
Ontologies for Specifying and Reconciling

Contexts of Web Services

S. Sattanathan1

National Institute of Technology Karnataka, Surathkal, India

N. C. Narendra2

IBM Software Labs India, Bangalore, India

Z. Maamar3

Zayed University, Dubai, U.A.E

Abstract

This paper presents an ontology-based approach for the specification (using OWL-C as a definition
language) and reconciliation (using ConWeS as a mediation tool) of contexts of Web services. Web
services are independent components that can be triggered and composed for the satisfaction of
user needs (e.g., hotel booking). Because Web services originate from different providers, their
composition faces the obstacle of the context heterogeneity featuring these Web services. An
unawareness of this context heterogeneity during Web services composition and execution results in
a lack of the quality and relevancy of information that permits tracking the composition, monitoring
the execution, and handling exceptions.

Keywords: Web services, Ontology, Context, Reconciliation.

1 Introduction & Motivation

Web services constitute a new approach for achieving Business-to-Business
integration [15]. One of the strengths of Web services (also called services in

1 Email: ss nitk@yahoo.co.in
2 Email: narendra@in.ibm.com
3 Email: zakaria.maamar@zu.ac.ae

Electronic Notes in Theoretical Computer Science 146 (2006) 43–57

1571-0661 © 2006 Elsevier B.V. 

www.elsevier.com/locate/entcs

doi:10.1016/j.entcs.2005.11.006
Open access under CC BY-NC-ND license.

file:ss_nitk@yahoo.co.in
file:narendra@in.ibm.com
file:zakaria.maamar@zu.ac.ae
http://www.elsevier.com/locate/entcs
http://creativecommons.org/licenses/by-nc-nd/3.0/


this paper) is their capacity to be composed into high-level business processes
known as composite services. Composition primarily addresses the situation
of a user request that cannot be satisfied by any available service, whereas a
composite service obtained by integrating available services might be used.

Several efforts are put in the development of standards for Web services
(e.g., WSDL, SOAP, BPEL [13]) in terms of specification, discovery, selection,
composition, just to cite a few. In [11], we highlighted the importance of deal-
ing with the composition of Web services at three connected levels. The lower
level is about the messages that Web services of a composite service exchange
during interaction. The mid level is about the semantics of the content that
these messages convey. The need for a common semantics is intensified when
Web services, which originate from different providers, take part in the same
composition. Finally, the higher level is about the context in which the compo-
sition of Web services takes place. By developing context-aware Web services
it would be possible, for example, to consider the aspects of the environment
surrounding Web services. These aspects are multiple and can be related to
users (e.g., stationary user, mobile user), their level of expertise (e.g., expert,
novice), computing resources (e.g., fixed device, handheld device), time of day
(e.g., afternoon, morning), and physical locations (e.g., office, cafeteria).

Associating Web services with context is a response to the challenges that
hinder the smooth automation of composition. In [11], we discussed some of
these challenges such as which businesses have the capacity to provision Web
services, when and where the provisioning of Web services occurs, and how
Web services from independent providers coordinate their activities so that
conflicts are avoided. Since Web services belong to different providers, their
context definition is definitely different in terms of structure, number of argu-
ments, name of arguments, meaning of arguments, etc. Ignoring the problem
of context heterogeneity has side-effects on the normal progress of the composi-
tion of Web services. These side-effects are various such as adopting the wrong
strategy for selecting a component Web service (e.g., favoring execution-cost
criterion over reliability criterion, instead of the opposite), delaying the trig-
gering of some urgent component Web services, or wrongly assessing the exact
status of a Web service. Addressing the context heterogeneity of Web services
is a two-step process. The first step consists of specifying contexts using a
dedicated language. This language is OWL-C (Ontology Web Language for
Context ontologies) and is detailed in terms of concepts, formalism and utiliza-
tion in [11]. The second step consists of fixing the heterogeneity of contexts
using mediation mechanisms. These mechanisms are supported by a prototype
called ConWeS (Context-based semantic Web Services).

