
Memetic NSGA – A Multi-Objective Genetic Algorithm for Classification of
Microarray Data

Praveen Kumar K.
Dept of Computer

Engg, NITK -
Surathkal

praveenk.blr@gm
ail.com

Sharath S.
Dept of Computer

Engg, NITK –
Surathkal

gs_sharath@gmai
l.com

Rio D’Souza G.
Dept of Computer
Engg, St Joseph
Engg College,

Mangalore
rio@ieee.org

K. Chandra
Sekaran

Dept of Computer
Engg, NITK –

Surathkal
kchandrain@yaho

o.co.in

Abstract

In Gene Expression studies, the identification of

gene subsets responsible for classifying available
samples to two or more classes is an important task.
One major difficulty in identifying these gene subsets is
the availability of only a few samples compared to the
number of genes in the samples. Here we treat this
problem as a Multi-objective optimization problem of
minimizing the gene subset size and minimizing the
number of misclassified samples.

 We present a new elitist Non-dominated Sorting-
based Genetic Algorithm (NSGA) called Memetic-
NSGA which uses the concept of Memes. Memes are a
group of genes which have a particular functionality at
the phenotype level. We have chosen a 50 gene
Leukemia dataset to evaluate our algorithm. A
comparative study between Memetic-NSGA and
another Non-dominated Sorting Genetic Algorithm,
called NSGA-II, is presented. Memetic-NSGA is found
to perform better in terms of execution time and gene-
subset length identified.

1. Introduction

The working principle of Genetic Algorithms (GA)
[1] is very different from that of other classical
optimization techniques. In brief, the GA-based
evolution starts from a set of individuals or a set of
solutions that represent the functions to be optimized
and proceeds from generation to generation using basic
genetic operators like crossover and mutation.

Most real world search and optimization problems
deal with simultaneous optimization of multiple
objectives. There exist a number of algorithms for
solving a multi-objective optimization problem

(MOOP) [2]. However these algorithms ignore some
fundamental differences between the working
principles of single and multi-objective optimization
algorithms [3]. In fact, many multi-objective problems
involve working with many conflicting trade-off
objectives, which cannot be solved using single-
objective optimization [4]. These are some of the
factors that motivated us to work more deeply on
multi-objective optimization.

2. Multi-objective genetic algorithms

First we take a look at a few concepts related to
Multi-Objective Genetic Algorithms (MOGA) [5]:

1) Pareto-Optimality: A Pareto-front is the locus
formed by a set of solutions which are equally good as
compared to any other solutions of that set, i.e., any
solution on that front cannot be selected when
compared with another, without being biased towards
the other.

2) Domination: The concept of Domination is used
to identify non-dominated sets (i.e., Pareto-optimal
sets) of solutions for the given set of solutions. For this
purpose, two solutions are compared on the basis of
whether one dominates the other of not.

3) Elitism: Although the crossover and mutation are
the core search operators of GA, there is a possibility
of destruction of the good solutions developed so far,
due to these operators. Using elitism, it is possible to
pass the best solutions of a particular generation to the
next generation, unaffected. This helps the
evolutionary algorithm (EA) converge faster [6]. This
ensures the preservation of good individuals from the
old and the new populations.

15th International Conference on Advanced Computing and Communications

0-7695-3059-1/07 $25.00 © 2007 IEEE
DOI 10.1109/ADCOM.2007.114

75

Authorized licensed use limited to: NATIONAL INSTITUTE OF TECHNOLOGY SURATHKAL. Downloaded on February 24,2021 at 04:15:48 UTC from IEEE Xplore. Restrictions apply.

3. Related work

Among various multi-objective optimization
algorithms, we adopt an elitist Non-dominated Sorting
Genetic Algorithm (NSGA) [7] which is an effective
approach that suits our purpose. The working principle
of Non-dominated Sorting is described here.

3.1. Non-dominated sorting genetic algorithm

In Non-dominated Sorting, the offspring population

Qt (of size N) is first created by using the parent
population Pt (of size N) and the usual genetic
operators such as single-point crossover and bit-wise
mutation operators. Thereafter, the two populations are
combined together to form Rt of size 2N. Then,
depending on the multiple objective functions the
fitness of each individual in the 2N population is
determined, using the concept of domination and ranks
are assigned with respect to their relative fitness.

