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a b s t r a c t 

(Background and objectives): Retinal cysts are formed by accumulation of fluid in the retina caused by 

leakages from inflammation or vitreous fractures. Analysis of the retinal cystic spaces holds significance 

in detection and treatment of several ocular diseases like age-related macular degeneration, diabetic mac- 

ular edema etc. Thus, segmentation of intra-retinal cysts and quantification of cystic spaces are vital for 

retinal pathology and severity detection. In the recent years, automated segmentation of intra-retinal 

cysts using optical coherence tomography B-scans has gained significant importance in the field of reti- 

nal image analysis. The objective of this paper is to compare different intra-retinal cyst segmentation 

algorithms for comparative analysis and benchmarking purposes. 

(Methods): In this work, we employ a modular approach for standardizing the different segmentation 

algorithms. Further, we analyze the variations in automated cyst segmentation performances and method 

scalability across image acquisition systems by using the publicly available cyst segmentation challenge 

dataset (OPTIMA cyst segmentation challenge). 

(Results): Several key automated methods are comparatively analyzed using quantitative and qualitative 

experiments. Our analysis demonstrates the significance of variations in signal-to-noise ratio (SNR), reti- 

nal layer morphology and post-processing steps on the automated cyst segmentation processes. 

(Conclusion): This benchmarking study provides insights towards the scalability of automated processes 

across vendor-specific imaging modalities to provide guidance for retinal pathology diagnostics and treat- 

ment processes. 

© 2017 Elsevier B.V. All rights reserved. 
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. Introduction 

A retinal cyst is a fluid-filled space in the retina. Medical studies

how that visual acuity can be accurately predicted from the vol-

me of retinal cystic fluids and their relative location in the retina

1] . Also, Cystoid macular edema (CME), caused by cysts in the reti-

al macular region, is the leading cause of central vision loss in the

orld today. CME develops when excess fluid accumulates within

he retinal macula, which may lead to disruption of the retinal ves-

el barrier owing to pathologies such as age related macular de-

eneration, diabetic retinopathy, retinal vein occlusion and ocular

nflammation. This process of fluid accumulation in retina can re-

uce macular retinal function [2] and can lead to irreversible blind-
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ess globally in individuals belonging to the economically produc-

ive age-group, irrespective of gender and demographics [3] . Fur-

her, visual acuity impairment due to CME can be correlated to the

olume of the cystic fluid spaces and their location in retinal tissue

1] . Thus, automated quantification of retinal pathology severity is

mperative towards timely retinal diagnostics and treatment. 

CME can be clinically characterized using Optical Coherence To-

ography (OCT) images [4] . OCT is a noninvasive imaging modal-

ty that is widely used for resolving internal structures of biolog-

cal tissues, and for visualizing cross-sectional high-resolution im-

ges of the retina [5] . OCT images are extensively utilized for diag-

ostic and prognostic purposes for several retinal pathologies with

anifestations that impact the intra-retinal micro-structure, such

s cysts, exudates and retinal disorganization (see Fig. 1 ). However,

ne primary limitation of the OCT images is the manual assess-

ent time required for analyzing the large volumes of image data
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Fig. 1. OCT image of retina from two different vendors: (a),(b) Normal retina ; (c),(d) retina with cystoid macular edema. (Yellow colored arrow shows cystic fluids). (a) and 

(c) obtained from Spectralis imaging system, (b) and (d) obtained from Cirrus imaging system. (For interpretation of the references to colour in this figure legend, the reader 

is referred to the web version of this article.) 

Fig. 2. Generic framework of automated intra-retinal cyst segmentation system. 
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per patient. This necessitates the development of automated intra-

retinal and cyst segmentation/quantification methods to speed up

the pathology characterization and diagnostic process. Several au-

tomation methodologies have been proposed in the recent past to

address automated analysis of OCT images [1,6–10] . The key chal-

lenges posed by the OCT images to most existing methods for au-

tomated segmentation of cystic regions include pixel-level variabil-

ities due to noise, image intensity variations, varied cyst morphol-

ogy, confounding retinal structures and complex pathologies. 

Based on the existing methods for automated cyst segmentation

from OCT images, a generic methodological framework is proposed

in Fig. 2 . This framework consists of four main steps: (1) pre-

processing; (2) retinal layer segmentation; (3) cyst segmentation

and (4) post-processing. Since OCT images contain varying degrees

of additive speckle noise, a pre-processing module is required for

quality enhancement and equalization of the OCT images. Finally,

the post-processing step is implemented to reduce the incorrectly

segmented non-cystic regions (i.e., false positive regions). In this

work, existing automated retinal cyst segmentation methods are

standardized based on the work-flow shown in Fig. 2 and com-

paratively analyzed to evaluate the significance of the automated

methods with respect to input data and output metrics. 

This paper makes three key contributions. First, a modular

approach to standardize existing OCT cyst segmentation meth-

ods is presented for methodological benchmarking purposes. The

methodological contributions from significant automated OCT cyst

segmentation methods are reviewed and comparatively discussed.