The rest of this paper is organized as follows. Section 2 presents some

S. Sattanathan et al. / Electronic Notes in Theoretical Computer Science 146 (2006) 43–5744



basic definitions that make readers familiar with the concepts used in the
paper. Section 3 overviews the ConWeS framework in terms of architecture
and implementation. Section 4 is about related work and how it has impacted
the design of our context ontology. Section 5 introduces our ongoing work on
the security of Web services. Finally, we draw our conclusions in Section 6.

2 Background

Web service - is an application that other applications and humans can dis-
cover and invoke, and presents the following properties [2]: independent as
much as possible from specific platforms and computing paradigms; primarily
developed for inter-organizational situations; and easily composable so that
developing complex adapters for the needs of composition is not required.

In [10], the Web services instantiation principle was put forward. Adher-
ing to this principle, a Web service is instantiated each time it is invited for
participating in a new composition. Prior to any invitation acceptance and
instantiation, several elements of the Web service are checked. These ele-
ments constitute a part of the context of the Web service and are discussed
in Section 3.1. The Web services instantiation principle offers the possibility
of organizing a Web service along three temporal categories (Fig. 1): Web
service instances already deployed, Web service instances currently deployed,
and Web service instances to be deployed upon invitation acceptance.

Constraints

Service instances
already deployed

Web service

FuturePast Present

Service instances
to be deployed

Service instances
currently deployed

Fig. 1. Organization of a Web service

Context - is any information that is judged relevant to the interactions
between a user and an environment [[4]. This information refers to the cir-
cumstances, objects, or conditions that surround the user. From a Web ser-
vices perspective, we defined context as a set of common meta-data about the
current execution status of a Web service and its capability of collaborating
with peers, possibly enacted by distinct providers [11].

Ontology - is ”a logical theory accounting for the intended meaning of a

formal vocabulary, i.e., its ontological commitment to a particular conceptual-

ization of the world” [5].

S. Sattanathan et al. / Electronic Notes in Theoretical Computer Science 146 (2006) 43–57 45



3 ConWeS framework

3.1 Architecture

Fig. 2 conceptualizes the approach of dealing with the heterogeneity of the
contexts of Web services. The approach is built upon the fact that once Web
service instances are created, they bind to appropriate ontologies. Binding
means, here, that a Web service instance complies with a specific ontology for
the needs of manipulating and adapting data when this service instance inter-
acts with peers. The creation of Web service instances is subject to accepting
the invitations of participation that originate from composite services to Web
services (see [10] for more details). Once an invitation is accepted (could be
rejected, too), the composite service informs the multiple component Web ser-
vices about the ontology that their respective Web service instances should
adopt during their data-manipulation operations. The ontology is related to
the application domain (e.g., travel) in which the composition of Web services
occurs. We assume that ontologies exist in a repository (Fig. 2). In the rest of
this paper, we also assume that the specification of the component Web ser-
vices is based on service chart diagrams [9]. To keep the paper self-contained,
the specification of composite Web services is not featured.

Before the instantiation happens, several elements related to the Web ser-
vice are checked. First of all, the number of Web service instances currently
running vs. the maximum number of Web service instances that can be simul-
taneously run (i.e., instances of the same Web service). Each service instance
has its execution load parameters (e.g., memory use, data-transfer volume),
which differentiate it from other peers of the same Web service. Second, the
execution status of each Web service instance that is part of a composite ser-
vice. Third, the execution progress of the preceding Web service instances per
Web service instance to be deployed in the future. This execution progress is
required in case of data or control dependency between the service instances.
Finally, the time that the composite service would like having a Web service
instance made available for invocation vs. the time it would be possible for
the Web service to have a Web service instance made available for invocation.

For management purposes of context, two operations, known as consolida-
tion and reconciliation, are deemed appropriate. In Fig. 2, numbers between
brackets represent the chronology of executing both operations.

