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Abstract 

 
In Gene Expression studies, the identification of 

gene subsets responsible for classifying available 
samples to two or more classes is an important task. 
One major difficulty in identifying these gene subsets is 
the availability of only a few samples compared to the 
number of genes in the samples. Here we treat this 
problem as a Multi-objective optimization problem of 
minimizing the gene subset size and minimizing the 
number of misclassified samples. 

   We present a new elitist Non-dominated Sorting-
based Genetic Algorithm (NSGA) called Memetic-
NSGA which uses the concept of Memes. Memes are a 
group of genes which have a particular functionality at 
the phenotype level. We have chosen a 50 gene 
Leukemia dataset to evaluate our algorithm. A 
comparative study between Memetic-NSGA and 
another Non-dominated Sorting Genetic Algorithm, 
called NSGA-II, is presented. Memetic-NSGA is found 
to perform better in terms of execution time and gene-
subset length identified.  
 
1. Introduction 
 

The working principle of Genetic Algorithms (GA) 
[1] is very different from that of other classical 
optimization techniques. In brief, the GA-based 
evolution starts from a set of individuals or a set of 
solutions that represent the functions to be optimized 
and proceeds from generation to generation using basic 
genetic operators like crossover and mutation.  

Most real world search and optimization problems 
deal with simultaneous optimization of multiple 
objectives. There exist a number of algorithms for 
solving a multi-objective optimization problem 

(MOOP) [2]. However these algorithms ignore some 
fundamental differences between the working 
principles of single and multi-objective optimization 
algorithms [3]. In fact, many multi-objective problems 
involve working with many conflicting trade-off 
objectives, which cannot be solved using single-
objective optimization [4]. These are some of the 
factors that motivated us to work more deeply on 
multi-objective optimization. 
 
2. Multi-objective genetic algorithms 
 

First we take a look at a few concepts related to 
Multi-Objective Genetic Algorithms (MOGA) [5]: 

1) Pareto-Optimality: A Pareto-front is the locus 
formed by a set of solutions which are equally good as 
compared to any other solutions of that set, i.e., any 
solution on that front cannot be selected when 
compared with another, without being biased towards 
the other. 

2) Domination: The concept of Domination is used 
to identify non-dominated sets (i.e., Pareto-optimal 
sets) of solutions for the given set of solutions. For this 
purpose, two solutions are compared on the basis of 
whether one dominates the other of not. 

3) Elitism: Although the crossover and mutation are 
the core search operators of GA, there is a possibility 
of destruction of the good solutions developed so far, 
due to these operators. Using elitism, it is possible to 
pass the best solutions of a particular generation to the 
next generation, unaffected. This helps the 
evolutionary algorithm (EA) converge faster [6]. This 
ensures the preservation of good individuals from the 
old and the new populations. 
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3. Related work 
 

Among various multi-objective optimization 
algorithms, we adopt an elitist Non-dominated Sorting 
Genetic Algorithm (NSGA) [7] which is an effective 
approach that suits our purpose. The working principle 
of Non-dominated Sorting is described here. 

 
3.1. Non-dominated sorting genetic algorithm 

 
In Non-dominated Sorting, the offspring population 

Qt (of size N) is first created by using the parent 
population Pt (of size N) and the usual genetic 
operators such as single-point crossover and bit-wise 
mutation operators. Thereafter, the two populations are 
combined together to form Rt of size 2N. Then, 
depending on the multiple objective functions the 
fitness of each individual in the 2N population is 
determined, using the concept of domination and ranks 
are assigned with respect to their relative fitness.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
With all individuals ranked, a non-dominated 

sorting procedure is carried out over the 2N population 
to divide them into different non-dominated fronts. 
Once the non-dominated sorting is over, the new parent 
population Pt+1 is created by choosing solutions of 
different non-dominated fronts, one at a time. The 
filling starts with strings from the best non-dominated 
front and continues with strings of second non-
dominated front, and so on, as shown in Fig. 1. 