Second, quantitative and qualitative analysis experiments are pre-

sented for evaluation of the existing automated OCT cyst segmen-

tation methods. We observe that supervised OCT segmentation

methods achieve higher cyst segmentation recall when compared

to unsupervised approaches with degradation in segmentation pre-

cision across data sets with variable scan qualities. Third, OCT im-
 s  
ges from two different image acquisition systems are compara-

ively analyzed for scalability limitations owing to the image-level

ariabilities introduced by imaging systems. Such exhaustive anal-

sis regarding the scalability of OCT cyst segmentation methods in

erms of methodological and input data variations has not been

resented so far. This work provides novel insights into the limi-

ations of automated cyst segmentation tasks for retinal diagnostic

nd screening purposes. 

The organization of this paper is as follows. In Section 2 , the

aterials and evaluation metrics used for comparison study are

resented. In Section 3 , methods considered for comparative study

re briefly reviewed. In Section 4 , the experimental setup is dis-

ussed. In Section 5 , the experimental results of the proposed

ethods are presented. Conclusions and discussion regarding the

omparative assessment of the automated intra-retinal cyst seg-

entation along with future research directions are presented in

ection 6 . 

. Materials 

.1. Dataset 

This work comparatively analyzes existing automated intra-

etinal OCT cyst segmentation methods on the publicly available

PTIMA cyst challenge OCT dataset [11] . This dataset contains OCT

cans obtained from CME subjects using four different imaging sys-

ems, namely Zeiss Cirrus, Nidek, Spectralis Heidelberg and Top-

on. In this work, OCT scans from Cirrus and Spectralis image ac-

uisition systems are analyzed, since the data sets from these sys-

ems demonstrate moderate to severe pathological features when

ompared to the other imaging systems. The selected OCT scans

re acquired over 6 × 6 mm of the macula and foveal center from

ubjects with CME. The OCT frames represent gray-scale images
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Table 1 

Dataset description. 

Subset of dataset Subset of dataset Number of volumes Total number of B-scans 

Spectralis Training 4 196 

Testing 4 112 

Cirrus Training 4 584 

Testing 4 512 
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ith resolution of [496 × 512] and [496 × 1026] pixels, respectively.

he description of data set used in this work is presented in

able 1 and samples of OCT B-scan frames from Spectralis Heidel-

erg and Cirrus imaging systems are shown in Fig. 1 , respectively.

his dataset can be obtained from Christian Doppler Laboratory for

phthalmic Image Analysis, Department of Ophthalmology, Medi-

al University of Vienna. 1 

.2. Method performance metrics 

For quantitative analysis of the automated OCT cyst segmenta-

ion methods, the prediction of cystic regions from the automated

ethods are compared with the manually annotated Ground Truth

GT) region images, that are provided for the input data sets from

wo independent trained ophthalmologists. In this work, we per-

orm segmentation of cystic regions followed by the evaluation of

he number of True Positive (TP), False Positive (FP) and False Neg-

tive (FN) regions. Here, TPs are defined as actual cystic regions

hat are automatically detected, whereas the non-cystic regions de-

ected as cysts by an automated algorithm are FPs, and the actual

ystic regions that are undetected by an automated algorithm are

Ns. The output metrics for evaluation of the automated segmen-

ation algorithms are defined as precision (1) and recall (2) . 

recision = 

T P 

T P + F P 
(1) 

ecall = 

T P 

T P + F N 

(2) 

As an additional measure for methodological evaluation, the

ice coefficient (DC) [12] (3) analyzes the correlation of automated

egmentation vs. GT per patient image stack. 

C = 2 

| Automat edDet ection ∩ GT | 
| Automat edDet ection | ∪ | GT | (3) 

. Methods 

The existing automated OCT cyst segmentation methods can

e classified into two categories: semi-automated and fully au-

omated. The semi-automated methods require manual interven-

ion to define initial markers for each cyst. These methods are

ime and manual labor intensive owing to the large numbers of

rames that need to be manually examined to define the mark-

rs [13,14] . Thus, fully automated segmentation methods were de-

eloped to overcome these limitations. Fig. 3 highlights this cate-

orization of existing methods for intra-retinal cyst segmentation.

he automated methods are initially categorized as 2D or 3D seg-

entation techniques followed by further classification into unsu-

ervised [1,6,7,15,16] and supervised [9,10,17–22] approaches. The

ethodological contributions of significant existing automated OCT

yst segmentation techniques are summarized below. 

Wilkins et al. [1] proposed an automated cyst segmentation

ethod using empirically obtained global intensity threshold [1] .

or reducing the speckle noise, the authors applied a fast bi-

ateral filter on the SNR balanced and normalized OCT B-scans.
1 optima@meduniwien.ac.at. 