With all individuals ranked, a non-dominated

sorting procedure is carried out over the 2N population
to divide them into different non-dominated fronts.
Once the non-dominated sorting is over, the new parent
population Pt+1 is created by choosing solutions of
different non-dominated fronts, one at a time. The
filling starts with strings from the best non-dominated
front and continues with strings of second non-
dominated front, and so on, as shown in Fig. 1.

Since the overall population size of Rt is 2N, not all
fronts can be accommodated in the new parent
population. The fronts which could not be
accommodated at all are simply discarded. However,
while the last allowed front is being considered, there

may be more stings in it than the remaining population
slots in the new population. This scenario is illustrated
in Fig. 1.

To deal with this condition we simply take the first x
individuals which make up the N population number
and discard the rest of the solutions. This procedure is
continued for a maximum of T iterations.

3.2. Classifier for identification of gene-sets

In our work we have used Leave-Out-One-Cross-
Validation (LOOCV) to classify samples into class A
or class B. We describe a class determination
procedure [8] for classifying samples into two classes
only, although modifications can be made to generalize
the procedure for any number of classes.

It is a common practice to divide the available data
sets into two groups one used for training purposes for
generating a classifier and the other used for testing the
developed classifier. The most commonly employed
method to estimate the accuracy in such situations is
the cross-validation approach.

In cross-validation, the training datasets (say T of
them) are partitioned into k subsets, C1, C2,..., Ck (k is
known as the number of cross-validation trials). Each
subset is kept roughly of the same size. Then a
classifier is constructed using Ti = T - Ci samples to
test the accuracy on the samples in Ci. Once the
classifier is constructed using Ti samples, each of the
Ci samples is tested using the classifier for class A or
B. Since these Ti samples are used as training samples,
we can compare the classification given by the above
procedure with the actual class in which the samples
belong. If there is a mismatch, we increment the
training sample mismatch counter τ-train by one. This
procedure is repeated for all Ci samples in the i-th
subset. Thereafter, this procedure is repeated for all k
subsets and overall training sample mismatch counter
τ-train is noted.

LOOCV is one of the most commonly used cross-
validation approaches in which only one sample in the
training set is withheld and classifier is constructed
using the rest of the samples to predict the class of the
withheld sample. Thus, in the LOOCV there are k = T
subsets. The number of mismatches τ-test obtained by
comparing the predicted class with the actual class of
each sample is noted.

3.3. The resulting optimization problem

Here we formulate the gene subset identification task
as a multi-objective optimization problem with three
different conflicting objectives. Here one of the
objectives of the identification task is to minimize the

Pt

Qt

Rt
Non-dominated sorting

Rejected

Pt+1

Figure 1. The non-dominated sorting procedure

76

Authorized licensed use limited to: NATIONAL INSTITUTE OF TECHNOLOGY SURATHKAL. Downloaded on February 24,2021 at 04:15:48 UTC from IEEE Xplore. Restrictions apply.

number of genes used in classification while
maintaining acceptable classification accuracy. Hence,
the gene subset identification task can be formulated as
a multi-objective optimization problem with three
different conflicting objectives.

The multi-objective optimization problem
formulation is as follows:
1) The first objective function - The gene subset
identification task is to minimize the number genes in a
subset or to minimize the gene subset size for a
classifier.
2) The second objective function - Minimize the
number of class prediction mismatches in the training
samples. These are calculated using the LOOCV, i.e.,
τ-train.
3) The third objective function - To minimize the
number of class prediction mismatches in the test
samples, these are calculated using the classifier
constructed based on all samples in the training set,
i.e., τ-test.

We have used an evolutionary based technique to
identify most discriminative gene subsets, a weighted
voting approach is employed to predict the class of a
sample based on such informative gene subsets and a
set of samples with known class labels, and the
LOOCV procedure is used to determine the number of
mismatches in the training samples. Thereafter, the
classifier is constructed using such informative gene
subsets and all the training samples. Then, the
performance of the classifier is estimated using the
remaining samples in a test-set. The multi-objective
GA (NSGA-II) described above is considered for
handling the above three conflicting objectives.

