
Efficient Mining of Frequent Rooted Continuous
Directed Subgraphs

Sreenivasa G J 1 Ananthanarayana V S 2

 1 Dept of Mathematical and Computational Sciences 2 Dept of Information Technology
Sreenivasa_nitk@rediffmail.com anvs@nitk.ac.in

National Institute of Technology Karnataka Surathkal, Srinivas nagar (post), Karnataka, INDIA, Pin Code- 575025

Abstract

Mining frequent rooted continuous directed (RCD) subgraphs is
very useful in Web usage mining domain. We formulate the
problem of mining RCD subgraphs in a database of rooted
labeled continuous directed graphs. We propose a novel
approach of merging like RCD subgraphs. This approach builds
a Pattern Super Graph (PSG) structure .This PSG is a compact
structure and ideal for extracting frequent patterns in the form
of RCD subgraphs. The PSG based mine avoids costly, repeated
database scans and there is no generation of candidates. Results
obtained are appreciating the approach proposed.

1. Introduction

Frequent Structure Mining (FSM) refers to an important class of
exploratory mining tasks, namely those dealing with extracting
patterns in massive databases representing complex interactions
between entities. FSM is not only encompasses mining
techniques like associations [1] and sequences [2], but it also
generalizes to more complex patterns like frequent trees and
undirected graphs [3, 4]. Such patterns typically arise in
applications like bioinformatics, web mining, and so on. As one
increases the complexity of the structures to be discovered, one
extracts more informative patterns.

Consider the web usage mining (WUM) [5] problem. Given a
database of web access logs at a popular site, one can perform
several mining tasks. The simplest is to ignore all link
information from the logs, and to mine only the frequent sets of
pages accessed by users. The next step can be to form for each
user the sequence of links they followed, and to mine the most
frequent user access paths (set of pages and their order). It is
possible to look at the entire forward accesses of a user, and to
mine the most frequently accessed subtrees at that site [6].
Web user’s behavior pertaining to a web log session is as shown
in Figure 1 (b) and (c) is represented in graphs. Here each node
represents web page and edge represents link between source
page and destination page. Many of the web usage mining
algorithms till now formulated log data in the form of trees by
eliminating cycles in the graphs.

But user sessions of the log data forms graph. For simplicity or
in order to reduce the complexity of the structure they form
trees from graphs. Suppose we convert Figure 1 (b) and (c) to
tree by removing loops (or cycles) then both gives same output,
as shown in Figure 1 (a). Cycle’s information is very much
useful in understanding how web users are taking transition
from one set of pages to another set of pages. From this one can
know where most of the users are leaving the site and
accordingly one can restructure the site.

Figure 1: Tree and Graphs

In MoFa [7], gSpan [8], FFSM [9], and Gaston [10] undirected
graph mining algorithms are discussed as a solution to web
usage mining or bioinformatics.

Directed graphs are having explicit information than undirected
graphs. So directed graphs are useful for analyzing web user
traversal patterns. In Figure 2 (a), we have an edge between
vertex 2 and 5. But we do not know whether it represents an
edge from node 2 to 5 or from node 5 to 2 or both. Figure 2 (b)
and (c) represents two different user behaviors with respect to
directed graph mining. But with respect to undirected graph
mining both Figure 2 (b) and (c) are treated as same and they
are equivalent to Figure 2 (a). Directed graphs helps in web site
personalization and caching of next possible pages.

Web users’ complete behavior can be captured by directed
graph. Frequent path discovery among web pages visited by
users helps in making strong recommendations for how to retain
and increase the visitors.

The changes in gSpan to handle directed graph mining are
discussed in [11]. This is the most recent algorithm in directed
graph mining. But it involves costly operations like DFS-code

1-4244-0716-8/06/$20.00 ©2006 IEEE. 553

Authorized licensed use limited to: NATIONAL INSTITUTE OF TECHNOLOGY SURATHKAL. Downloaded on February 17,2021 at 07:07:41 UTC from IEEE Xplore. Restrictions apply.

extension, code adjustment and child generation for directed
graph along with usual gSpan operations.

Figure 2: Graph and Directed Graphs

Till now most of researchers have concentrated on directed
graph mining. But we are focusing on RCD graph mining.
Rooted Continuous Directed (RCD) graph is an ideal data
structure to capture the information in user web log sessions
with respect to an organization. This is because each user has to
start from the home page of an organization (i.e. root) and there
is a continuity in terms of visiting next page with respect to the
current web page.

In this paper, we propose a RCD graph mining algorithm which
avoids operations like DFS-code extension, code adjustment
and child generation for directed subgraph mining. These
operations are more costlier than simple arithmetic count
increment operations which is the core part of our RCD graph
mining algorithm.