E  

t  

g  
n addition, the top-bottom search mechanism with the intensity

hreshold was employed to identify the Retinal Pigment Epithelium

RPE)–Nerve Fiber Layer (NFL) boundaries. Next, regional thresh-

lding was used for the rejection of FPs. In [1] , the method was

valuated using 19 OCT-volumes (16 captured from eyes of pa-

ients with vitreo-retinal disease and 3 control eyes) and the mean

ensitivity and specificity were reported as 0.91 and 0.96, respec-

ively. However, cyst segmentation using empirical thresholding is

ot feasible in a clinical setup and thus, the post-processing steps

entioned in [6] are insufficient for generalizable removal of FPs. 

Gonzalez et al. [21] used Watershed Transformation (WT) for

etecting cysts followed by region merging and texture analysis.

n [21] , the retinal layers were initially segmented using a graph

ut segmentation approach. After delimiting the region of inter-

st (ROI) between Inner Limiting Membrane (ILM) and RPE layers,

T was applied to segment the cyst regions. After WT segmenta-

ion, the authors combined the over-flooded regions to form larger

atchment basins by region merging approach and performed the

ost-processing steps using 14 different parameters for each re-

ion. The detected cysts were then classified with texture de-

criptors based on Gray Level Co-occurrence Matrix (GLCM) and

abor filters and by using classifiers such as Naive-Bayes (NB),

upport Vector Machine (SVM) or Random Forest (RF) with 10-

old cross validation. The comparative evaluation in [21] indicates

hat GLCM + SVM and Gabor + SVM have segmentation accu-

acies of 0.8293 and 0.8244, respectively. The limitations of this

ethod include over-flooding of WT due to improper regional

inima-estimation and the large number of parameters while

ost-processing. Hence, this method suffers from generalizability

n a clinical setup. 

In [17] , Pilch et al. segmented the cysts with the k -means clus-

ering technique and classified them using k -Nearest Neighbor ( k -

N). Beforehand, the speckle noise in B-scans was removed with

ayesian estimation method, followed by implementation of an au-

omated active contour model for retinal layer segmentation. The

xperiments discussed in [17] , using eight OCT B-scans with 130

ysts, indicate that the retinal structures are over-segmented with

 -means clustering method if k is set too low and improper delin-

ation of segmented retinal micro-structures occurs when k is set

oo high. 

Swingle et al. [18,19] proposed an automated pseudo-cyst de-

ection algorithm, based on pixel-wise classification approach, and

dentified the spatial distribution of cysts in the retinal fundus im-

ges. Prior to classification, B-scans were normalized and ILM and

ruchs Membrane (BM) retinal boundaries were segmented. The

uthors trained an RF classifier with 14 features extracted from

anually segmented data. Next, intensity profiles and image-based

eatures were also estimated for the test data set. Finally, RF-based

lassification is performed on the test images, where each test-

mage pixel was probed for being cyst-like. Due to the presence

f spurious pixels in the classification output, post-processing was

erformed to remove all connected components below the thresh-

ld of 30 pixels. In [18] , the proposed method was evaluated on 49

CT B-scans obtained from five subjects with Micro-cystic Macular

dema (MME) and the results demonstrated automated classifica-

ion accuracy of 0.846 and DC of 0.75 obtained against two manual

raders. However, this pixel-wise classification approach for cysts
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Fig. 3. Taxonomy of segmentation approaches used for automated intra-retinal cyst segmentation. 
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is limited in its performance by the presence of speckle noise and

shadow artifacts in OCT images. 

Lang et al. [9] used both intensity and spatial features with an

RF classifier for classifying pseudo-cyst pixels from OCT B-scans.

Initially B-scans were normalized, followed by extraction of eigh-

teen features, of which sixteen were intensity based and two were

spatial position based features. The system was trained on the fea-

tures extracted from manually segmented data. After extracting

features for test data, the RF classifier was used with 60 trees, each

with minimum terminal leaf size of 10. Experimental analysis was

performed using leave-one-out approach. Further, this method was

assessed on images obtained from 10 MME patients and 10 control

candidates. For MME data, precision of 0.85, recall of 0.79 and DC

of 0.98 was reported with this algorithm. In case of control data,

this method correctly labeled all the pixels. 

Wieclawek et al. segmentation method involved different image

processing techniques including non-linear complex diffusion and

mathematical morphology operations [6] . The authors segmented

the cysts from OCT B-scans using h -minima transform and image

reconstruction by erosion and geodesic operations. The segmented

regions above and below the NFL and RPE layers and the regions

connected to image boundaries were removed for reducing FPs.

However, in this work, the performance of the cyst segmentation

method were qualitatively reported. 

In [7,15] , Girish et al. presented an intra-retinal cyst segmen-

tation method using marker controlled WT algorithm. The OCT

B-scans were preprocessed with Bayesian Non-Local Means filter

to remove the speckle noise and the six prominent retinal lay-

ers were segmented from the denoised images using OCTSEG tool

[23] . In the method, the extracted markers with k -means cluster-

ing algorithm was used as a source for topographical watershed

segmentation. Experimental analysis on the OPTIMA cyst challenge

dataset [11] showed that recall and precision rates were 0.82 and

0.77, respectively. A higher DC of 0.96 was reported with the

ground-truth obtained from two manual graders. 