4. Memetic-NSGA: a new approach

First we define memes and then distinguish
Memetic Algorithms from Genetic Algorithms.
Thereafter we describe the Memetic-NSGA and then
the operators used to manipulate memes. Finally we
present the Memetic-NSGA.

4.1. The concept of memes

Richard Dawkins coined the term meme [9], and

defined it as “a unit of cultural transmission, or a unit
of imitation”. In other words memes are a set of similar
genes which provide a specific functionality at the
phenotype level.

Memes have, as their fundamental property,
evolution via natural selection in a way very similar to
Charles Darwin’s ideas concerning biological
evolution, on the premise that replication, mutation,
survival and competition influence them. Thus memes

provide a framework for a theory of cultural evolution
[10], analogous to the theory of biological evolution
based on genes.

 Dawkins introduced the term after writing that
evolution depended not on the particular chemical
basis of genetics, but only on the existence of a self-
replicating unit of transmission in the case of
biological evolution, the gene. For Dawkins, the meme
exemplifies another self-replicating unit, and most
importantly, one which he thought would prove useful
in explaining human behavior and cultural evolution.
This analogy suggests that the definition of a meme
should refer to the physical structure, or abstract code
representing that structure, representing a real idea as
observed in-situ. Genes do not depend upon their
transfer for their current existence; they only need to
have a definite and unique physical structure. One
might appropriately extend the analogy to the concept
of a meme.

4.2. Memetic algorithms

A Memetic Algorithm is a population-based

approach for heuristic search in optimization problems.
These are shown to be orders of magnitude faster than
traditional genetic algorithms for some problem
domains. Genetic Algorithms are not well suited for
fine-tuning structures which are close to optimal
solutions.

Incorporation of local improvement operators into
the recombination step of a genetic algorithm is
essential if a competitive genetic algorithm is desired.
Memetic Algorithms (MA) [11] are evolutionary
algorithms that apply a separate local search process to
refine individuals (i.e., improve their fitness).
Combining global and local search is a strategy used
by many successful global optimization approaches,
and MAs have in fact been recognized as a powerful
algorithmic paradigm for evolutionary computing.

4.3. Memetic-NSGA

Taking inspiration from the concepts of memes and

evolution discussed above, we present the Memetic
Non-dominated Sorting Genetic Algorithm or
Memetic-NSGA. The underlying principle behind the
use of memes in our algorithm is based on the
following line of thought [12].

The complete Memetic-NSGA is given below:
BEGIN
While generation count is not reached

Begin Loop
• Combine parent Pt and offspring population

Qt to obtain population Rt of size 2N.

77

Authorized licensed use limited to: NATIONAL INSTITUTE OF TECHNOLOGY SURATHKAL. Downloaded on February 24,2021 at 04:15:48 UTC from IEEE Xplore. Restrictions apply.

• Perform Non-dominated Sort on Rt and assign
ranks to each pareto front with fitness Fi.

• Starting from Pareto front with fitness F1, add
each pareto front Fi to the new parent
population Pt+1 until a complete front Fi
cannot be included.

• From the current pareto front Fi, add
individual members to new parent population
Pt+1 until it reaches the size N.

• Apply the Find-Meme operator to the
members of new parent population Pt+1.

• Apply the Meme-fitness factor, Mff to each
meme member of new parent population Pt+1
and increment their fitness value.

• Apply selection, crossover and mutation to
new parent population Pt+1 and obtain the
new offspring population Qt+1.

• Increment generation count.
End Loop

END.

4.4. Operators in memetic-NSGA

1) Find-Meme operator: This operator finds the set

of individuals in a given population which share the
longest set of similar genes. Each of these set of
individuals represents a meme. Once the memes are
identified, each of the meme group is represented by
one individual among them, called the leader. The
individual of the highest rank in the meme group is
selected as the leader.

