considered path and prefix T to the 
nodes selected along that path. Let it be T1. The count of the 
last node in the path gives the support value for T1. If it is more 
than user specified support value then move it to L and drop T1. 
Repeat the above steps at diverted position for remaining paths. 
The complete set of frequent RCD subgraphs for the PSG, 
shown in the Figure 7 for different minimum support is given in 
the Table 2. 

Table 2: RCD subgraphs with minimum support 
Minimum 
support 

RCD Subgraphs in string encoding format 

1 1 3 4 5 -1, 1 2 4 -2, 1 2 5 -2, 1 2 6 -2, 1 2 7 8 -
2, 1 2 7 8 -1, 1 2 9 -2 

2 1 2 5 -2, 12 7 8 -2 
3 1 2 7 8 
The entire process of RCD frequent subgraph generation from 
user web log sessions of an organization can be depicted 
pictorically as shown in Figure 11. 

Figure 11: Process of frequent RCD subgraph mining 

6 Results and discussion 

We have conducted the experiments using datasets consists of 
web logs files collected over 1 month at an academic institution. 
The logs touched 381796 user requests, the number of sites 
covered is 2461and the number of sessions is 87085. We are 
interested in one site analysis at any time. The following 
discussion is based on web logs collected from a site, 

www.wwe.com. The site, www.wwe.com gives good number of 
user sessions say 110 to 5123 for different log files. The site 
consists of 1336 unique web pages. The average string 
encoding length for a user graph was 18.  

We wrote a data preparation module to convert web logs into 
RCD graphs of a user sessions represented in string encoding 
format. The module performs following set of operations: (i) 
Select user request of the given site. (ii) Group the user requests 
having same Session-Id. (iii) Construct the session graphs as 
follows: For each Session-Id, separate the nodes when ‘/’ is 
encountered from each URLs. For the first URL, move nodes to 
Session-Id. For remaining URLs, compare correspondingly 
these nodes with previous URL nodes where it differs then add 
'–' with the node previous to where it differs and add remaining 
nodes.  

A PSG is usually much smaller than the size of string encoded 
format of user’s web log sessions. The compactness of PSG is 
shown in two ways: (i) compare the number of nodes in PSG 
and the number of nodes in corresponding string encoded 
format of user web log session graphs. This is shown in Table 3 
and the corresponding graph is given in Figure 12. it is clear 
from the Table (Graph) that, as the number of user web log 
sessions increases from 110 to 5123, the size of PSG in terms of 
nodes is reduced from 67% to 92% with respect to string 
encoded format of user web log sessions. (ii) Another way is to 
compare the number of distinct RCD subgraphs generated in 
PSG and string encoded format of user web log sessions. This is 
shown in Table 4 and corresponding graph is given in Figure 
13. It is clear from Table (Graph) that as the number of user’s 
web log session increases from 110 to 5123, the total number of 
RCD subgraphs in PSG is reduced from 34% to 77% with 
respect to the number of RCD subgraphs in string encoding 
format of user web log sessions. These two results clearly show 
the compactness of PSG with respect to user web log sessions 
pertaining to www.wwe.com.  

7 Conclusions 

The method of merging of user web log sessions of an 
organization is introduced in this paper. This is a promising 
approach for scalable frequent pattern mining. The other 
existing approach in directed graph mining is based on the 
candidate generation which is costlier in terms of computation 
and space. We have proposed a novel data structure, Pattern 
Super Graph (PSG) for storing compressed crucial information 
about RCD subgraphs. We have developed a pattern mining 
method, PSG-mine, for efficient mining of frequent patterns in 
large databases. This method avoids multiple database scans 
and candidate generation. We also formulated a modified 
version of string encoding of the RCD graph which is space-
efficient. 
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7.1 Future Enhancements 
The philosophy of database compression (merging pattern) and 
frequent-pattern mining can be extended to constraint-based 
mining and mining other kinds of frequent patterns, such as 
max-patterns, sequential patterns. Finally, we plan to apply our 
RCD subgraph mining techniques to other compelling 
applications, such as finding common subgraph patterns in 
bioinformatics, telecommunication and analyzing the 
executions of a buggy software program. 

Table 3: Number of paths for sessions 
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Table 4: No. of paths for sessions 
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