RCD graph mining approach involves merging 'like subgraphs'
together and properly maintaining their importance in the form
of a 'count' which is used for extracting frequent patterns. This
activity involves a single scan of database.

The major contributions of this paper are as follows: (i) A novel
and compact data structure called Pattern Super Graph (PSG) is
constructed, which is an extended graph structure for storing
crucial, quantitative information about patterns. In this paper,
we have discussed how this structure is used for efficient
mining of web logs. (ii) A notion and importance of frequent
RCD subgraph is introduced and efficient mining of such
subgraphs are discussed. (iii) We formulated a modified version
of string encoding format proposed by Zaki [6] to represent the
RCD graph which is space-efficient.

The rest of the paper is organized as follows. Notion of frequent
RCD subgraphs with respect to RCD graph is discussed in
section 2. Section 3 deals RCD graph representation in string
encoding format. Design and construction of PSG which is a
compact representation of the web log database is discussed in
section 4. Section 5 deals with the method of extracting
frequent patterns from PSG (PSG-mine). Results obtained from
experimental work are discussed in section 6. Finally, section 7
provides concluding remarks.

2 Definitions

Most of the web users are visiting a set of pages in a web site
more often. It is interesting to develop a novel and efficient
method of finding users behavior by extracting highly visited
set of pages with the order of visit. The order of visit is captured
using RCD graphs. Rest of the section gives the related
definitions with respect to RCD graphs.

2.1 RCD graph
A RCD graph G consists of a set of vertices V = {v1, v2, v3 …
vn}, a set of edges E = {e1, e2, e3… em}, and a mapping � that
maps every edge onto some ordered pair of vertices (vi, vj). A
vertex is represented by a point and an edge by a line segment
between vi and vj with an arrow directed from vi to vj. A RCD
graph is one which is having a unique vertex (called root node)
and if that RCD graph is having n number of edges, then the
first edge should start from root node to any node (say v2) and
next edge should be from v2 to any node and so on for the
remaining edges. Figure 3, 2 (b) and (c) are different RCD
graphs.

RCD graph is an ideal data structure to capture the information
in user web log sessions with respect to an organization. This is
because each user has to start from the home page of an
organization (i.e. root) and there is a continuity in terms of
visiting next page with respect to the current web page.

2.2 RCD subgraph
 A graph g is said to be a RCD subgraph of RCD graph G, if (i)
all vertices and all set of the edges (which is non-empty) of g
are in G, and all edges of g must have same sequence as that of
G or (ii) g has only root vertex. Figure 3 shows the directed
subgraphs of the graph as shown in Figure 2 (c).

Figure 3: Subgraphs of the graph in Figure 2 (c)

2.3 Frequent RCD subgraph
Let DB = < T1, T2, T3 … Tn > be a collection of web logs
pertaining to n user web log sessions. Note that each Ti is a
RCD graph (refer 2.1). A RCD subgraph S � Ti, for any i (1 < i
< n) is said to be frequent if number of occurrences of S in DB
is greater than or equal to user defined minimum support value.

554

Authorized licensed use limited to: NATIONAL INSTITUTE OF TECHNOLOGY SURATHKAL. Downloaded on February 17,2021 at 07:07:41 UTC from IEEE Xplore. Restrictions apply.

Let us consider the RCD graphs shown in Figure 4 (a), (b) and
(c). Let us assume user specified minimum support = 3. Figure
4 (d) is a frequent RCD subgraph.

Figure 4: Directed graphs for subgraph mining

3 Representation of directed graphs as strings

We are proposing a modified version of string encoding format
proposed by Zaki in [6]. This string encoding format constituted
by referring user web log sessions this format is not only
complete with respect to user web log sessions but also compact
in size. This is an intermediate structure to construct PSG from
user web log sessions which is an RCD graph.

Figure 5: Examples for graph representation

The string encoding procedure for RCD graph is as follows.
Start with the root node of RCD graph, insert it into the string,
T. Since RCD graph is continuous and directed, insert
subsequent nodes as they are visited. When ever there is a re-
visit to a node, then add that node to the string with a – sign.

A directed graph is generally represented in one of the
following three forms. They are (i) Adjacency Matrix which
requires n2 binary matrix, where n is the number of vertices,
(ii)Edge Listing requires which twice the number of edges, (iii)
Two Linear Arrays which requires 2 arrays of e size where e
represents number of edges. Our approach requires only e+1
number of spaces where e is number of edges.