By selecting groups which contain similar set of
genes we are indirectly dividing the population into
sets of individuals which share some common
characteristic property or functionality or phenotype
nature. This sort of division results in the localized
nature of the search technique.

2) Meme-fitness factor: Memes that consists of
higher rank individuals are more fit than the ones that
consist of lower rank individuals. Therefore in the
selection process we explicitly increase the fitness
value of the individuals by a meme-fitness factor
depending on the fitness value of all the individuals in
the meme. The meme-fitness factor, Mff is defined as:

1)(−∑=

i
iff fM

Where fi is the fitness value of the i-th individual in

the meme. After this calculation, the fitness value of
each individual in the meme is incremented by the
meme-fitness factor.

5. Results

We carried out a comparative study between
NSGA-II and Memetic-NSGA. Both the algorithms
were run in similar conditions on the 50-gene
Leukemia dataset of Golub et. al. [13]. The results
obtained were analyzed over various parameters like
run time, train errors, test errors and classifier length.
A population of 50 individuals was considered for all
the runs. Tests were carried out on a Pentium-IV, 2.0
GHz machine running Fedora Core 3.0 with 512 MB
RAM.

5.1. Execution Time

Fig. 2 shows the variation of execution time with

generations and Table 1 gives the corresponding
values. It is evident from the graph that Memetic-
NSGA is faster than NSGA-II as the number of
generations increase. Since genetic algorithms are run
for hundreds of generations, time is an important factor
to be considered. There is a 30% improvement in the

Table 1. Execution time versus generations

Generations 25 50 75 100

NSGA II 575 861 1342 1773 Execution
Time
(sec) Memetic-

NSGA 524 956 1067 1276

Figure 2. Execution time plotted over
generations

78

Authorized licensed use limited to: NATIONAL INSTITUTE OF TECHNOLOGY SURATHKAL. Downloaded on February 24,2021 at 04:15:48 UTC from IEEE Xplore. Restrictions apply.

execution time of Memetic-NSGA over NSGA-II for
the 100 generations shown.

5.2. Train error

Fig. 3 shows the variation of Train Error with

generations and Table 2 gives the corresponding
values. This is the first objective of the multi-objective
optimization problem at hand. Here NSGA II
converges faster to the ideal value of zero train errors,
however both the algorithms achieve the ideal value.

5.3. Test error

Fig. 4 shows the variation of Test Error with
generations and Table 3 gives the corresponding
values. This is the second objective of the multi-
objective optimization problem. Here too NSGA II
converges faster to zero test errors but Memetic-NSGA
achieves the same a few generations later.

5.4. Gene subset length

Fig. 5 shows the variation of Gene Subset

(classifier) length with generations and Table 4 gives
the corresponding values. A major improvement is
seen in Memetic-NSGA with a result of gene subset
lengths of 2 and 3 where as NSGA II achieves lengths
of only 4 and 5. Therefore a 50% improvement is
achieved in this objective.

6. Conclusion

In this work we have proposed a new Multi-
objective Evolutionary Algorithm called Memetic-
NSGA which is based on the concept of Memes. We
started off our work by implementing the existing
NSGA-II algorithm and analyzing the results generated
by it. After that we decided to introduce localized
Memetic algorithms to obtain better results.

We have retained the concept of Non-dominated
sorting from NSGA II, and introduced new operators

Figure 3. Train error plotted over
generations

Table 2. Train error versus generations

Generations 5 10 15 20 25

NSGA II 5.86 0.22 0.04 0.02 0.00
Train
Error Memetic

-NSGA 9.12 1.86 0.32 0.32 0.32

Table 3. Test error versus generations

Generations 5 10 15 20 25

NSGA II 6.88 0.34 0.00 0.00 0.00
Test
Error Memetic

-NSGA 9.56 2.48 0.00 0.00 0.00

Figure 4. Test error plotted over generations

79

Authorized licensed use limited to: NATIONAL INSTITUTE OF TECHNOLOGY SURATHKAL. Downloaded on February 24,2021 at 04:15:48 UTC from IEEE Xplore. Restrictions apply.

like Find-meme and Meme-fitness factor. We have
also retained the LOOCV validation method to classify
samples.