Recently, several works have been directed towards automated

2D segmentation [20,24] and 3D volumetric segmentation of reti-

nal cysts [10,16,22] . In case of 3D volumetric analysis of OCT,

densely sampled data with higher number of C-scans are required

to avoid the missing of small cyst structures. The qualitative and

quantitative evaluation of these methods is presented in the fol-

lowing sections. 

4. Experimental setup 

Experiments analysis for automated segmentation of cysts us-

ing the methods described above is performed on OCT images
rom Spectralis and Cirrus imaging systems, and the segmenta-

ion outcomes are comparatively evaluated. For standardization

urposes, the pre-processing module for the removal of additive

peckle noise from the OCT B-scans precedes the retinal layer

egmentation step. For each method described in Section 3 , the

utomated segmentation algorithm module is followed by post-

rocessing modules. The segmentation methods are implemented

n MATLAB on a standalone computer with following specifica-

ions: 64-bit operating system, Core i7 3700 CPU and RAM size 8

B. The functional modules for the automated OCT segmentation

ethods are described below. 

.1. Pre-processing and retinal layers segmentation 

Since the segmentation methods are sensitive to noise, all the

nput OCT images are denoised first. Here, we employ the recently

roposed adaptive and unbiased bilateral (AUB) filter [25] . In [25] ,

 three parameter Gamma distribution function is used to fit the

oisy (observed) OCT B-scans and a maximum likelihood (ML) ap-

roach is used to estimate the parameters of the Gamma distribu-

ion, based on which, the bias B parameter is computed. Next, B is

ubtracted from the output of an adaptive version of the conven-

ional bilateral filter [26] . The various parameters associated with

he AUB filter are as follows: Half width of the filter = 5, geomet-

ical parameter ˆ σd = 1.5, photometric spread ˆ σr = 2.5 ̂  σ and 0.6 ̂  σ

or Cirrus and Spectralis respectively. Where ˆ σ 2 denotes the esti-

ated noise variance from the given input image. The estimated

ias ˆ B is empirically estimated as 32 and 15 for the Spectralis and

irrus scans, respectively. 

For cyst segmentation, retinal layer segmentation is an impor-

ant pre-processing step because it provides information regard-

ng variations in morphology and thickness of retinal layers, which

eads to refined the cyst segmentation results. Among different au-

omated retinal layer segmentation methods, the recent Iowa ref-

rence algorithm (Retinal Image Analysis Lab, Iowa Institute for

iomedical Imaging, Iowa City, IA) [27–29] is used in this work to

btain the eleven segmented retinal layers as shown in Fig. 4 . 

.2. Cyst segmentation and post-processing 

The cyst segmentation methods described in Section 3 are im-

lemented with method specific post-processing steps as follows.

or [1] , we implement Wilkins cyst segmentation method with

mpirically computed gray level threshold of 49 and 37 for Spec-

ralis and Cirrus scans, respectively. Post-processing is achieved

ith the gray level intensity standard deviation of 41, by remov-

ng regions less than 10 pixels and regions outside ROI (NFL-RPE).



G. Girish et al. / Computer Methods and Programs in Biomedicine 153 (2018) 105–114 109 

Fig. 4. OCT image of retina to visualize the order and position of the boundaries of 

layers. (From top: 1- internal limiting membrane (ILM); 2- retinal nerve fiber layer 

boundary (RNFL); 3- ganglion cell layer (GCL); 4- inner plexiform layer (IPL); 5 - 

outer plexiform layer (OPL); 6- outer nuclear layer (ONL); 7- Boundary of myoidand 

ellipsoid of inner segments (BMEIS); 8- Inner Segment/Outer Segment (IS/OS) junc- 

tion; 9- Outer Photoreceptor (OPR); 10- Retinal Pigment Epithelium (RPE); 11- 

Bruch’s Membrane Complex (BMC). (The Iowa reference algorithms (Retinal Image 

Analysis Lab, Iowa Institute for Biomedical Imaging, Iowa City, IA) [27–29] ). (For in- 

terpretation of the references to colour in this figure legend, the reader is referred 

to the web version of this article.) 
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his step reduces FPs. For Gonzalez method [21] , we performed

he post processing after WT segmentation as follows: elongated

ysts (t 1 = 1 . 5 ; t 2 = 2 ; p occ = 0 . 6) , small cysts (regions lesser than

 min = 10 pixels), cysts next to image slides, cysts above ILM and

elow Outer Plexiform Layer (OPL) are removed to reduce FPs fol-

owed by classification [21] . 

In the implementation of k -means clustering and k -NN

ethod [17] , pre-processed B-scans are automatically segmented

sing k -means algorithm. Optimal value of k is empirically deter-

ined as 3. Next, the gray-level pixel intensities of B-scans are

lustered as hyper reflective layer, hypo-reflective layer and cystic

r low intensity regions, respectively. Finally, the clusters are post-

rocessed to remove outliers using boundary layers of retina (ILM

nd RPE), pseudo-cyst ratio (lesser than 10 pixels) and width to

eight ratio (width is 4 times greater than height). After this post-

rocessing step, texture features are extracted using Hu-moments

nd k -NN classification ( k = 6 ) is performed with manually seg-

ented training data from 4 OCT volumes. 

