
Executable Specification and Prototyping of Network Protocols Using UML
and Java

K.Chandra Sekaran
Dept. of Computer Engineering,

NITK Surathkal, India
kchnitk@gmail.com

Abstract

Network protocols are often implemented in
software and / or hardware, and, it becomes essential
to design and test them in an efficient manner. This
paper explores a dual phase approach for developing
network protocols: in the first phase protocols are
modeled using UML (Unified Modeling Language) as
the formalism, and, in the second phase, use of
executable specification and prototyping of protocols
based on Java is supported. The prototyping of a
protocol is useful for further investigations such as
verification ofprotocol properties, test case generation
etc. Once the second phase provides a satisfied result,
the developers can go ahead in developing and
deploying the protocol in the real environment. Yet
another objective in this work is to design executable
constructs in Java to specify protocols and prototyping
them. The protocols designed using this approach
ensures sustenance of the models already developed.
Illustration of using executable constructs in Java to
specify and prototyping ofprotocols, and comparison
with native implementations is presented in this paper.

Keywords: Protocol specification, prototyping, Object
Orientation, UML and Java, Executable constructs in
Java

1. Introduction

Executable specifications have been advocated as a
promising method for understanding the requirements
specification of systems, and for developing systems
incrementally. An executable specification serves as a
prototype of the final implementation [1]. The main
advantage of prototyping systems is that it gives the
designer early feedback that what is being specified is
indeed what is desired. In addition, the prototype can
be checked for functional and timing correctness before
moving to the final implementation. The development

978-1-4244-5757-1/10/$26.00 ©2009 IEEE

R.K.Gnanamurthy,
Vivekananda College of Engineering for Women,

Trichengodu, India,
rkgnanam@yahoo.co.in

of Formal Descriptive Techniques (FDTs) such as
LOTOS, ESTELLE and SDL [2] to a large extent, is
triggered by the need to overcome the so-called
software crisis: the inability to control the complexity
and correctness oflarge software designs (e.g., network
protocols) , which is particularly harmful for the
development of large and modem distributed systems
where hidden errors in the high level design and
specification may cause great difficulties in their
operation and maintenance. FDTs originally aimed at
controlling these complexity and correctness , along
with unambiguousness of designs. Majority of these
FDTs are still in the research world, and, are not
popular in the industry world [3] as there are inherent
problems experienced with these formalisms while
putting them in practice. Tn this context, it is worth to
recall that most of the software industries have
accepted UML [4] as an alternative formalism for their
developmental work. Thus, there is a need for a new
look at the usability of FDTs while incorporating all
the features which are feasible to produce a prototype
of the final product [3]. In other words, any formal
method should essentially allow the designer to specify
the protocols as well as enable to have a prototype
model in order to inspect.

1.1 Prototyping of Protocols

Prototype [5] is an approximation of a system that
exhibits the essential feature of the final version of that
system. Prototyping is used in many areas, including
engineering and information systems development. In
the latter area, prototyping (which is also known as
rapid prototyping when suitable tools are used to
support the rapid creation of design elements)
addresses some of the problems of traditional systems
analysis, in particular , the complaint that users see their
final product / system only at the last stage of
development cycle (i.e., implementation time) and felt
it was too late to make changes. In that case, the risk of
failure (of that product) because of user dissatisfaction,
including outright user rejection, is significant while

Authorized licensed use limited to: NATIONAL INSTITUTE OF TECHNOLOGY SURATHKAL. Downloaded on February 26,2021 at 05:46:42 UTC from IEEE Xplore. Restrictions apply.

making the product (in our case, it is communication
service). On the other hand, by implementing a
prototype first, the developer can show the users
something tangible, inputs, intermediary stages, and
outputs, before finally committing the user to the new
design. These prototypes are commercially cannot be
diagrammatic approximations, but actual output on
work station screens, and, the formats can be changed
quickly, as per the suggestions of users. Further, it may
only be by using this approach that the users discover
exactly what they want from the system, as well as what
is feasible. It is also possible to try out a run using real
data, perhaps generated by the users themselves [6].

Rapid prototyping of protocols specified in the
Formal Description Technique (FDT) LOTOS has been
presented in [2], and, however, the approach in [2] has
used the programming language C, without aiming at
executable specifications. The work in [7], uses Java
for implementing the protocols, and, in Cicero library
of constructs [8], again, C programming language is
being used. These approaches do not make use of
object orientation and thereby do not address the issues
of reusability, portability (platform independence) and
interoperability in the development stage of complex
products such as protocols. The use of 'objects' has
also been attempted in ESTELLE [9] and in SDL [10]
FDTs without prototyping. However, the use of these
standard FDTs in the industry environment is poor [2].