• Consolidation at the level of Web services: when a Web service accepts
an invitation of participation in a composite service (1), a Web service
instance along with an I-context is created (2). The transfer of details
from the I-contexts of the same Web service instances to the W-context of
their associated Web service is featured by a consolidation of these details

S. Sattanathan et al. / Electronic Notes in Theoretical Computer Science 146 (2006) 43–5746



Web service 1
Provider 1

Web service
instance11

Web service
instance12

Ontology 1 Ontology 2

W-Context

(2)
Instance creation

(ontology compliance) I -Context 

Web service 2
Provider 2

Web service
instance21

Ontology 2

W-Context

(4) Consolidation

(2)

Composition

Composite service

C-Context

(1)
Invitation of
participation

(1)
Invitation of
participation

I -Context 

(3) Update

I -Context 

as
so

ci
at

ed
 w

ith
W

S-
in

st
an

ce
s 12

, 2
1

(3) Update

(5) Reconciliation

Instance creation
(ontology compliance)

(3) Update

(4) Consolidation

Management

Access
Repository

of ontologies

Administrator

Fig. 2. Overall conceptual architecture of ConWeS framework

before this W-context is updated (3,4). Once the consolidation is over, a
Web service determines for each of its Web service instances the following:
execution status, actions it has performed, and expected completion-time
of execution.

• Reconciliation at the level of composite services (how context heterogene-
ity is handled): since the component Web services of a composite service
have multiple providers, the definition of the W-contexts and I-contexts
varies like number and name of arguments. The transfer of details from
the I-contexts of Web service instances to the C-context of a composite
service is featured by a reconciliation of these details before the C-context
is updated (3,5). For example it occurs that the I-context of a Web service
instance of a composite service contains ”location of execution” argument,
whereas the I-context of another Web service instance of this composite
service contains ”site of execution” argument. During reconciliation, ”exe-
cution site” and ”execution location” have both to be considered the same.
To ensure that the composite service recognizes the differences between the
arguments of contexts, it refers to ontology of contexts that will be spec-
ified using OWL-C. ”Execution location” and ”execution site” mean here
the computing platform on which Web services operate.

3.2 OWL-C foundations

Fig. 2 consists of three levels of abstraction, where each level identifies a type
of service. Contexts of Web service instances have the fine-grained content,
whereas contexts of composite services have the coarse-grained content. The
content of I-context updates first, the content of W-context after consolida-

S. Sattanathan et al. / Electronic Notes in Theoretical Computer Science 146 (2006) 43–57 47



tion and second, the content of C-context after reconciliation, respectively.
Since OWL-C takes advantage of the research findings of the Semantic Web
community and its specification language OWL-S (Ontology Web Language-
based Web Service Ontology, formerly DAML-S), the relation between both
languages is depicted in Fig. 3, with OWL-C shown in yellow color. Context
of a Web service is specialized into two types: W-context (focus of this paper)
and WSec-context (part of our future work as discussed in Section 5.1).

Resource
Web

service
ContextProvides Operates in

Profile Model

Presents

Described by

Supports

Grounding

Instance_of

WSec-
context

Ef1lpr56

Blowfish
Success

Deny

WS1

#signature

#mec
han

ism #violation

#label

#status

W-Context

Active

T=5
1

4

WS1

#status

#tim
e_

av #allowed

#ID
#running

Associated with

Fig. 3. Extensions to OWL-S ontology

Context specification using OWL-C includes two parts. The first part is
about the arguments of context. The second part is about the capabilities of
context. In the first part, context is considered as an extra argument that
belongs to the structure of a Web service. Web services regularly post their
arguments (e.g., identifier, execution cost, response time) on the external en-
vironment, after defining these arguments using WSDL for example. Because
context is a multi-argument structure, OWL-C assists in the stipulated seman-
tics of these arguments. As a result various parties can agree now on a common
representation of the content of the context of Web services. With regard to
the capabilities of context, a service that has a context needs to be embedded
with awareness mechanisms. These mechanisms permit gathering contextual
raw data from sensors, and detecting any change of the environment. A change
needs to be assessed by the Web service through an assessment module, so
that the Web service takes appropriate actions through a deployment module.

The structure of context consists of multiple arguments, whose number
depends on the type of context. In what follows, we only list the arguments
of each context type (more details are given in [11]).

• Arguments of I-context of a Web service instance: label, status, previous
service instances, next service instances, regular actions, beginning-time,
ending-time (expected & effective), reasons of failure, corrective actions,
and date.