Swingle ́s method in [18] is implemented to extract 14 inten-

ity features on manually segmented data from the 4 OCT volumes

s follows: 2 features are obtained from the voxel intensity before

nd after gray-scale morphological closing operation and 9 features

re retrieved after Gaussian filtering at various scales. Next, 2 fea-

ures are extracted by Laplacian and Laplacain of Gaussian of the

mage and a final feature is the relative distance of intra-retinal

yst to the retinal boundary (ILM-BMEIS). Finally, an RF classifier is

rained from the features with 60 trees and the test data is probed.

ere, we ignore all connected components lesser than 30 pixels to

emove spurious pixels in the post-processing step. 

The method by Lang et al. [9] is implemented with 15 features

hat are extracted from the OCT images, followed by the aforemen-

ioned steps for training RF classifier with parameters mentioned

n [9] . Next, the test data is probed to classify cyst and non-cyst

ixels. To generate final segmentation results, we employed two-

tage thresholding approach with probability threshold of 0.5 and

.85, respectively. Here, we ignore all connected components lesser

han 5 pixels to remove spurious pixels. 

For the method by Wieclawek [6] , we fixed h = 3 and h = 4 to

ompute h -minima transform on Spectralis and Cirrus scans, re-

pectively. Next, h -minima transformed B-scans are thresholded to

btain the segmented results. The segmented regions above and
elow NFL and RPE layers and regions connected to image bound-

ries are removed to reject FPs. 

In [7] , the B-scans are initially segmented by k -means cluster-

ng. We used k = 3 for k -means clustering because hypo-reflective,

yper-reflective and low-intensity cystic regions can efficiently be

rouped into 3 different clusters. Next, markers are created from

he center pixel of each region in the minimum centroid cluster,

nd these markers are used as the sources to segment the im-

ge with topography-based WT. In the post-processing step, we

emove FPs by eliminating regions with the following features:

egion-wise intensity threshold greater than 105, elongated regions

ith width 4 times greater than height, pseudo-cysts of area less

han 10 pixels. 

. Results and analysis 

The quantitative and qualitative comparative assessment of the

utomated cyst segmentation methods is presented below. Since

ow precision is indicative of FPs (over-detection) and low recall is

ndicative of missing patients with abnormalities (under-detection),

igh precision and high recall values are desired for an ideal auto-

ated cyst segmentation method. 

.1. Quantitative assessment 

Table 2 and 3 demonstrate precision and recall for the meth-

ds under analysis against GT provided by Grader 1 (G1), GT pro-

ided by Grader 2 (G2) and their intersections (G1 ∩ G2) on the

pectralis and Cirrus scans, respectively. Here, we observe that cyst

egmentation obtained with unsupervised methods, such as the

arker controlled watershed transform proposed by Girish et al.

7] and mathematical morphology based approach proposed by

ieclawek [6] , achieve higher recall across input dataset variabil-

ties (i.e., mean recall of 0.37-Girish, 0.38-Wieclawek and 0.38-

irish, 0.59-Wieclawek on Spectralis and Cirrus scans, respectively,

ith G1). However, segmentation precision varies largely with the

mage quality (i.e., mean precision of 0.33-Girish, 0.35-Wieclawek

nd 0.09-Girish, 0.09-Wieclawek on Spectralis and Cirrus scans, re-

pectively, with G1). 

Among the supervised cyst segmentation methods, Swingle

t al. [18] method outperforms other supervised methods in terms

f recall while preserving marginal precision rates across dataset

ariabilities. Also, trends in degradation of precision with respect

o image quality, similar to that of the unsupervised methods, is

bserved. Thus, from Tables 2 and 3 , we infer that supervised

ethods outperform unsupervised methods in terms of overall

recision and recall. Also, texture-based supervised methods such

s GLCM, Gabor and Hu-moments are found to be efficient dis-

riminators for cystic regions. Additionally, from Tables 2 and 3 , we

bserve that the variations in performances with respect to man-

al graders due to inter-grader variability [11] . 

Further, comparative assessment of cyst segmentation methods

n a sample Spectralis OCT B-scan are presented in Fig. 1 . The orig-

nal B-scan and GT provided by G1 (see the marked region in red

olour) are shown in Figs. 5 (a) and (b), respectively. We observe

rom Fig. 5 (c) that Wilkins method has failed to identify some

ysts due to intensity variations, and it has also failed to delineate

he cysts up to their actual boundary. In Fig. 5 (d), the Wieclawek

ethod shows over-segmentation by considering consecutive cysts

s a single entity in an image. Here, the boundaries between cysts

re missed and FPs in the ONL layer are observed. 