The technique proposed by M J Zaki in [6] is for tree
representation. With some modifications we extended it for
RCD graph representation. The string encoding format for
Figure 5 (a) is 1 2 3 4 -2 5 -1 6 7 and for Figure 5 (b) is 1 7 6 5 -
1 2 3 4. Zaki’s approach is not applicable for RCD graphs. Even
if we convert RCD graphs to trees then also it takes more space
compare to our approach. Figure 6 (a) and (b) are tree
representation of RCD graphs of Figure 5 (a) and (b)
respectively. String encoding format for Figure 6 (a) and 6 (b)
is respectively given as follows: 1 2 3 4 -1 -1 5 -1 -1 6 7 and 1 2

3 4 -1 -1 -1 -1 7 6 5. Even in worst case our approach takes e+1
number of spaces but in Zaki’s approach, it is not depends on
how much to backtrack. If backtrack is only one step at any
node, then our approach is same as Zaki’s approach.

Figure 6: Example for trees

4 Pattern Super Graph (PSG): Design and Construction

PSG is constructed by merging string encoded format of
different user’s web log sessions with respect to an
organization. PSG consists of two types of nodes namely Visit
Node and Re-visit Node. Visit Node consists of the following
fields: Label, Count, Child Pointer, Sibling Pointer, Re-visit
Pointer and Back Pointer. The Label field is used to hold web
page number. Count field is used hold the number of patterns
till to this Visit Node from the first Visit Node where that
pattern starts. Incrementing of Count field value is done at the
time of merging string encoded format of different user’s web
log sessions. Child Pointer points to one of its child node which
is either a Visit or Re-visit Node. Sibling Pointer of a Visit
Node points to its sibling. Back Pointer points to a Visit Node
where it is emerged. Each Re-visit Node consists of the
following fields: Label, Count and Next Pointer. Label field is
used to hold web page number of a visited node which is to be
re-visited. Count field is used to hold the number of patterns till
to this node from where that pattern starts. Next Pointer points
to the next Re-visit Node if any. Re-visit Node provides the
page number to be re-visited and the re-visiting is done with the
help of Back Pointers. With the help of Re-visit Node and Back
Pointer we are capturing the looping information. PSG structure
is shown in Figure 7.

Figure 7: structures of PSG

555

Authorized licensed use limited to: NATIONAL INSTITUTE OF TECHNOLOGY SURATHKAL. Downloaded on February 17,2021 at 07:07:41 UTC from IEEE Xplore. Restrictions apply.

We illustrate the process of PSG construction for a given user
web logs sessions which are represented in string encoding
format is given in Table 1.

Table 1: Database of user sessions

Session-Id String encoded format of session Graph

1 1 2 4 -2 5 -2 6 -2 7 8

2 1 2 9 -2 5 -2 7 8 -2 6

3 1 3 4 5 -1 2 7 8 -1 2 9

Consider the first string encoded format of user web logs of a
session graph (i.e. Session-Id = 1). The PSG corresponding to
this is given in Figure 8. After merging the second user web log
session of graph (i.e. Session-Id = 2) with the PSG as shown in
Figure 8, the resultant PSG is shown in Figure 9. Note that
updating Counter field of Visit Node and Re-visit Node may be
done during merging of user web log sessions. Figure 10 shows
the resultant PSG after merging user web log sessions (i.e.
Session-Id = 3) to PSG shown in Figure 9. Note that the
construction of the PSG from string encoded format of user web
log sessions requires single scan on string encoded format of
user web log sessions.

Figure 8: PSG for first user session

Figure 9: PSG of two user sessions

Figure 10: PSG of three user sessions

4.1 Completeness and compactness of PSG
There are several important properties of PSG that can be
derived from the PSG construction process. PSG is the
complete representation of RCD subgraphs of the database of
the string encoded format of user web log sessions (say DB2).
The DB2 is complete representation of the database of web logs
(say DB1). By transitive property, we can say that PSG is
complete representation of the RCD subgraphs of DB1. Each
RCD subgraph in DB2 is mapped to one of the path in PSG.
Different RCD subgraphs in PSG are distinctly placed. Suppose
two or more RCD subgraphs are identical, and then the PSG
maintains those set of identical RCD subgraphs as a single RCD
subgraph and update its count of occurrence accordingly. So
PSG is a compact representation of DB1. The size of a PSG is
bounded by sum of unique RCD subgraphs of the graphs of
DB1, and the height of the PSG is bounded by maximum height
of the RCD subgraph among the DB1. Results obtained
(discussed in section 5) are showing the compactness of the
PSG. As the number of sessions increases the compactness of
PSG also increases. This is because as the number of users
visiting the site increases, we can expect more similar kind of
behavior of visiting the same set of pages.