• Arguments of W-context of a Web service: label, number of service in-

S. Sattanathan et al. / Electronic Notes in Theoretical Computer Science 146 (2006) 43–5748



stances allowed, number of service instances running, next service instance
availability, status per service instance per composite service, and date.

• Arguments of C-context of a composite service: label, previous Web ser-
vice instances, current Web service instances, next Web service instances,
beginning time, status per Web service instance, and date.

3.3 ConWeS prototype

The use of OWL-C is backed by an automatic tool: ConWeS. ConWeS sup-
ports context definition (i.e., representation), context consolidation at the Web
service level, and context reconciliation at the composite service level. In
ConWeS, OWL-C statements are represented as a triple structure consisting
of subject, predicate, and object. Fig. 4 illustrates a typical OWL-C expres-
sion for W-context. Subject is the source from which the arc leaves. Predicate
is the property that labels the arc. Finally, object is the resource or literal
pointed by the arc. In Fig. 4, W-context is the subject (i.e., resource), {status,
time av, running, allowed, ID} are the predicates, and {Active, T=5, 1, 4,
WS1} are the objects.

W-context

Active

T=5
1

4

WS1

#status

#tim
e_

av
#allowed

#ID#running

Fig. 4. Triple structure of W-context

ConWeS is developed using the following tools and languages: Eclipse SWT
(Standard Widget Toolkit) for getting the look-and-feel front-end environ-
ment, Jena for defining and processing OWL-C based context-ontologies, Core
Java for integrating the aforementioned APIs, and Mindswap’s OWL-S API
for processing OWL-S based ontologies for getting service related information.
For illustration purposes, the running example used in the paper is about a
BookService, which delivers books to customers after receiving orders via a
Web site. This is a composite service with two component Web services:
BookFinder (finds a book supplier) and BookPayment (accepts payments for
the book from the customer).

Context representation

Table 1 is the OWL-C representation of the C-context of BookService. Table 2
is the OWL-C representation of the W-context of BookFinder. Finally, Table 3
is the OWL-C representation of the I-context of an instance of BookFinder.

S. Sattanathan et al. / Electronic Notes in Theoretical Computer Science 146 (2006) 43–57 49



Table 1
C-context of BookService

<?xml version="1.0" encoding="WINDOWS-1252"?>

<rdf:RDF

xmlns:Ccontext="http://www.nitk.ac.in/OWLC/Context/Ccontext#"

xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#">

<rdf:Description rdf:about="http://defaultURI/Ccontext#">

<Ccontext:Date>17/12/2004</Ccontext:Date>

<Ccontext:NextWebService>BookPayment</Ccontext:NextWebService>

<Ccontext:Status>Active</Ccontext:Status>

<Ccontext:BeginTime>20:30:45</Ccontext:BeginTime>

<Ccontext:Label>BookService</Ccontext:Label>

<Ccontext:CurrentWebService>BookFinder</Ccontext:CurrentWebService>

<Ccontext:PreviousWebService>Nil</Ccontext:PreviousWebService>

</rdf:Description>

</rdf:RDF>

Table 2
W-context of BookFinder

<?xml version="1.0" encoding="WINDOWS-1252"?>

<rdf:RDF

xmlns:Ccontext="http://www.nitk.ac.in/OWLC/Context/Wcontext#"

xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#">

<rdf:Description rdf:about="http://www.sp.com/Wcontext#">

<Wcontext:Status>Active</Wcontext:Status>

<Wcontext:Label>Book Finder</Wcontext:Label>

<Wcontext:InstanceRunning>2</Wcontext:InstanceRunning>

<Wcontext:NextInstanceAvilability>true</Wcontext:NextInstanceAvilability>

<Wcontext:InstanceAllowed>3</Wcontext:InstanceAllowed>

</rdf:Description>

</rdf:RDF>

Context Consolidation

Consolidation happens at the level of Web services, and means the combi-
nation of details that stem from the Web service instances level to the Web
service level. Once the consolidation is completed, a Web service is able to
determine for each of its Web service instances the following: execution sta-
tus, the actions it has performed, and the expected completion execution-time
so that the Web service can commit additional Web service instances as per
other composite services’ requests. Fig. 5-(a) presents the initial values of
the W-context parameters of BookFinder Web service. In this figure, the fo-
cus is on ”InstanceRunning” parameter (highlighted in green color). After
the acceptance of two service requests, the consolidated version of W-context