In most existing works, intra-retinal cysts segmentation by au-

omated algorithms is delimited between the ILM and RPE layers.

owever, the method in [7] considers the region between ILM and

PL to be the most susceptible to intra-retinal cysts, thereby lead-

ng to accurate cyst segmentation in Fig. 5 (e). However, over seg-
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Table 2 

Mean ± Standard Deviation of Precision and Recall of compared methods on Spectralis OCT scans. 

Method G1 G2 G1 ∩ G2 

Precision Recall Precision Recall Precision Recall 

Wilkins et al. [1] a 0.2415 ± 0.2573 0.4584 ± 0.3073 0.2429 ± 0.2607 0.4878 ± 0.3477 0.2423 ± 0.2580 0.4620 ± 0.3259 

Wieclawek [6] a 0.3578 ± 0.2210 0.3863 ± 0.3341 0.3700 ± 0.2337 0.4282 ± 0.3533 0.3807 ± 0.2483 0.4204 ± 0.3383 

Girish et al. [7] a 0.3300 ± 0.2997 0.3758 ± 0.2625 0.3458 ± 0.3163 0.4354 ± 0.3173 0.3373 ± 0.3075 0.3990 ± 0.2788 

GLCM + NB [21] b 0.5354 ± 0.4403 0.6563 ± 0.4619 0.5373 ± 0.4417 0.6667 ± 0.4714 0.5463 ± 0.4333 0.6458 ± 0.4533 

GLCM + SVM [21] b 0.5625 ± 0.4270 0.4688 ± 0.3840 0.5875 ± 0.4250 0.5521 ± 0.4682 0.5625 ± 0.4270 0.4688 ± 0.3840 

GLCM + RF [21] b 0.5800 ± 0.4214 0.5208 ± 0.4429 0.3239 ± 0.3761 0.4167 ± 0.50 0 0 0.2656 ± 0.3078 0.2604 ± 0.3234 

Gabor + NB [21] b 0.40 0 0 ± 0.3031 0.3750 ± 0.2846 0.3997 ± 0.2986 0.3646 ± 0.2792 0.3889 ± 0.2940 0.3542 ± 0.2753 

Gabor + SVM [21] b 0.4167 ± 0.2887 0.3542 ± 0.2753 0.3505 ± 0.2865 0.3229 ± 0.2554 0.3824 ± 0.2893 0.3437 ± 0.2730 

Gabor + RF [21] b 0.2667 ± 0.3485 0.1979 ± 0.2342 0.2281 ± 0.2818 0.1979 ± 0.2342 0.0833 ± 0.1667 0.0104 ± 0.0208 

Pilch et al. [17] b 0.4067 ± 0.4611 0.5833 ± 0.4410 0.4125 ± 0.4686 0.6250 ± 0.4787 0.4067 ± 0.4611 0.5833 ± 0.4410 

Swingle et al. [18] b 0.3500 ± 0.2428 0.8270 ± 0.2617 0.3353 ± 0.2537 0.8140 ± 0.2852 0.3493 ± 0.2677 0.6994 ± 0.3012 

Lang et al. [9] b 0.80 0 0 ± 0.1897 0.5388 ± 0.3403 0.7355 ± 0.2742 0.5053 ± 0.3519 0.7880 ± 0.2114 0.4816 ± 0.3134 

a Supervised methods. 
b Unsupervised methods 

Table 3 

Mean ± Standard Deviation of Precision and Recall of compared methods on Cirrus OCT scans. 

Method G1 G2 G1 ∩ G2 

Precision Recall Precision Recall Precision Recall 

Wilkins et al. [1] a 0.1352 ± 0.1706 0.1959 ± 0.3381 0.1344 ± 0.1704 0.2383 ± 0.4133 0.1352 ± 0.1706 0.2047 ± 0.3548 

Wieclawek [6] a 0.0968 ± 0.0889 0.5989 ± 0.4192 0.0837 ± 0.0712 0.6234 ± 0.4 4 49 0.0944 ± 0.0848 0.6048 ± 0.4262 

Girish et al. [7] a 0.0941 ± 0.1349 0.3889 ± 0.1972 0.0899 ± 0.1282 0.4162 ± 0.1704 0.0923 ± 0.1319 0.3167 ± 0.2113 

GLCM + NB [21] b 0.3783 ± 0.2766 0.3238 ± 0.2695 0.3529 ± 0.2716 0.2779 ± 0.2192 0.3917 ± 0.2833 0.2660 ± 0.2282 

GLCM + SVM [21] b 0.5618 ± 0.4484 0.2772 ± 0.2296 0.6610 ± 0.4552 0.2209 ± 0.1928 0.6610 ± 0.4552 0.2209 ± 0.1928 

GLCM + RF [21] b 0.5101 ± 0.3821 0.1475 ± 0.1556 0.6643 ± 0.4508 0.0838 ± 0.0899 0.6875 ± 0.4732 0.0619 ± 0.0633 

Gabor + NB [21] b 0.2202 ± 0.1381 0.6150 ± 0.2656 0.2143 ± 0.1390 0.6466 ± 0.2107 0.2122 ± 0.1378 0.6693 ± 0.1920 

