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Abstract. An important goal in data mining is to generate an abstrac-
tion of the data. Such an abstraction helps in reducing the time and space
requirements of the overall decision making process. It is also important
that the abstraction be generated from the data in small number of scans.
In this paper we propose a novel scheme called Prefix-Suffix trees for
compact storage of patterns in data mining, which forms an abstraction
of the patterns, and which is generated from the data in a single scan.
This abstraction takes less amount of space and hence forms a compact
storage of patterns. Further, we propose a clustering algorithm based on
this storage and prove experimentally that this type of storage reduces
the space and time. This has been established by considering large data
sets of handwritten numerals namely the OCR data, the MNIST data
and the USPS data. The proposed algorithm is compared with other
similar algorithms and the efficacy of our scheme is thus established.

Keywords: Data mining, Incremental mining, Clustering, Pattern-
Count(PC) tree, Abstraction, Prefix-Suffix Trees.

1 Introduction

In today’s technologically developing world, there is an increase in both collec-
tion and storage of data. With the increase in the amounts of data, the meth-
ods to handle them should be efficient in terms of computational resources like
memory and processing time. In addition to this the database is dynamic. The
state of database changes due to either addition/deletion of tuples to /from the
database. So, there is a need for handling this situation incrementally, without
accessing original data more than once for mining applications. Clustering is one
such data mining activity which deals with large amounts of data. Clustering
has been widely applied in many areas such as pattern recognition and image
processing, information processing, medicine, geographical data processing, and
so on. Most of these domains deal with massive collections of data. In data min-
ing applications, both the number of patterns and features are typically large.
They cannot be stored in main memory and hence needs to be transferred from
secondary storage as and when required. This takes a lot of time. In order to
reduce the time, it is necessary to devise efficient algorithms to minimize the
disk I/O operations. Several algorithms have been proposed in the literature for
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clustering large data sets[2,3,4]. Most of these algorithms need more than one
scan of the database. To reduce the number of scans and hence the time, the
data from the secondary storage are stored in main memory using abstractions
and the algorithms access these data abstractions and hence reduce the disk
scans. Some abstractions to mention are the CF-tree, FP-tree[4], PC-tree[8],
PPC-tree[6], kd-trees[5], AD-trees[1], the PP-structure[13].The CF-tree[4]is the
cluster feature vector tree which stores information about cluster descriptions
at each node. This tree is used for clustering. The construction of this tree re-
quires a single scan provided the two factors B and T are chosen properly. The
FP-tree[4] is used for association rule mining and stores crucial and quantita-
tive information about frequent sets. The construction of this tree requires two
database scans and the tree is dependent on the order of the transactions. The
kd-tree[5] and the AD-trees[1] reduce the storage space of the transactions by
storing only the prototypes in the main memory. These structures are well suited
for the applications for which they have been developed, but the use of these
structures is limited as it is not possible to get back the original transactions. i.e.
the structure is not a complete representation. PC-tree[8] is one such structure
which is order independent , complete and compact. By using this structure, it
is possible to retrieve back the transactions. The PC-tree[8] is a compact struc-
ture and the compactness is achieved by sharing the branches of the tree for
the transactions having the same prefix. The tree generates new branches if the
prefixes are different. One more abstraction called PPC-tree[6] is similar to PC-
tree but it partitions the database vertically and constructs the PC-tree for each
partition and for each class separately. The drawback of this structure is that,
it is not possible to retrieve back the original transactions and the use of this
structure in clustering is very much dependent on the partitioning criteria. The
advantage of this structure is that it generates some synthetic patterns useful for
supervised clustering. Both these abstractions need only a single database scan.
The problem with the PPC-tree is that, by looking at the data set, it is difficult
to predict the number of partitions in advance. The PP-structure[13] is simi-
lar to the PC-tree in the sense that it shares the branches for the transactions
having the same prefix. But it differs from the PC-tree, in that it also shares
the branches for the transactions having the same suffix. This structure also is
a compact representation, but the construction of the structure is very complex
as it searches the already constructed structure to check whether the current
pattern’s postfix is already present. In this paper, we propose a scheme called
Prefix-Suffix Trees which is a variant of the PC-tree and which in principle is
similar to the Prefix-Postfix structure in that the transactions having the same
prefix or the same postfix have their branches being shared. The construction
is simple compared to the Prefix-Postfix structure.The advantage of the Prefix-
Suffix tree is that this also generates some synthetic patterns not present in the
database which aids in clustering. The advantage of this scheme over the PPC-
tree is that it is possible to get back the original transactions by storing a little
extra information. In case of PPC-tree, if the number of parts is not selected
properly, it results in overtraining and hence decrease in accuracy.
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2 The Prefix-Suffix Trees Based Scheme

The Prefix-Suffix Trees based scheme which we propose is an abstract and com-
pact representation of the transaction database. It is also a complete represen-
tation, order independent and incremental. The Prefix-Suffix Trees stores all
transactions of the database in a compact way.

