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Abstract. Finite dimensional realization of an iterative regularization
method for approximately solving the non-linear ill-posed Hammerstein
type operator equations KF (x) = f, is considered. The proposed method
is a combination of the Tikhonov regularization and Guass-Newton
method. The advantage of the proposed method is that, we use the
Fréchet derivative of F only at one point in each iteration. We derive
the error estimate under a general source condition and the regulariza-
tion parameter is chosen according to balancing principle of Pereverzev
and Schock (2005). The derived error estimate is of optimal order and
the numerical example provided proves the efficiency of the proposed
method.
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1 Introduction

Let X be a real Hilbert space, F : D(F ) ⊆ X → X be a monotone operator (i.e.,
〈F (x) − F (y), x− y〉 ≥ 0, ∀x, y ∈ D(F )) and K : X → Y be a bounded linear
operator between the Hilbert spaces X and Y. Consider the ill-posed operator
equation

KF (x) = f. (1.1)

Equation (1.1) is called ill-posed Hammerstein type([1], [2], [3], [4]) operator
equation. Throughout the paper, the domain of F is denoted by D(F ), the
Fréchet derivative of F is denoted by F ′(.) and the inner product and norm in
X and Y are denoted by 〈., .〉 and ‖.‖ respectively.

It is assumed that the available data is f δ with ‖f − f δ‖ ≤ δ and hence one
has to consider the equation

KF (x) = f δ (1.2)
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instead of (1.1). Since (1.1) is ill-posed, its solution is not depending continuously
on the given data. Thus one has to use regularization method (see [1], [2], [3],
[4], [6], [7] and [10]) for obtaining an approximation for x̂.

Observe that the solution x of (1.2) can be obtained by first solving

Kz = f δ (1.3)

for z and then solving the non-linear problem

F (x) = z. (1.4)

This was exploited in [1], [2], [3], [4] and [5]. As in [4], we assume that the solution
x̂ of (1.1) satisfies

‖F (x̂)− F (x0)‖ = min{‖F (x)− F (x0)‖ : KF (x) = f, x ∈ D(F )}.
The prime motive of this study is to develop an iterative regularization method
to obtain an approximation for x̂ in the finite dimensional subspace of X. Pre-
cisely we considered Discretized Tikhonov regularization for solving (1.3) and
Discretized Newton’s method for solving (1.4).

This paper is organized as follows. Preliminaries are given in Section 2, Section
3 deals with the convergence of the proposed method. A numerical example is
given in Section 4 and finally the paper ends with a conclusion in section 5.

2 Preliminaries

Let {Ph}h>0 be a family of orthogonal projections on X, let εh := ‖K(I −
Ph)‖, τh := ‖F ′(x)(I − Ph)‖, ∀x ∈ D(F ). Let {bh : h > 0} is such that
lim
h→0

‖(I−Ph)x0‖
bh

= 0, lim
h→0

‖(I−Ph)F (x0)‖
bh

= 0 and lim
h→0bh = 0. We assume that

εh → 0 and τh → 0 as h → 0. The above assumption is satisfied if, Ph → I
pointwise and if K and F ′(x) are compact operators. Further we assume that
εh < ε0, τh ≤ τ0, bh ≤ b0 and δ ∈ (0, δ0].

In [5], the authors studied a two step newton method defined iteratively by

yh,δn,αk
= xh,δn,αk

−(PhF
′(xh,δn,αk

)Ph+
αk

c
Ph)

−1[F (xh,δn,αk
)−zh,δαk

+
αk

c
(xh,δn,αk

−xh,δ0,αk
)],

(2.5)

xh,δn+1,αk
= yh,δn,αk

−(PhF
′(xh,δn,αk

)Ph+
αk

c
Ph)

−1[F (yh,δn,αk
)−zh,δαk

+
αk

c
(yh,δn,αk

−xh,δ0,αk
)],

(2.6)

where c ≤ αk, x
h,δ
0,αk

:= Phx0, the projection of initial guess x0 and

zh,δαk
= (PhK

∗KPh + αkI)
−1PhK

∗[f δ −KF (x0)] + PhF (x0), (2.7)

for obtaining an approximation for x̂ in the finite dimensional subspace R(Ph),
the range of Ph, in X.

The main draw back of this approach was that the iterations (2.5) and (2.6)
requires Fréchet derivative of F at each iteration xh,δn,αk

.