Gabor + SVM [21] b 0.1934 ± 0.1166 0.5628 ± 0.3139 0.1852 ± 0.1127 0.6155 ± 0.2677 0.1714 ± 0.1002 0.6064 ± 0.2369 

Gabor + RF [21] b 0.1446 ± 0.1371 0.6734 ± 0.0752 0.1236 ± 0.2071 0.6344 ± 0.0975 0.1478 ± 0.1400 0.6265 ± 0.1975 

Pilch et al. [17] b 0.0936 ± 0.0939 0.7674 ± 0.2539 0.0927 ± 0.0899 0.7735 ± 0.2327 0.0918 ± 0.0939 0.7565 ± 0.2504 

Swingle et al. [18] b 0.1784 ± 0.1821 0.9452 ± 0.0997 0.1642 ± 0.1622 0.9995 ± 0.1183 0.1758 ± 0.1966 0.9576 ± 0.0736 

Lang et al. [9] b 0.6428 ± 0.4738 0.0822 ± 0.0888 0.50 0 0 ± 0.5773 0.0710 ± 0.0910 0.6250 ± 0.4787 0.0991 ± 0.1040 

a Supervised methods. 
b Unsupervised methods 
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mentation of consecutive cystic structures and failure to segment

some true cystic regions due to intensity variation are some of the

limitations to the method in [7] . Also, we observe a FP region due

to the incorrect layer segmentation in Fig. 5 (e). We observe from

Fig. 5 (f) that the Gonzalez method introduces an additional cyst

(on the left side of the retina) and fails to segment consecutive

cysts due to improper regional minima-estimate and over-flooding.

Although the Pilch method is able to detect both micro and macro-

cysts, it fails to delineate the cysts to their actual boundary as

shown in Fig. 5 (g)). In case of Swingle method and Lang method,

all the identified consecutive cysts are merged into a large cysts

(see Fig. 5 (h) and (i), respectively) due to the lack of boundary

discrimination around each individual cyst. 

Besides precision and recall, DC is also evaluated to validate the

experimental results and plotted in Figs. 6 and 7 for Spectralis and

Cirrus scans, respectively. In these box plots, the line inside the

box indicates the median value and as a rule of thumb, any seg-

mentation method performs well if the corresponding median in

the box plot is high. Here, the range of the box gives the spread of

the DC-values that are computed from different patient image vol-

umes. It can be noticed from Figs. 6 and 7 that the Lang method

has the highest median values for both Spectralis and Cirrus scans,

respectively. 

Further analysis of the impact intra-retinal layer segmenta-

tion errors on the automated cyst segmentation methods is pre-

sented using manual and automatic intra-retinal layer segmenta-

tion methods in the supplementary material ( Table 1 ). In addition,

we analyze the accuracy of different cyst segmentation algorithms

on segmenting cysts located in the inner sub-retinal layers. These

results are included in supplementary material ( Table 2 ), which de-
 d  
cribes the location of cysts and the corresponding performance of

utomated segmentation. Additionally, we analyze normal B-scan

mages to assess the performance of automated methods, and their

esults are presented in supplementary material ( Table 3 ). 

.2. Qualitative assessment 

In this sub-section, we discuss the qualitative limitations of the

forementioned methods to segment cysts from OCT images. Fu-

ure works that address these limitations can significantly enhance

he accuracy of automated cyst segmentation and retinal pathology

iagnostics. 

First, for the Wilkins method, the number of FPs are high and

recision is low due to the lack of proper post-processing. For e.g.,

etinal blood vessel shadows and elongated cysts are not removed

ere. This method also suffers from manual thresholding, thus

eading to low generalizability. We observe that for a high thresh-

ld value, the number of FPs tremendously increases while for a

ow threshold value the number of FNs increase. Similar observa-

ions are found for the Wieclawek method. The Girish method pro-

uces a high recall rate across the datasets under analysis. How-

ver, segmentation precision using this method is found to be sen-

itive to image noise, which in turn influences the marker gener-

tion process, that may lead to several FPs. We observe that the

irrus scans are more noisy and they have a low mean precision

alue when compared to the Spectralis scans. With the Gonzalez

ethod, the Bayesian classifier outperforms SVM and RF classifiers.

his indicates that the selection of classifier plays an important

ole for cyst segmentation. Also, GLCM features are found to pro-

uce better accuracy than Gabor filters. From this analysis, we infer
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Fig. 5. Results of different automated intra-retinal cyst segmentation methods on Spectralis scans against the GT from G1 (a) Original B-scan, (b) GT (c) Wilkins Method [1] , 

(d) Wieclawek Method [6] , (e) Girish Method [7] , (f) Gonzalez Method [21] , (g) Pilch Method [17] , (h) Swingle Method [18] , (i) Lang Method [9] . (For interpretation of the 

references to colour in this figure legend, the reader is referred to the web version of this article.) 