1.2 UML and Java

This paper explores a dual phase approach to the
development of network protocols. In the first phase,
the protocols are modeled in UML. In the second
phase, the UML model is translated into a Java based
executable specification (of protocols) and then in an
run time environment, the prototype of the model is
made available for further investigation such as
verification of protocol properties, test case generation
etc. In this way, developers exploit the advantages of
using formal approach UML while using executable
specifications in Java for prototyping purpose. Once
this second stage provides a satisfied result, the
developers can go ahead in developing and deploying
the protocol in the real environment in a full-fledged
way. Discussion on this dual approach is given section
2 of this paper.

The use of object oriented approach in designing of
a library for protocol specification ensures reusability,
portability as well as interoperability. Thus the
protocols designed using the dual phase approach

ensures sustenance of the models already developed, as
it uses object orientation in its library of executable
constructs using the target language Java. The choice
of UML as formalism for the modeling the protocols
has been on many folds. UML's strength is its
expressiveness without using any mathematical formula
and using only graphical representations. The target
language has been chosen to be Java, a powerful object
oriented language which has all the features needed for
object oriented implementation of constructive
specification and preferred by programmers worldwide
for a wide range of applications as the language for
implementation. Since, Java is platform-independent;
portability and inter-operability are inherently ensured.
Also, Java provides support for multiple thread
execution so that parallelism in protocol
implementation can be fully exploited. The library is
developed based on event driven approach, which is a
popularly used one in real time applications. As
protocols of modem / Internet era require to work in
this style, the executable specification constructs (or,
library of constructs) make use of this approach.
Details of these constructs are provided in section 3.

2. Development of protocols - the Dual
phase approach

The proposed dual phase approach for developing
network protocols consists of two paths - PI and P2 ­
in it. Path PI with two phases guide the protocol
developers (a) to use UML to model the protocol and,
(b) to use the executable constructs (library) for
specifying protocols in Java and then for prototyping
purpose. On successful completion of the second phase
the developers can follow the either continuation of
path PI or second path P2. These paths enable the
developer to proceed with the actual development and
deployment of the protocols. The path P2 also enables
to come back to UML model, in case there is any
problem in the deployment / implementation of the
product. Figure 1 gives these two paths and the
approach.

2.1 Role of UML and Java in path PI

As shown in Figurel, the path PI is the main path in
this work. It consists of (a) UML modeling and (b)
Protocol Specification and Prototyping. Prior to UML
modeling step, it is envisaged that the conventional
description of the product (i.e., protocols) has been
completed.

Authorized licensed use limited to: NATIONAL INSTITUTE OF TECHNOLOGY SURATHKAL. Downloaded on February 26,2021 at 05:46:42 UTC from IEEE Xplore. Restrictions apply.

Protocol Description: This is the initial step of any
methodology where a protocol or, communication
service is refined from the initial concept into a careful
product definition and a comprehensible description.
The description of the protocol is presented in a
structured way and includes all the important
characteristics of it, such as basic service features ,
available service extensions , alternative design options ,
and existing standards. These service characteristics
take (if applicabl e) the form of a service profile, which
has a layered structure and comprises the following
layers (bottom-up) [11]: (a) Infrastructure Layer: the
necessary infrastructure (wireless network and end­
computing) characteristics for the provision of the
service, (b)Distributed Processing Layer: service
characteristics related to the division of the required
processing work into separate tasks able to be executed
a number of wireless devices over a wireless network
in a distributed manner, (c) Layer service
characteristics - the interactions between the service
features, and, (d) User Interface Layer: service
characteristics facilitating the user to interact with the
service,

UML model: The UML model step reveals the
functionality of the protocol based on the requirements
and proposed profile . It creates a logical model
(design) of the protocol and it defines the technical
options related to it. The technical options will be
implementation specific, because there are many
alternative hardware, software, communications and
development strategies possible. Protocol
specifications are normally broken into four layers:
user interface (describing the service and user
interactions), service architecture (describing service
features and primitives and the way they interact with
each other) , physical network architecture (describing
the topology and the interconnection of network
elements), and communications drivers (describing the
low level protocols to be used between network
elements). For creation of specifications of the
protocols, as we noted earlier, formal methods are
preferably used. Formal specification, which includes
semantics, can be used to analyze not only for
completeness and consistency, but also for the
product's behavior. In this work, we have used UML
as the formal method.