The size of a PSG is bounded by the size and nature of its
corresponding database. This is because there is often a lot of
sharing of subgraphs among graphs pertaining to different
user’s web log sessions. The size of the PSG is usually much
smaller than its original database, DB1. Even in the worst case,
maximum size of the PSG is less than that of DB1. This is
because at least root node is common to all RCD graphs.

5 Mining frequent RCD subgraph from PSG

In this section, we are exploring the compact information stored
in the PSG. We propose a frequent RCD subgraphs extraction
algorithm, PSG-mine, for mining the complete set of frequent
RCD subgraphs from PSG.

556

Authorized licensed use limited to: NATIONAL INSTITUTE OF TECHNOLOGY SURATHKAL. Downloaded on February 17,2021 at 07:07:41 UTC from IEEE Xplore. Restrictions apply.

In this mining process, we have to handle two categories of
RCD subgraphs. First category is subgraphs having only one
path. Another category is subgraphs having multiple paths i.e.,
the path sharing common prefixes. Extraction of the first
category of subgraphs needs to traverse along that subgraph to
its last node and check its support i.e., the Count field value the
of last node (Visit or Re-visit Node). If support is more than
user specified value, then extract that RCD subgraph and put it
in frequent subgraph list, L. For RCD subgraphs having
multiple paths, first move to the node where there is a diversion
(i.e., to the node which has many child nodes). While moving,
add nodes in the path to a temporary array, T in FIFO order. At
diverted position, select non-considered path and prefix T to the
nodes selected along that path. Let it be T1. The count of the
last node in the path gives the support value for T1. If it is more
than user specified support value then move it to L and drop T1.
Repeat the above steps at diverted position for remaining paths.
The complete set of frequent RCD subgraphs for the PSG,
shown in the Figure 7 for different minimum support is given in
the Table 2.

Table 2: RCD subgraphs with minimum support
Minimum
support

RCD Subgraphs in string encoding format

1 1 3 4 5 -1, 1 2 4 -2, 1 2 5 -2, 1 2 6 -2, 1 2 7 8 -
2, 1 2 7 8 -1, 1 2 9 -2

2 1 2 5 -2, 12 7 8 -2
3 1 2 7 8
The entire process of RCD frequent subgraph generation from
user web log sessions of an organization can be depicted
pictorically as shown in Figure 11.

Figure 11: Process of frequent RCD subgraph mining

6 Results and discussion

We have conducted the experiments using datasets consists of
web logs files collected over 1 month at an academic institution.
The logs touched 381796 user requests, the number of sites
covered is 2461and the number of sessions is 87085. We are
interested in one site analysis at any time. The following
discussion is based on web logs collected from a site,

www.wwe.com. The site, www.wwe.com gives good number of
user sessions say 110 to 5123 for different log files. The site
consists of 1336 unique web pages. The average string
encoding length for a user graph was 18.

We wrote a data preparation module to convert web logs into
RCD graphs of a user sessions represented in string encoding
format. The module performs following set of operations: (i)
Select user request of the given site. (ii) Group the user requests
having same Session-Id. (iii) Construct the session graphs as
follows: For each Session-Id, separate the nodes when ‘/’ is
encountered from each URLs. For the first URL, move nodes to
Session-Id. For remaining URLs, compare correspondingly
these nodes with previous URL nodes where it differs then add
'–' with the node previous to where it differs and add remaining
nodes.

A PSG is usually much smaller than the size of string encoded
format of user’s web log sessions. The compactness of PSG is
shown in two ways: (i) compare the number of nodes in PSG
and the number of nodes in corresponding string encoded
format of user web log session graphs. This is shown in Table 3
and the corresponding graph is given in Figure 12. it is clear
from the Table (Graph) that, as the number of user web log
sessions increases from 110 to 5123, the size of PSG in terms of
nodes is reduced from 67% to 92% with respect to string
encoded format of user web log sessions. (ii) Another way is to
compare the number of distinct RCD subgraphs generated in
PSG and string encoded format of user web log sessions. This is
shown in Table 4 and corresponding graph is given in Figure
13. It is clear from Table (Graph) that as the number of user’s
web log session increases from 110 to 5123, the total number of
RCD subgraphs in PSG is reduced from 34% to 77% with
respect to the number of RCD subgraphs in string encoding
format of user web log sessions. These two results clearly show
the compactness of PSG with respect to user web log sessions
pertaining to www.wwe.com.