The Prefix-Suffix Trees are made up of nodes forming trees. Each node consists
of four fields.

They are ’Feature’ specifies the feature value of a pattern.The feature field
of the last node indicates the transaction-id of the transaction which helps in
retrieving the original transactions. ’Count’ . The count value specifies the num-
ber of patterns represented by a portion of the path reaching this node. ’Child-
pointer’ represents the pointer to the following path. ’Sibling-pointer’ points
to the node which indicates the subsequent other paths from the node under
consideration.

Fig.1 shows the node structure of Prefix-Suffix trees.

Feature Count Sibling-ptr child-ptr

Fig. 1. Node Structure of the Prefix-Suffix Trees

2.1 Construction of the Prefix-Suffix Trees

The algorithm for the construction of the Prefix-Suffix Trees is as follows. Let
Tr be the transaction database.

Partition the transaction database Tr into 2 equal parts. Let the 2 parts be
Tr1 and Tr2 respectively.

For Tr1 construct the tree as follows which is called Prefix Tree.
Let the root of the Prefix-tree be TR1.
For each pattern, ti ∈ Tr1 Let mi be the set of positions of non-zero values

in ti.
If no sub-pattern starting from TR1 exists corresponding to mi,
THEN

Create a new branch with nodes having ’Feature’ fields as values of mi and
’Count’ fields with values set to 1.

ELSE
Put values of mi in an existing branch eb by incrementing the corresponding

’count’ field values of mi by appending additional nodes with ’count’ field values
set to 1 to the branch eb.

For Tr2, reverse Tr2 to get Tr2r.
Construct the tree for Tr2r as described earlier which is called the Suffix Tree.
Let TR1 be the root of Prefix Tree corresponding to Tr1 and let TR2R be the

root of the Suffix Tree corresponding to Tr2r.
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2.2 Clustering Algorithm

In order to cluster the test pattern, the test pattern is also partitioned into 2-
partitions using the same partitioning criteria as used for the training patterns.
Let c be the number of classes, k, the number of nearest neighbours. The algo-
rithm proceeds as follows.
For each branch bl in the Prefix-Tree TR1.

Find the matches between the test pattern and the branch bl. let it be Cl
1.

Find k largest counts in decreasing order. Let them be Cl
1, C

2
1 , . . . , Ck

1 .Let the
corresponding labels be Ol

1, O
2
1 , . . . , O

k
1 .

Similarly, for each branch bm in Suffix-Tree TR2R,
Find the matches between the test pattern and the branch bm. let it be Cl

2.
Find k largest counts in decreasing order. Let them be Cl

2, C
2
2 , . . . , Ck

2 and the
corresponding labels be Ol

2, O
2
2 , . . . , O

k
2

For i= 1 to k
For j= 1 to k

Find Cp = Ci + Cj if Oi == Oj where 0 ≤ p ≤ k − 1.
Find k largest counts in decreasing order among all Cp where 0 ≤ p ≤ k.
Compute the weight , Wp = 1 − (Ck − Cp)/(Cp − C1)
For n = 1 to c

Sumn =
∑

1m[Wm] where (Om == n)
Output (label = Ox) for which Sumx is maximum for x ∈ 1, 2, . . . , c

2.3 Comparision of the Prefix-Suffix Trees and the PC-Tree

The PC-tree[8] compacts the database by merging the nodes of the patterns
having the same prefix. But in Prefix-Suffix Trees, still compaction is achieved
by merging the branches of the trees having the same suffix also and so the
number of nodes is reduced thus saving considerable space. An example-Consider
the following set of transactions as shown in Fig.2A. The first column gives the
transaction number, the second column gives the set of features and the last
column gives the label. The partitioned set of transactions Part1 and Part2
are given in Fig.2B and Fig.2C and the set of transactions of Part2 in reverse
order are given in Fig.2D respectively. The Prefix- tree , The Suffix-tree and
the PC-tree for the set of transactions is given in Fig.3A, Fig.3B and Fig.3C
respectively. In the figures, the nodes are indicated by circles, the right arrow is
the child pointer , the downward pointer is the sibling pointer. The first number
inside the circle is the feature value and the number after the colon is the count.
The last node in all branches is the label node.