Executable Specification and Prototyping: In this
step, the executable specifications using the constructs
in Java (details are in section 3) are developed
followed by prototyping of the protocol under
examination. As noted earlier, it is necessary to

determine initially the logical design of the protocol on
hand, which reflects the service specifications that will
be prototyped. This is then 'mapped' onto a particular
physical environment in the deployment stage. It
should be noted that the 'prototyping' can occur
repeatedly. The protocol designer enriches the parts of
the logical design of the protocol or network service
that are prototyped, until they decide that the prototype
includes all the necessary functionality to proceed to
the development of it, which is widely known as
operational prototyping [8]. In this work, the concept
of operational prototyping is taken care by means of
providing executable constructs for specifications of
protocols and prototyping.

Oec:d F'r¢l.l:...ttl! Sn.h,'CDnu'iru:1I
A c~"'eldi:..n ~Ltp

PATH- Pl
Clu lf4c Ro,,4Jilc:.c=L'En«.

Figure I: Protocols Development Methodology
(Dual phase approach)

3. Design Details of Executable Constructs in
Java

3.1 Design Rationale
Standard FDTs are declarative specification languages ,
and the design of a protocol should be centered around
it by the use of appropriate tools and packages. On the
other hand, as our work uses Java as a means to specify
the protocols using executable constructs of Java for
specifications purpose and thereafter prototyping, there
is no need of any additional tools or software. Thus ,
this work differs fundamentally from such languages in
a way that it allows designers to specify in Java and
synchronize events within a protocol using the
executable constructs in order to have ordering of
events and control over them in a better way.

Our work has been derived from Cicero [8]. Cicero is
not a full language, but is a language veneer extending

Authorized licensed use limited to: NATIONAL INSTITUTE OF TECHNOLOGY SURATHKAL. Downloaded on February 26,2021 at 05:46:42 UTC from IEEE Xplore. Restrictions apply.

existing languages. Cicero model is based on the notion
of events, event instances and event patterns. Here,
events are unbounded sequences of event instances,
and combinations of events is called event patterns.
Cicero is a small set of high-level control constructs for
handling these event driven approach of constructing
protocols: (a) emit construct is used to construct new
event instances (b) when construct controIs the
execution of the associated code for the events, (c)
cond construct implements conditional branches and
helps to distinguish between active events and event
patterns, (d) bunde provides grouping of events and
encourages modular programming, and, (e) escape
construct allows programmers to include statements in
the base language. Cicero uses an existing
programming language and the users of it need to learn
only these five Cicero constructs. Following drawbacks
of this Cicero have been observed: Multithreaded
execution is important to increase throughput, which is
not feasible in it. A natural abstraction for specifying
synchrony, asynchrony and concurrency in protocol
execution is an event driven paradigm, where a
protocol is viewed as a machine reacting to
internal/external events or messages. Use of these too,
is limited in Cicero. Implementation Cicero for modem
network protocols while using Java as the target
language with event handling mechanisms has also
certain limitations: Emit is not possible directly in Java
because each event listener has to have a copy of the
event; and, in the exception handling once the
exception is consumed it is not available for later use.
Similar to the AWT package, we need to have methods
for adding Action Event generators and appropriate
listeners. Cond is superfluous and hence is not a
concern in further design process. The same applies for
escape construct also. Without proper design for emit,
it is pointless to proceed into the designing of more
complex constructs such as bundle. Considering the
above drawbacks of Cicero, we proceeded towards a
different pragmatic design.

3.2 Revised Design

In order to overcome the drawbacks mentioned in
section 3.1, and to develop an event generation and
handling mechanism with a new approach using Java as
the target language for network protocols, it is required
to handle user-defined events. The AWT library of
JDK does not support user defined events; i.e., it
supports events are of pre-defined types only, such as
mouse click, key press, cursor movement etc. Hence,
design process headed in the direction of developing
event generation and handling mechanisms for user

defined events. Thus, event was developed as a
separate class named Jevent with attributes namely,

• Event name-String signifying the name of
the event

• Instance number-reflects the ordering
among events

• Priority-to facilitate exception events
which require immediate action

• Generic object-to associate a value or
data structure with the event

Each call to the emit must now contain an instance of
the class Jevent. This is equivalent to generating a new
event whose details are contained in the corresponding
instance of Jevent. Since many events can be generated
at once, it is required to have a data structure which can
temporarily hold the event instances, which are then
given to waiting when constructs. Queue is the data
structure that has been used for this purpose. But, a
simple FIFO (First-In-First-Out) queue is insufficient.
The reason being, we have to facilitate exception
events, which require immediate action. A priority
queue, thus, is found to be most suitable to our
problem. The priority of this queue called is based on
priority field of Jevent objects. The typical priority
queue (Event Queue) operations such as enqueue,
dequeue are provided for the effective use of it. Next
task is to find a mechanism for the construct emit.
Emit is designed as a method in the Jicero class which
accepts as input parameter an instance of Jevent. The
sequence of operations that occur following an emit
call are as follows:

• Accept the Jevent instance
• Enqueue the event in the event queue using

the enqueue method of the event queue
• Notify the process which passes the events to

the waiting when constructs. (This process is
called Dispatcher, which will be dealt in detail
later).

The when construct consists of two parts, namely

• Event - the event whose occurrence which
will trigger the actions

• List of target statements - the actions to be
performed.

Each when construct needs a separate thread of
execution and control. Hence for each and every when
construct we create a separate Java Thread using
Runnable Interface [7]. Since many when constructs
may name the same event, one event instance may
trigger many when constructs. These threads will all
run concurrently. But Java does not allow attachment
of independent code to a thread. Instead, a thread can
only be associated with an object of a particular type

Authorized licensed use limited to: NATIONAL INSTITUTE OF TECHNOLOGY SURATHKAL. Downloaded on February 26,2021 at 05:46:42 UTC from IEEE Xplore. Restrictions apply.

i.e. all threads of objects of a particular class will have
the same code. Hence the only option remaining was
to implement each when construct in a class of its own.
To simplify structure, each when construct is inherited
from an abstract base class called when.

As required by Java the target statements are included
in the run () method of the class. Since the when
constructs may be executed several times during the
course of protocol execution, it is necessary that the
actions be put in an infinite loop using while (true)
{ }. At the beginning of this loop we invoke the
thread suspension mechanism using Thread.wait (). It
is the job of the other method, namely updateJe of the
when construct to awaken the thread on the occurrence
of the correct event. The updateJe () method is used to
update the copy of the event to the currently passed
event. Since parallelism is involved, each when
construct will have its own copy of the event. The
passing of the event will be done by an event
dispatcher. It is the duty of the updateJe () method to
check for the correct triggering event. This is done by
a simple String compare operation on the event name
field of the event instance. If the correct instance is
found, the method Thread.notify () is used to notify
and awaken the rune) method to perform the necessary
actions. Care is also taken to implement concurrent
executions in our approach.

4. Experiments and Results

Experiments have been carried out for fairly
complex protocols such as at-least-once semantics,
RPC, cryptographic handshake protocol, client server
message passing, video server, etc. These protocols
were written using our specification language. They
were executed under environments like Windows 98,
Linux, etc. We present here, only a single example,
the RPC implemented using our package.

4.1 RPC

Remote procedure calls (RPC) form a major class of
protocols. They are concerned with the concepts of
distributed systems. Here we demonstrate the
implementation of an RPC with at least once semantics.
In other words the protocol ensures that the procedure
is executed at least once. It may be executed more than
once, but that is not the concern of the protocol. The
first step in protocol development is its description; a
finite state machine based modeling the RPC is chosen
here in order to describe its working. Since RPC is a
client server protocol we developed two FSMs, one

each of client and server. The FSM of the client: In this
client FSM, after initialization, a request is sent once
(event send_data) to the other party. Then the FSM
goes to the Wait state where the FSM waits for a
certain time before a time out occurs. After the time
out another request is sent and the FSM enters the wait
state again. This proceeds until a response from server
is obtained (event recv_data) or until the maximum
number of retries is reached, whereby failure is
reported. The FSM of the server: The FSM of the
server is quite simple. After initialization, the FSM
waits for a request to arrive (send_data). On receiving
such a request, it will proceed to another state, where
the procedure is actually carried out or called. After
calling the procedure, the FSM return to the original
state.
Based on these FSMs, the specifications using the Java
constructs (for client and server), i.e., the executable
specifications were written and the prototype of the
protocol was developed and tested. The actual work
was implemented in a Linux workstation. Typical test
results are tabulated below:

Table 1: Results

Protocol Native Our
Implementation Implementation

RPC Time for RPC Execution time
execution 430 ms 640 ms

It has been observed that there is a time difference
between our implementation and the native
implementation of most of the protocols. It is due to the
fact that our implementations do use Java as target
language and the native implementation uses C/C++
language. This difference can be eliminated by using
advanced compilers including JIT compilers for Java;
the work towards this task is an on going one in our
lab. Because of the space problem, complete details
could not be provided here.