Since the overall population size of Rt is 2N, not all 
fronts can be accommodated in the new parent 
population. The fronts which could not be 
accommodated at all are simply discarded. However, 
while the last allowed front is being considered, there 

may be more stings in it than the remaining population 
slots in the new population. This scenario is illustrated 
in Fig. 1. 

To deal with this condition we simply take the first x 
individuals which make up the N population number 
and discard the rest of the solutions. This procedure is 
continued for a maximum of T iterations. 
 
3.2. Classifier for identification of gene-sets 
 

In our work we have used Leave-Out-One-Cross-
Validation (LOOCV) to classify samples into class A 
or class B. We describe a class determination 
procedure [8] for classifying samples into two classes 
only, although modifications can be made to generalize 
the procedure for any number of classes.  

It is a common practice to divide the available data 
sets into two groups one used for training purposes for 
generating a classifier and the other used for testing the 
developed classifier. The most commonly employed 
method to estimate the accuracy in such situations is 
the cross-validation approach. 

In cross-validation, the training datasets (say T of 
them) are partitioned into k subsets, C1, C2,..., Ck (k is 
known as the number of cross-validation trials). Each 
subset is kept roughly of the same size. Then a 
classifier is constructed using Ti = T - Ci samples to 
test the accuracy on the samples in Ci. Once the 
classifier is constructed using Ti samples, each of the 
Ci samples is tested using the classifier for class A or 
B. Since these Ti samples are used as training samples, 
we can compare the classification given by the above 
procedure with the actual class in which the samples 
belong. If there is a mismatch, we increment the 
training sample mismatch counter τ-train by one. This 
procedure is repeated for all Ci samples in the i-th 
subset. Thereafter, this procedure is repeated for all k 
subsets and overall training sample mismatch counter 
τ-train is noted. 

LOOCV is one of the most commonly used cross-
validation approaches in which only one sample in the 
training set is withheld and classifier is constructed 
using the rest of the samples to predict the class of the 
withheld sample. Thus, in the LOOCV there are k = T 
subsets. The number of mismatches τ-test obtained by 
comparing the predicted class with the actual class of 
each sample is noted. 
 
3.3. The resulting optimization problem 
 

Here we formulate the gene subset identification task 
as a multi-objective optimization problem with three 
different conflicting objectives. Here one of the 
objectives of the identification task is to minimize the 

Pt 

Qt 

Rt 
Non-dominated sorting 

Rejected 

Pt+1 

Figure 1.  The non-dominated sorting procedure 
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number of genes used in classification while 
maintaining acceptable classification accuracy. Hence, 
the gene subset identification task can be formulated as 
a multi-objective optimization problem with three 
different conflicting objectives. 

The multi-objective optimization problem 
formulation is as follows: 
1) The first objective function - The gene subset 
identification task is to minimize the number genes in a 
subset or to minimize the gene subset size for a 
classifier. 
2) The second objective function - Minimize the 
number of class prediction mismatches in the training 
samples. These are calculated using the LOOCV, i.e., 
τ-train. 
3) The third objective function - To minimize the 
number of class prediction mismatches in the test 
samples, these are calculated using the classifier 
constructed based on all samples in the training set, 
i.e., τ-test. 

We have used an evolutionary based technique to 
identify most discriminative gene subsets, a weighted 
voting approach is employed to predict the class of a 
sample based on such informative gene subsets and a 
set of samples with known class labels, and the 
LOOCV procedure is used to determine the number of 
mismatches in the training samples. Thereafter, the 
classifier is constructed using such informative gene 
subsets and all the training samples. Then, the 
performance of the classifier is estimated using the 
remaining samples in a test-set. The multi-objective 
GA (NSGA-II) described above is considered for 
handling the above three conflicting objectives. 
 
4. Memetic-NSGA: a new approach 
 

First we define memes and then distinguish 
Memetic Algorithms from Genetic Algorithms. 
Thereafter we describe the Memetic-NSGA and then 
the operators used to manipulate memes. Finally we 
present the Memetic-NSGA. 

 
4.1. The concept of memes 

 
Richard Dawkins coined the term meme [9], and 

defined it as “a unit of cultural transmission, or a unit 
of imitation”. In other words memes are a set of similar 
genes which provide a specific functionality at the 
phenotype level. 