3 Experiment and Results

To evaluate the performance of our algorithm, the following three real world
datasets were considered.
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Tr.No. Features Label Tr.No. Features Label
1 1,2,3,4,5,8,9,10,11,12,14,15,16 0 1 1,2,3,4,5,8 0
2 1,2,3,4,7,10,11,12,14,15,16 0 2 1,2,3,4,7 0
3 2,3,4,5,6,12,14,15,16 0 3 2,3,4,5,6 0
4 2,4,5,7,9,12,13,14 3 4 2,4,5,7 3
5 2,4,5,6,8,12,13,14 3 5 2,4,5,6,8 3

A. Sample set of transactions B.Set of Transactions in Part1

Tr.No. Features Label Tr.No. Features Label
1 9,10,11,12,14,15,16 0 1 16,15,14,12,11,10,9 0
2 10,11,12,14,15,16 0 2 16,15,14,12,11,10 0
3 12,14,15,16 0 3 16,15,14,12 0
4 12,13,14 3 4 14,13,12 3
5 12,13,14 3 5 14,13,12 3

C.Set of Transactions in Part2 D.Set of Transactions of Part2 in
reverse order

Fig. 2. Sample set of Transactions

Fig. 3. Prefix Tree, Suffix Tree and PC Tree for the transactions in Fig.2
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Table 1. Comparison of the Prefix-Suffix Trees, PP-structure, PC-Tree, PPC-Tree and
K-NNC based algorithms

Expt-No Dataset Algorithm Storage space Time in secs Accuracy
in Bytes training+test time

1 OCR data Prefix-Suffix 1106880 120 91.45
(2000 Trees based alg.

PP-structure 1123696 34 89.56
patterns) based alg.

PC-tree 1406528 153 89.56
based alg.
PPC-tree 1119280 131 41.58
based alg.

(with 4 parts)
k-NNC 1544000 18 89.44

2 OCR data Prefix-Suffix 2046928 230 93.07
(4000 Trees based alg.

PP-structure 2070112 110 92.04
patterns) based alg.

PC-tree 2717792 245 91.96
based alg.
PPC-tree 1970304 198 41.01
based alg.

(with 4 parts)
k-NNC 3088000 31 91.9

3 OCR data Prefix-Suffix 3202576 315 94.12
(6670 Trees based alg.

PP-structure 3216400 863 93.76
patterns) based alg.

PC-tree 4408256 386 93.61
based alg.
PPC-tree 3812320 314 64.3
based alg.

(with 4 parts)
k-NNC 5149240 47 93.55

4 USPS data Prefix-Suffix 7877088 435 93.32
Trees based alg.

PP-structure 7991504 554 93.27
based alg.
PC-tree 10030656 537 92.68

based alg.
PPC-tree 6490336 337 92.23
based alg.

(with 4 parts)
k-NNC 7495148 39 93.27

5 MNIST data Prefix-Suffix 107430848 25317 96.7
Trees based alg.

PP-structure 108528480 5996 96.5
based alg.
PC-tree 126535296 28451 96.5

based alg.
PPC-tree 77355312 17182 68.3
based alg.

(with 4 parts)
k-NNC 188400000 cannot be cannot be

stored in implemented
main mem. as it can’t

be stored

3.1 Dataset1: OCR Data

This is a handwritten digit dataset. There are 6670 patterns in the training set,
3333 patterns in the test set and 10 classes. Each class has approximately 670
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training patterns and 333 test patterns. We conducted experiments separately
with 2000(200 patterns from each class), 4000(400 patterns from each class) and
6670 training patterns(667 patterns from each class).

3.2 Dataset2: USPS Data

This is a dataset which is a collection of handwritten digits scanned from the U.S.
postal services. There are 7291 patterns in the training set and 2007 patterns in
the test set and 10 classes. Each pattern represents a digit and has 256 features.

3.3 Dataset3: MNIST Data

This is a data which is a mixture of the NIST(National Institute of standards
and technology) special database 3 and 1. This is collection of handwritten digits
written by census bureau employees and high school students. This is a large
data set having 60000 patterns in the training set and 10000 patterns in the
test set and 10 classes. Each pattern has 784 features. We have compared our
algorithm with the PC-tree, PPC-tree, the Prefix-postfix structure and the k-
NNC algorithms for all the above datasets and the results are tabulated in
Table 1. From the table, we observe that the Prefix-Suffix trees based algorithm
consumes less space than the PC-tree, the Prefix-Postfix structure and the k-
NNC algorithm without sacrificing for the classification accuracy. For all the
datasets, dataset 1 , 2 and 3 we observe that the accuracy is increased by a
certain order. All the experiments were executed on Xeon processor based Dell
precision 670 workstation having a clock frequency of 3.2 GHZ and 1 GB RAM.

4 Conclusion

In this paper, a novel scheme called Prefix-Suffix Trees for compact storage of
patterns is proposed which stores the transactions of a transaction database in a
compact way. This scheme is complete, order independent and incremental. The
use of this scheme in clustering is given and the effectiveness of the algorithm
is established by comparing the scheme with the PC-tree, PPC-tree, Prefix-
Postfix structure based algorithms and the benchmark algorithm k-NNC. The
new scheme is found to be more compact than the PC-tree without sacrificing
for the accuracy as shown. The performance of the algorithm is evaluated by
testing the algorithm with 3 different datasets of handwritten digits and the
effectiveness of our algorithm is thus established.
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