5. Conclusion and Future work

The protocols like at-least-once semantics, RPC,
cryptographic handshake protocol, client server
message passing, video server, etc were written using
our specification language. They were executed under
environments like Windows 98, Linux, etc. The
protocols behaved as per expectation. There was no
visible difference when the two ends were on different
platforms (i.e. Windows 98 & Linux). Hence the
objective of inter-operability as also the objective of
portability, both of which were among the primary
concerns have been successfully achieved This

Authorized licensed use limited to: NATIONAL INSTITUTE OF TECHNOLOGY SURATHKAL. Downloaded on February 26,2021 at 05:46:42 UTC from IEEE Xplore. Restrictions apply.

corroborates the correctness and validity of our design
decisions such as using local dispatcher coupled with
message passing techniques. Also, since we could
experiment fairly complex protocols without fallacy
using our specification language which is based on
Java our decision to omit certain constructs of Cicero,
and make other optimal modifications of certain
concepts has been justified. We chose Lex and Yacc to
speed up the implementation process in Linux
environment. Our project is an attempt, one of the first
of its kind, to provide a user friendly tool for
prototyping (and if required, implementing) protocols
directly from the design stage without having to
undergo the pains of coding the lower levels details of
protocol implementation. One of the improvements
possible, is that the parser can also be made to be
platform independent. With suitable natural language
processing capabilities and ability to convert plaintext
to code, one can also specify the actions to be
performed in natural languages rather than the present
underlying language specification. With computers of
better capabilities viz. multiprocessor computers a
better degree of parallelism can be achieved to bring
the performance of the implementations as close as
possible to theoretical concepts.

10. References

[8] C.V. Ravi Shankar and Yen-Min Huang, CICERO: A
Constructive Protocol Specification Language. IEEE
Transactions on Software Engineering 13(9):257-266, June
1992.

[9] B.Prabhakaran and S.V.Raghavan, Object Oriented
Extensions to ESTELLE, proc. Of ICCC, 1990. pp.750-758

[10] Rick Reed, Notes on SDL-2000 for the New
Millenn ium, Computer Networks 35(200 I), pp.709-720,
Elsevier publications.

[II] D. Lewis, T. Tiropanis, A McEwan, Inter-domain
integration of services and service management, Leetrure
Notes in Computer service No 1238 (intelligence in service
and Networks: Technology for Co-operative Compet ition),
Springer Verlag. 1997, pp. 283-292

[12] www.java.sun.com:- the main Java site which has in
detail documentation on Java and Java Threads .

K.Chandra Sekaran is Professor in the
Dept. of Computer Engg at NITK
Surathkal , India. He has 22 years of
teaching and research in the areas of
networks, distributed computing, and has
over 95 publications in reputed journals /
conferences .

[I] Sitaram C.V., Raju and Alan C.Shaw, A Prototyp ing
Environment for Specifying, Executing and Checking
Communicating Real-Time State Machines, Software­
Practice and Experience, voI.24(2), Feb.1994, pp.175-95

[2] AValenzano, R.sisto and L.Ciminiera, Rapid
Prototyping of Protocols from LOTOS specification,
Software- Practice and Experience , voI.23(1), Jan. 1993,
pp.31-54 .

[3] Marc Zimmerman et.al, Making Formal Methods
Practical, paper in MIT, Cambridge 2000.

[4] F.Dietrich and J.P Hubaux, Formal methods for
communication services : meeting the industry expectat ions,
JI. Of Computer Networks, 38 (2002) pp.99-120.

5] R. Budde, K.Kautz , K.Kuhlenkamp, H.Zullighoven ,
prototyping. As Approach to Evolutionary System
Development, Springer. Berlin 1991.

[6] D.E. Avison, G. Fitzgerald. Information Systems
Development methodologies, Techniques and Tools .
McGraw-Hill , London.1997.

[7] Bobby Krupczak, Kenneth L.Calvert and Mostafa
H.Ammar, Implement ing Communication Protocols in Java,
IEEE Communications Magazine, Oct.1998 , pp.93-99.

R.K.Gnanamurthy IS Professor in
Electronics and communication and
currently working as Principal at
Vivekananda College of Engineering for
Women, Triehengodu (TN). He has over
50 reputed publications and specialized
in wireless networks.

Authorized licensed use limited to: NATIONAL INSTITUTE OF TECHNOLOGY SURATHKAL. Downloaded on February 26,2021 at 05:46:42 UTC from IEEE Xplore. Restrictions apply.