Memes have, as their fundamental property, 
evolution via natural selection in a way very similar to 
Charles Darwin’s ideas concerning biological 
evolution, on the premise that replication, mutation, 
survival and competition influence them. Thus memes 

provide a framework for a theory of cultural evolution 
[10], analogous to the theory of biological evolution 
based on genes. 

   Dawkins introduced the term after writing that 
evolution depended not on the particular chemical 
basis of genetics, but only on the existence of a self-
replicating unit of transmission in the case of 
biological evolution, the gene. For Dawkins, the meme 
exemplifies another self-replicating unit, and most 
importantly, one which he thought would prove useful 
in explaining human behavior and cultural evolution. 
This analogy suggests that the definition of a meme 
should refer to the physical structure, or abstract code 
representing that structure, representing a real idea as 
observed in-situ. Genes do not depend upon their 
transfer for their current existence; they only need to 
have a definite and unique physical structure. One 
might appropriately extend the analogy to the concept 
of a meme. 

 
4.2. Memetic algorithms 

 
A Memetic Algorithm is a population-based 

approach for heuristic search in optimization problems. 
These are shown to be orders of magnitude faster than 
traditional genetic algorithms for some problem 
domains. Genetic Algorithms are not well suited for 
fine-tuning structures which are close to optimal 
solutions.  

Incorporation of local improvement operators into 
the recombination step of a genetic algorithm is 
essential if a competitive genetic algorithm is desired. 
Memetic Algorithms (MA) [11] are evolutionary 
algorithms that apply a separate local search process to 
refine individuals (i.e., improve their fitness). 
Combining global and local search is a strategy used 
by many successful global optimization approaches, 
and MAs have in fact been recognized as a powerful 
algorithmic paradigm for evolutionary computing. 

 
4.3. Memetic-NSGA 

 
Taking inspiration from the concepts of memes and 

evolution discussed above, we present the Memetic 
Non-dominated Sorting Genetic Algorithm or 
Memetic-NSGA. The underlying principle behind the 
use of memes in our algorithm is based on the 
following line of thought [12].  

The complete Memetic-NSGA is given below: 
BEGIN 
While generation count is not reached 

Begin Loop 
• Combine parent Pt and offspring population 

Qt to obtain population Rt of size 2N. 

77

Authorized licensed use limited to: NATIONAL INSTITUTE OF TECHNOLOGY SURATHKAL. Downloaded on February 24,2021 at 04:15:48 UTC from IEEE Xplore.  Restrictions apply. 



• Perform Non-dominated Sort on Rt and assign 
ranks to each pareto front with fitness Fi. 

• Starting from Pareto front with fitness F1, add 
each pareto front Fi to the new parent 
population Pt+1 until a complete front Fi 
cannot be included. 

• From the current pareto front Fi, add 
individual members to new parent population 
Pt+1 until it reaches the size N. 

• Apply the Find-Meme operator to the 
members of new parent population Pt+1. 

• Apply the Meme-fitness factor, Mff to each 
meme member of new parent population Pt+1 
and increment their fitness value. 

• Apply selection, crossover and mutation to 
new parent population Pt+1 and obtain the 
new offspring population Qt+1. 

• Increment generation count. 
End Loop 

END. 
 

4.4. Operators in memetic-NSGA 
 
1) Find-Meme operator: This operator finds the set 

of individuals in a given population which share the 
longest set of similar genes. Each of these set of 
individuals represents a meme. Once the memes are 
identified, each of the meme group is represented by 
one individual among them, called the leader. The 
individual of the highest rank in the meme group is 
selected as the leader. 

By selecting groups which contain similar set of 
genes we are indirectly dividing the population into 
sets of individuals which share some common 
characteristic property or functionality or phenotype 
nature. This sort of division results in the localized 
nature of the search technique. 