7 Conclusions

The method of merging of user web log sessions of an
organization is introduced in this paper. This is a promising
approach for scalable frequent pattern mining. The other
existing approach in directed graph mining is based on the
candidate generation which is costlier in terms of computation
and space. We have proposed a novel data structure, Pattern
Super Graph (PSG) for storing compressed crucial information
about RCD subgraphs. We have developed a pattern mining
method, PSG-mine, for efficient mining of frequent patterns in
large databases. This method avoids multiple database scans
and candidate generation. We also formulated a modified
version of string encoding of the RCD graph which is space-
efficient.

557

Authorized licensed use limited to: NATIONAL INSTITUTE OF TECHNOLOGY SURATHKAL. Downloaded on February 17,2021 at 07:07:41 UTC from IEEE Xplore. Restrictions apply.

7.1 Future Enhancements
The philosophy of database compression (merging pattern) and
frequent-pattern mining can be extended to constraint-based
mining and mining other kinds of frequent patterns, such as
max-patterns, sequential patterns. Finally, we plan to apply our
RCD subgraph mining techniques to other compelling
applications, such as finding common subgraph patterns in
bioinformatics, telecommunication and analyzing the
executions of a buggy software program.

Table 3: Number of paths for sessions

0

10000

20000

30000

40000

50000

60000

70000

0 1000 2000 3000 4000 5000 6000

Number Of Sessions

N
um

be
r

of
 N

od
es Session Nodes

PSG Nodes

Figure 12: No. sessions verses No. nodes

Table 4: No. of paths for sessions

References

[1] R. Agrawal, et al. Fast discovery of association rules.
Advances in Knowledge Discovery and Data Mining, pages
307-328. AAAI Press, Menlo Park, CA, 1996.

[2] R. Agrawal and R. Srikant. Mining sequential patterns. In
11th Intl. Conf. on Data Engg., 1995.

0

2000

4000

6000

8000

10000

12000

14000

0 1000 2000 3000 4000 5000 6000

Number of Sessions

N
um

be
r o

f p
at

hs

Session paths
PSG paths

Figure 13: No. sessions versus No. paths

 [4] M. Kuramochi and G. Karypis. Frequent subgraph
discovery. In 1st IEEE Int'l Conf. on Data Mining, November
2001.

[5] R. Cooley, B. Mobasher, and J. Srivastava. Web Mining:
Information and Pattern Discovery on the World Wide Web. In
8th IEEE Intl. Conf. on Tools with AI, 1997.

[6] M. J. Zaki, Efficiently Mining Frequent Trees in a Forest:
Algorithms and Applications, IEEE Transactions on Knowledge
and Data Engg, Vol. 17, No. 8, pages 1021-1035 August 2005

[7] Christian Borgelt and Michael R. Berthold. Mining
Molecular Fragments: Finding Relevant Substructures of
Molecules. In Vipin Kumar, Shusaku Tsumoto, Ning Zhong,
Philip S. Yu, and Xindong Wu, editors, Proc. IEEE Int'l Conf.
on Data Mining ICDM, pages 51-58, Maebashi City, Japan,
December 2002. IEEE Press.

[8] Xifeng Yan and Jiawei Han. gSpan: Graph-Based
Substructure Pattern Mining. In Vipin Kumar, Shusaku
Tsumoto, Ning Zhong, Philip S. Yu, and Xindong Wu, editors,
Proc. IEEE Int'l Conf. on Data Mining ICDM, pages 721-723,
Maebashi City, Japan, December 2002. IEEE Press.

[9] Jun Huan, Wei Wang, and Jan Prins. Efficient Mining of
Frequent Subgraphs in the Presence of Isomorphism. In Jude
Shavlik, Xindong Wu, and Alex Tuzhilin, editors, Proc. of the
3rd IEEE Intl. Conf. on Data Mining ICDM, pages 549-552,
Melbourne, FL, USA, November 2003. IEEE Press.

[10] Siegfried Nijssen and Joost N. Kok. A Quickstart in
Frequent Structure Mining can Make a Difference. Technical
report, LIACS, Leiden University, Leiden, The Netherlands,
April 2004.

[11] Marc Sebastian WÄorlein. Extension and parallelization of
a graph-mining-algorithm. A Ph.d Thesis. Submitted to Institut
fur Informatik Lehrstuhl fur Informatik 2 Programmiersysteme
Friedrich-Alexander-Universitat Erlangen-Nurnberg in March
2006.

558

Authorized licensed use limited to: NATIONAL INSTITUTE OF TECHNOLOGY SURATHKAL. Downloaded on February 17,2021 at 07:07:41 UTC from IEEE Xplore. Restrictions apply.