Fig. 6. Whisker Box plot for the Dice Correlation Coefficient against intersection of both the Graders on Spectralis dataset for Wilkins Method [1] (0.30), Wieclawek 

Method [6] (0.46), Girish Method [7] (0.65), Pilch Method [17] (0.38), Gonzalez Method [21] (0.45), Swingle Method [18] (0.35), Lang Method [9] (0.59),) . 
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hat texture-based features have a significant role in discriminating

ystic structures from other regions in OCT B-scans. 

Further, we observe from the recall values with Pilch method,

hat this method performs well in the low intensity regions even

hough it is more prone to generating FPs in the presence of pixel

ntensity variations and blood vessel shadows. Our experiments

ith the Pilch method also demonstrates that Hu-moment fea-

ures extracted from the segmented regions are sufficient for sepa-

ating cysts from non-cysts. Besides, we observe that several fac-

ors including blood vessel shadows, epi-retinal membrane folds

nd distortions in layers can affect the method by Swingle et al.

18] and Lang et al. [9] . Also, we observe that the empirically se-
ected threshold values for classifiers yields better segmentation

ccuracies when compared to the default threshold value of 0.5. Fi-

ally, we observe that the three stage post-processing of classifier

utput with the method proposed in [9] leads to higher precision

y reducing FPs when compared to that in the Swingle method. 

Apart from cyst segmentation, in this work, we analyze the im-

act of the denoising module on the overall cyst segmentation pro-

ess. The DC box plots charts in Figs. 8 and 9 show the variations

n precision and recall for different segmentation methods before

nd after denoising. Here, we observe that DC values gradually in-

rease when images are segmented after denoising. Thus, we infer
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Fig. 7. Whisker Box plot for the Dice Correlation Coefficient against intersection of both the Graders on Cirrus dataset for Wilkins Method [1] (0.14), Wieclawek 

Method [6] (0.08), Girish Method [7] (0.05), Pilch Method [17] (0.12), Gonzalez Method [21] (0.00), Swingle Method [18] (0.05), Lang Method [9] (0.77),) . 

Fig. 8. Results of DC in effect of denoising process on different automated intra-retinal cyst segmentation methods on Spectralis scans against the ground truth obtained 

from Grader 1 ; (a) Before denoising, (b) after denoising. 
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that the presence of image noise significantly distorts the segmen-

tation of intra-retinal cystic regions. 

In our experiments, we observe that some of the automated

segmentation methods are effective only in detecting the cyst lo-

cations but not at delineation of the actual lesion boundary, while

other methods are sensitive to method parameters, thus lacking

generalizability. We know that a very important goal of any au-

tomated cyst segmentation technique should be to segment the

cyst boundary accurately for volumetric assessment and follow-up

treatment protocols. This work is aimed at providing guidance for

t  
he selection of an optimal automated intra-retinal layer and cyst

egmentation method, given a specific clinical/research set-up. Our

nalysis demonstrates that for clinical applications, the most signif-

cant metrics for selection of an automated segmentation method

re: high recall rate and DC, followed by high precision and low-

ariability across vendor-specific imaging systems. 

. Discussion and conclusion 

This paper presents a comparative assessment of existing au-

omated intra-retinal cyst segmentation methods on OCT B-scans.
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Fig. 9. Results of DC in effect of denoising process on different automated intra-retinal cyst segmentation methods on Cirrus scans against the ground truth obtained from 

Grader 1 ; (a) Before denoising, (b) After denoising. 
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ur standardized methodological modules and cyst segmenta-

ion experiments demonstrate that variability factors such as

ixel intensity variations, noise, blood vessel shadows and reti-

al layer distortions can impact the automated cyst segmentation

ccuracies. In addition, pre-processing and post-processing steps

re found to play a vital role in automated cyst segmentation

rocesses. 

An efficient cyst segmentation technique is one that is robust

gainst the aforementioned variability factors and that is capable

f performing cyst identification and delineation with least errors.

n this work, the performances of a variety of supervised and un-

upervised methods are compared using OCT images from Spec-

ralis and Cirrus acquisition systems and the cyst segmentation re-

ults are quantitatively and qualitatively analyzed. Such exhaustive

nalysis of existing OCT cyst segmentation methods has not been

resented so far. Our analysis shows that the performance of the

nsupervised methods highly depends on the quality of OCT B-

cans and the supervised methods outperform unsupervised meth-

ds, even if the quality of the OCT B-scan is low. However, the lim-

tations posed by supervised methods include: over-segmentation

n the presence of several consequent cysts, and the need for train-

ng data. Future works will be directed towards algorithm fine-

uning and the application of deep learning methods for a robust

upervised cyst segmentation system that can efficiently discrimi-

ate cyst and non-cyst pixels. 

We observe that several factors must be considered while de-

igning an automated cyst segmentation technique. The desirable

eatures to be included in prospective algorithms would include

but not be limited to): 

• Image denoising and retinal layer segmentation. 
• Removal of blood vessel and hard exudate shadow artifacts

prior to segmentation. 
• Detection of candidate regions and accurate delineation of le-

sion boundaries. 
• Post-processing operations for removal of false positive candi-

date regions. 
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