S. Sattanathan et al. / Electronic Notes in Theoretical Computer Science 146 (2006) 43–5750



Table 3
I-context of an instance of BookFinder

<?xml version="1.0" encoding="WINDOWS-1252"?>

<rdf:RDF

xmlns:Ccontext="http://www.nitk.ac.in/OWLC/Context/Icontext#"

xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#">

<rdf:Description rdf:about="http://www.sp.com/Icontext#">

<Icontext:NextServiceInstance>Nil</Icontext:NextServiceInstance>

<Icontext:Status>Active</Icontext:Status>

<Icontext:RegularAction>Finding a Book</Icontext:RegularAction>

<Icontext:PreviousServiceInstance>Nil</Icontext:PreviousServiceInstance>

<Icontext:Label>Book Finder Service Instance 1</Icontext:Label>

<Icontext:ReasonsOfFailure>Nil</Icontext:ReasonsOfFailure>

<Icontext:CorrectiveAction>Nil</Icontext:CorrectiveAction>

</rdf:Description>

</rdf:RDF>

shows that two Web service instances are running (Fig. 5-(b)). When one of
these service instances completes its execution with success, the number of
the current running instances drops to 1 (Fig. 5-(c)).

(a) (b) (c)

Fig. 5. Representation of consolidation of contexts

Context Reconciliation

Reconciliation happens at the level of a composite service, since the compo-
nent Web services of this composite service have multiple providers, and the
definition of their respective W-contexts varies in terms of structure and con-
tent. The transfer of details from the I-contexts of the Web service instances
to the C-context of a composite service is featured by a reconciliation of these
details before the C-context is updated.

Fig. 6 summarizes the reconciliation as supported by ConWeS. Fig. 6-(a)
and -(b) show the initial status of the W-context of BookFinder as well as the
initial status of the C-context of BookService after BookFinder accepts the
invitation of participation of BookService. PreviousWebService, CurrentWeb-
Service, and NextWebService parameters are significant in ConWeS. It can be
seen for instance that BookService will execute two component Web services
sequentially namely BookFinder and BookPayment. As shown in Fig. 6-(b),

S. Sattanathan et al. / Electronic Notes in Theoretical Computer Science 146 (2006) 43–57 51



(b)(a)

(c) (d)

(e) (f)

Fig. 6. Representation of Reconciliation of contexts

BookFinder is under execution whereas BookPayment is expected to be ini-
tiated upon completion of this execution. Fig. 6-(d) presents the I-context
of an instance of BookPayment service. The instance has a waiting status
(highlighted in green), i.e., waiting for the completion of its previous Web
service instance namely Book Finder Service Instance 1. Once the execution
of this instance is over (Fig. 6-(c)), Book Payment Service Instance 1 will be
changed to active (Fig. 6-(e)). The relevant parameters of the C-context of
BookService are also updated following the successful execution of the Web
service instances (Fig. 6-(f)).

4 Related Work

While the concepts of Web services, composition, ontology, and context are
independently studied by academia and industry (except for Web services
composition and ontology), our work aims at their combination. Backing
the idea of having a specification language for context, Hegering et al. note
that automating contextualization and using contextual information across
organizational boundaries can only be done if all participants agree on how
to interpret context [6]. Thus, the management information model has to be
extended with a context description language, which formalizes context. A
starting strategy to uniform context is to build context categories, such as
device-specific, environment-specific, and user-specific context.

S. Sattanathan et al. / Electronic Notes in Theoretical Computer Science 146 (2006) 43–5752



While we strengthened the importance of reconciling contextual informa-
tion using ontologies, Keidl and Kemper do not see any motive to that rec-
onciliation [7]. For both authors, context encompasses all the information
about the client of a Web service that may be utilized by the Web service
to adjust execution and output delivery, so that the client can benefit from
a customized and personalized behavior [7]. Plus, both authors differentiate
between the parameters of context and the parameters of a Web service. We
claim that there is no need to exchange contextual information if the recipient
Web service does not understand this information and thus, cannot adapt its
behavior according to the context of other Web services. A common under-
standing of the information exchanged is required, backing thuis our context
reconciliation efforts.