2) Meme-fitness factor: Memes that consists of 
higher rank individuals are more fit than the ones that 
consist of lower rank individuals. Therefore in the 
selection process we explicitly increase the fitness 
value of the individuals by a meme-fitness factor 
depending on the fitness value of all the individuals in 
the meme. The meme-fitness factor, Mff is defined as: 

 
1)( −∑=

i
iff fM  

 
Where fi is the fitness value of the i-th individual in 

the meme. After this calculation, the fitness value of 
each individual in the meme is incremented by the 
meme-fitness factor. 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

5. Results 
 

We carried out a comparative study between 
NSGA-II and Memetic-NSGA. Both the algorithms 
were run in similar conditions on the 50-gene 
Leukemia dataset of Golub et. al. [13]. The results 
obtained were analyzed over various parameters like 
run time, train errors, test errors and classifier length. 
A population of 50 individuals was considered for all 
the runs. Tests were carried out on a Pentium-IV, 2.0 
GHz machine running Fedora Core 3.0 with 512 MB 
RAM.  

 
5.1. Execution Time 

 
Fig. 2 shows the variation of execution time with 

generations and Table 1 gives the corresponding 
values. It is evident from the graph that Memetic-
NSGA is faster than NSGA-II as the number of 
generations increase. Since genetic algorithms are run 
for hundreds of generations, time is an important factor 
to be considered. There is a 30% improvement in the 

Table 1. Execution time versus generations

Generations 25 50 75 100 

NSGA II 575 861 1342 1773 Execution 
Time 
(sec) Memetic- 

NSGA 524 956 1067 1276 

Figure 2.  Execution time plotted over 
generations 
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execution time of Memetic-NSGA over NSGA-II for 
the 100 generations shown. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5.2. Train error 

 
Fig. 3 shows the variation of Train Error with 

generations and Table 2 gives the corresponding 
values. This is the first objective of the multi-objective 
optimization problem at hand. Here NSGA II 
converges faster to the ideal value of zero train errors, 
however both the algorithms achieve the ideal value.  
 
5.3. Test error 

 
Fig. 4 shows the variation of Test Error with 
generations and Table 3 gives the corresponding 
values. This is the second objective of the multi-
objective optimization problem. Here too NSGA II 
converges faster to zero test errors but Memetic-NSGA  
achieves the same a few generations later. 
 
 
 

5.4. Gene subset length 
 
Fig. 5 shows the variation of Gene Subset 

(classifier) length with generations and Table 4 gives 
the corresponding values. A major improvement is 
seen in Memetic-NSGA with a result of gene subset 
lengths of 2 and 3 where as NSGA II achieves lengths 
of only 4 and 5. Therefore a 50% improvement is 
achieved in this objective. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 

 
6. Conclusion 
 

In this work we have proposed a new Multi-
objective Evolutionary Algorithm called Memetic-
NSGA which is based on the concept of Memes. We 
started off our work by implementing the existing 
NSGA-II algorithm and analyzing the results generated 
by it. After that we decided to introduce localized 
Memetic algorithms to obtain better results. 

We have retained the concept of Non-dominated 
sorting from NSGA II, and introduced new operators 

Figure 3.  Train error  plotted over
generations 

Table 2. Train error versus generations

Generations 5 10 15 20 25 

NSGA II 5.86 0.22 0.04 0.02 0.00 
Train 
Error Memetic

-NSGA 9.12 1.86 0.32 0.32 0.32 

Table 3. Test error versus generations

Generations 5 10 15 20 25 

NSGA II 6.88 0.34 0.00 0.00 0.00 
Test 
Error Memetic

-NSGA 9.56 2.48 0.00 0.00 0.00 

 

Figure 4.  Test error  plotted over generations 
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like Find-meme and Meme-fitness factor. We have 
also retained the LOOCV validation method to classify 
samples. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
A comparative study between NSGA II and 

Memetic-NSGA was carried out and simulation results 
were gathered and analyzed. The results were very 
encouraging with Memetic-NSGA giving smaller gene 
classifiers and also the run time of the algorithm was 
found to be better than NSGA-II for larger number of 
generations. 

Future work on these lines would be to test the 
effectiveness of Memetic-NSGA to deal with various 
other multi-objective optimization problems. 
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Figure 5.  Classifier length plotted over 
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Length Memetic
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