A comparative study between NSGA II and

Memetic-NSGA was carried out and simulation results
were gathered and analyzed. The results were very
encouraging with Memetic-NSGA giving smaller gene
classifiers and also the run time of the algorithm was
found to be better than NSGA-II for larger number of
generations.

Future work on these lines would be to test the
effectiveness of Memetic-NSGA to deal with various
other multi-objective optimization problems.

7. References

[1] D.E. Goldberg, Genetic Algorithms for Search,
Optimization, and Machine Learning, Addison-Wesley,
Reading, MA, 1989.

[2] J. Andersson, "A Survey of Multiobjective Optimization
in Engineering Design," Technical report LiTH-IKP-R-1097,
Dept of Mechanical Engg, Linkping University, Sweden,
2000, pp. 34.

[3] C.A. Brizuela and E. Gutiérrez, "Multi-objective Go With
the Winners Algorithm: A Preliminary Study," Evolutionary
Multi-Criterion Optimization, Third Int’l. Conf., EMO 2005,
Guanajuato, Mexico, March 9-11, 2005.

[4] D.A. Van Veldhuizen and G.B. Lamont, “Multiobjective
Evolutionary Algorithms: Analyzing the State-of-the-art,”
Evol. Comp., Vol. 8, No. 2, 2000, pp. 125-147.

[5] K. Deb, Multi-objective Optimization using Evolutionary
Algorithms, Wiley, Chichester, UK, 2001.

[6] L. Costa and P. Oliveira, "An Evolution Strategy for
Multiobjective Optimization," In D. B. Fogel et al., editors,
CEC'02, volume 1, IEEE, 2002, pp. 97-102.

[7] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan, “A
Fast and Elitist Multi-objective Genetic Algorithm: NSGA-
II,” IEEE Trans. Evol. Comp., vol. 6, no. 2, Apr. 2002, pp.
182-197.

[8] K. Deb and A.R. Reddy, “Classification of Two-class
Cancer Data Reliably Using Evolutionary Algorithms,” Publ.
of Kanpur Genetic Algorithms Lab., India, KanGAL Report
No. 2003001, 2003.

[9] R. Dawkins, The Selfish Gene, Oxford University Press,
1976.

[10] C.A.C. Coello and R.L. Becerra, "Evolutionary
Multiobjective Optimization Using a Cultural Algorithm,"
Swarm Intelligence Symposium, 2003, SIS 03, Proc. of the,
IEEE, 24-26 April 2003, pp. 6 – 13.

[11] S. Areibi, M. Moussa, and H. Abdullah, “A Comparison
of Genetic/Memetic Algorithms and Other Heuristic Search
Techniques,” 2001 Int’l. Conf. on Artificial Intelligence IC-
AI 2001, Las Vegas, 2001.

[12] H. A. Abbass, "A Memetic Pareto Evolutionary
Approach to Artificial Neural Networks," In M. Stumptner,
D. Corbett, and M. Brooks, editors, Proc. of the 14th
Australian Joint Conf. on Artificial Intelligence (AI'01),
Springer-Verlag, Berlin, 2001, pp. 1-12.

[13] T.R. Golub, D.K. Slonim, P. Tamayo, C. Huard, M.
Gaasenbeek, J.P. Mesirov, H. Coller, M.L. Loh, J.R.
Downing, M.A. Caligiuri, C.D. Bloomfield, and E.S. Lander,
“Molecular Classification of Cancer: Class Discovery and
Class Prediction by Gene Expression Monitoring,” Science,
vol. 286, 1999, pp. 531-537.

Figure 5. Classifier length plotted over
generations

Table 4. Classifier length versus generations

Generations 5 10 15 20 25

NSGA II 6.52 6.08 5.96 5.76 4.98 Class-
ifier
Length Memetic

-NSGA 6.52 4.80 2.84 2.84 2.84

80

Authorized licensed use limited to: NATIONAL INSTITUTE OF TECHNOLOGY SURATHKAL. Downloaded on February 24,2021 at 04:15:48 UTC from IEEE Xplore. Restrictions apply.