The importance of formal modeling of context is stressed by Shehzad
et al. [16]. The authors consider context-awareness as an important ingre-
dient of most ubiquitous applications today. The collaboration of these appli-
cations calls for a shared understanding of context in a way that contextual
information is effectively communicated among them. The shared understand-
ing could happen only if a formal model of context exists. This model has a
number of advantages such as the possibility of storing context for a long term
since its meaning will remain the same for future uses, and the widespread
use of context by various applications.

One of the relevant uses of context is during Web services selection. Ver-
heecke et al. argue that another limitation encountered in the field of Web
services is that Web services can only be selected based on the functionality
they offer [18]. WSDL-based Web services documentation does not support
the explicit specification of the non-functional requirements such as constraint-
based on QoS, access rights, and management statements. While we back the
statements of Verheecke et al., we consider that context is suitable for hosting
non-functional requirements that are dynamic by nature.

Some research on using UML for modeling context-based security param-
eters is presented in [1,17]. These papers describe extensions to the exist-
ing UML language in order to model contextual information for web services
pertaining to constructs for safeguarding context security. We are currently
investigating how to incorporate these ideas into our framework.

5 Ongoing work

5.1 Policies for Web services security

With Web services relying on the insecure Internet for mission-critical trans-
actions, security is a major concern. In previous works [10], we argued that

S. Sattanathan et al. / Electronic Notes in Theoretical Computer Science 146 (2006) 43–57 53



because Web services require resources on which they execute, it is important
to ensure that neither the services misuse the resources nor the resources alter
the integrity of the services. Currently, a range of XML-based security tech-
niques exist in order to protect Web services when it comes to authentication,
role-based access control, messaging, and data integrity. It should be noted,
however, that these techniques are statically determined at design-time and
cannot be adjusted during the execution life-cycle of Web services without
going through an extensive programming exercise.

In order to develop security strategies for Web services, we are in the
process of developing a dynamic approach that takes advantage of context
ontologies. The approach puts forward a new type of context called security
(to be denoted by CS/WS/ISec-context per type of service) and security
policies, to be both part of the ConWeS framework. The primary use of poli-
cies is to take actions according to the occurring events and detected changes
that affect the security of Web services. Policies are to be defined accord-
ing to the present context of a service whether Web, composite, or instance.
Some of the elements that could be identified through the use of a security
context are multiple such as the identification of the security violations that
have happened and the corrective actions that have been taken in case of any
attempt of misusing a resource. In [8], Kouadri Mostéfaoui and Brézillon con-
sidered context-based security to adapt the security strategy depending on a
set of relevant information collected from the dynamic environment. While
there is no disagreement on this definition, we deem appropriate to expand it.
The objective is to consider context-based security as a means for tracking all
the concerns and threats that affect the security in a certain context, which
permits deploying appropriate security mechanisms while relying on previous
security contexts.

Fig. 7 presents the way the connection between security policies, service
contexts, and security contexts happens. In this figure, the configuration of
security policies is tuned based on the information that contexts of services
cater. Once these contexts are updated after consolidation and reconciliation 4

operations, the security contexts are notified about the integrity of this con-
tent. If this content has been subject to any alteration, the security policies
are adjusted to cope with this alteration. We are currently investigating the
use of the Ponder policy specification language [3] for specifying/updating the
policies. Ponder is an object-oriented policy language for the management
of distributed systems and networks. It provides a unified framework for
specifying policies for security management in large-scale distributed systems,

4 The efficiency of the security policies depends on how the context heterogeneity is dealt
with, since wrong information leads to inappropriate policy.

S. Sattanathan et al. / Electronic Notes in Theoretical Computer Science 146 (2006) 43–5754



thereby making it suitable for web services security. A policy language such
as Ponder also helps separate the specification of policy from its enforcement,
since policies in Ponder are specified declaratively.

Web service

Sec
ur

ity
context

Security

policy

Service

co
nt

ex
t

Fig. 7. Connection between context and policies

The distinction between service context (C/W/I-context) and security
context (CS/WS/ISec-context) permits the management of the aspects that
each type of context is concerned with, in a better way (Fig. 7). A service
context focuses on the changes that apply to a service (whether composite,
Web, or instance) such as availability and commitment, whereas the security
context focuses on the strategy of securing the interactions of services during
data-context exchange. Various interactions occur between the two categories
of context whether at the instance, Web, or composite level. Each service
dynamically determines its security mechanisms based on the guidelines it
receives from its respective I/W/C-context. Initially, the threats that jeop-
ardize the integrity content of I/W/C-contexts are sensed and detected by
verifying for example this content after submission from a service instance to
a composite service. If there is any alteration, this means that the security
mechanisms have to be reviewed through policies and announced at the level
of /IS/WS/CSec-contexts.

5.2 Trust and reputation management of Web services

It is agreed that uncertainty has a great impact on the reliability of the infor-
mation that Web services exchange, when mid-stream adaptation needs to be
implemented. For example, if a Web service instance suddenly announces that
it cannot perform its job, then either the Web service provider will have to
instantiate a replacement service instance or the composite service provider
will have to look for another Web service provider. This could impact the
rest of the service instances that are dependent on the execution of the failed
instance. In a similar situation, trust information needs to be used to decide
whether to select a replacement service instance or start looking for a new
Web service provider. In [14], the author defines trust as the characteristic
that makes an entity willing to rely upon a second entity to execute a set of
actions and make a set of assertions (usually dealing with identity) about a set

S. Sattanathan et al. / Electronic Notes in Theoretical Computer Science 146 (2006) 43–57 55



of subjects or scopes. Trust depends on the ability to bind unique attributes
or credentials to a unique entity or user. When choosing a replacement in-
stance or another Web service provider, the composite service would need to
select the most trustworthy or most reputed Web service. Of course, trust in-
formation would be useful even during initial composition. A less trustworthy
provider would be chosen, based on other considerations such as time, cost,
etc. When an exception occurs, a more trustworthy provider would then be
chosen, so that the exception does not occur again. We are currently working
on enhancing our context ontologies so that trust and reputation information
are incorporated [12].

6 Conclusion

In this paper an ontology-based approach for the specification and recon-
ciliation of contexts of Web services has been presented. Because multiple
providers supply Web services for potential compositions, a reconciliation of
their respective contexts was deemed appropriate. Besides the multiple origins
of Web services, disparities between contexts at the granularity level also exist
as the three types of context (I/W/C-context) have shown. The importance
of having a language, e.g., OWL-C, for context specification and management
was also stressed. While it is argued that semantically described services will
enable better service discovery, allow easier interoperability, and composition
of services, we argue that semantically described context of services will enable
better tracking and promote easier interoperability of Web services.

Acknowledgement. The first author is supported by the Center for Advanced Studies
(CAS) program of IBM Software Labs India. The first author would also like to thank
Prof. K. C. Shet of NITK, for supporting his doctoral work. The second author wishes to
thank his manager, K. Muralidharan, for his support. IBM is a trademark of International
Business Machines Corporation in the United States, other countries, or both. All the
authors wish to thank the anonymous referees for their comments, which have significantly
improved the quality of the paper.

Java and all Java-based trademarks are trademarks of Sun Microsystems, Inc. in the

United States, other countries, or both. Other company (i.e., non-IBM), product and service

names may be trademarks or service marks of others.

References

[1] Basin, D. and J. D. T. Lodderstedt, Model-driven Security: From UML Models to Access
Control Infrastructures, Technical Report 414, ETH, Zurich, Switzerland (2003).

[2] Benatallah, B., Q. Z. Sheng and M. Dumas, The Self-Serv Environment for Web Services
Composition, IEEE Internet Computing 7 (2003).

S. Sattanathan et al. / Electronic Notes in Theoretical Computer Science 146 (2006) 43–5756



[3] Damianou, N., N. Dulay, E. Lupu and M. Sloman, The Ponder Specification Language, in:
Proceedings of The Workshop on Policies for Distributed Systems and Networks (Policy’2001),
Bristol, UK, 2001.

[4] Dey, A. K., G. D. Abowd and D. Salber, A Conceptual Framework and a Toolkit for Supporting
the Rapid Prototyping of Context-Aware Applications, Human-Computer Interaction Journal
16 (2001).

[5] Gruber, T., What is an Ontology? (white paper), http://www-ksl.stanford.edu/kst/what-is-an-
ontology.html (2000).

[6] Hegering, H. G., A. Kpper, C. Linnhoff-Popien and H. Reiser, Management Challenges of
Context-Aware Services in Ubiquitous Environments, in: Proceedings of The 14th IFIP/IEEE
Workshop on Distributed Systems: Operations and Management (DSOM’2003), Heidelberg,
Germany, 2003.

[7] Keidl, M. and A. Kemper, Towards Context-Aware Adaptable Web Services, in: Proceedings of
The 12th International World Wide Web Conference (WWW’2003), Budapest, Hungary, 2003.

[8] Kouadri Mostéfaoui, G. and P. Brézillon, Modeling Context-Based Security Policies
with Contextual Graphs, in: Proceedings of The Workshop on Context Modeling and
Reasoning (CoMoRea’2004) held in conjunction with The 2nd IEEE International Conference
on Pervasive Computing and Communication (PerCom’2004), Orlando, Florida, USA, 2004.

[9] Maamar, Z., B. Benatallah and W. Mansoor, Service Chart Diagrams - Description &
Application, in: Proceedings of The Alternate Track of The 12th International World Wide
Web Conference (WWW’2003), Budapest, Hungary, 2003.

[10] Maamar, Z., S. Kouadri Mostéfaoui and H. Yahyaoui, Towards an Agent-based and Context-
oriented Approach for Web Services Composition, IEEE Transactions on Knowledge and Data
Engineering 17 (2005).

[11] Maamar, Z., N. C. Narendra and W. J. van den Heuvel, Towards an Ontology-based Approach
for Specifying Contexts of Web Services, in: Proceedings of The Montreal Conference on e-
Technologies (MCETECH’2005), Montreal, Canada, 2005.

[12] Maximilen, E. M. and M. P. Singh, Conceptual Model of Web Service Reputation, ACM
SIGMOD Record 31 (December 2002).

[13] Milanovic, N. and M. Malek, Current Solutions for Web Service Composition, IEEE Internet
Computing 8 (November/December 2004).

[14] Mysore, S., Securing Web Services - Concepts, Standards, and Requirements (white paper),
https://sdc.sun.com/kiosk/ViewPDF?pdf id=L7WDTT4FYC (2003).

[15] Papazoglou, M. and D. Georgakopoulos, Special Issue on Service-Oriented Computing, CACM
46 (2003).

[16] Shehzad, A., H. Q. Ngo, K. Anh Pham and S. Y. Lee, Formal Modeling in Context Aware
Systems, in: Proceedings of The 1st International Workshop on Modeling and Retrieval of
Context (MRC’2004), Ulm, Germany, 2004.

[17] Sheng, Q. Z. and B. Benatallah, ContextUML: A UML-based Modeling Language for Model-
Driven Development of Context-Aware Web Services, in: Proceedings of The 4th International
Conference on Mobile Business!(mBusiness’2005), Sydney, Australia, 2005.

[18] Verheecke, B., M. A. Cibran and V. Jonckers, AOP for Dynamic Configuration and
Management of Web Services, in: Proceedings of The International European Conference on
Web Services (ICWS’2003), Erfurt, Germany, 2003.

S. Sattanathan et al. / Electronic Notes in Theoretical Computer Science 146 (2006) 43–57 57


	Introduction & Motivation
	Background
	ConWeS framework
	Architecture
	OWL-C foundations
	ConWeS prototype

	Related Work
	Ongoing work
	Policies for Web services security
	Trust and reputation management of Web services

	Conclusion
	References



