Int. J. Inf. Secur. (2010) 9:275-286
DOI 10.1007/s10207-010-0108-z

REGULAR CONTRIBUTION

A new probabilistic rekeying method for secure multicast groups

Alwyn R. Pais - Shankar Joshi

Published online: 29 May 2010
© Springer-Verlag 2010

Abstract The Logical Key Hierarchy (LKH) is the most
widely used protocol in multicast group rekeying. LKH main-
tains a balanced tree that provide uniform cost of O (log N)
for compromise recovery, where N is group size. How-
ever, it does not distinguish the behavior of group members
even though they may have different probabilities of join or
leave. When members have diverse changing probabilities,
the gap between LKH and the optimal rekeying algorithm
will become bigger. The Probabilistic optimization of LKH
(PLKH) scheme, optimized rekey cost by organizing LKH
tree with user rekey characteristic. In this paper, we concen-
trate on further reducing the rekey cost by organizing LKH
tree with respect to rekey probabilities of members using new
join and leave operations. Simulation results show that our
scheme performs 18 to 29% better than PLKH and 32t0 41%
better than LKH.

Keywords LKH optimization - Key management -
Secure group communication - Group Rekey
1 Introduction

In many multicast applications, such as pay per view,
online auction, conferencing, networked gaming and news

A. R. Pais (X))

Department of Computer Engineering, National Institute
of Technology Karnataka, Surathkal, Srinivasnagar,
Mangalore, 574157 Karnataka, India

e-mail: alwyn.pais@gmail.com

S. Joshi

Department of Information Science & Engineering,

B. V. Bhoomaraddi College of Engineering & Technology,
Vidyanagar, Hubli, 580031 Karnataka, India

e-mail: shankarjoshi48 @gmail.com

dissemination, it is necessary to secure the data from intrud-
ers as the data is confidential or it has monetary value. These
applications require a message delivery from a service pro-
vider (sender) to a large number of authorized receivers who
may join or leave frequently. Whenever group membership
changes or when the members’ keys are compromised, the
sender need to update keys used for encryption. It is referred
as “group rekeying”.

IP Multicast, the multicast service for the Internet does not
provide any security mechanisms. Indeed, anyone can join a
multicast group to receive data from the data sources or send
data to the group. In other words, IP multicast protocol does
not support “closed” groups. Therefore, cryptographic tech-
niques have to be employed to achieve data confidentiality.

One of the issues that has to be addressed by key man-
agement schemes for secure multicast groups is the need for
forward and backward confidentiality [4]. In other words,
new members joining a group should not be able to access
previously multicast data, and old members should not be
able to continue to access data multicast after they have left
the group. One solution is to let all members in a group share a
key that is used for encrypting data. To provide backward and
forward confidentiality, this shared key has to be updated on
every membership change and redistributed to all authorized
members securely.

A simple approach for rekeying a group is one in which
the group key server encrypts and sends the updated group
key individually to each member. This approach is not scal-
able because its cost increases linearly with the group size.
Thus, group rekey scalability is a challenging issue for large
groups having frequent membership changes.

In recent years, many approaches for scalable group
rekeying have been proposed, e.g. LKH [3,4], OFT [10],
ELK [16], SDR [11] and SHKD [12]. Among these, LKH
and its variants are widely used schemes. Further, many

@ Springer

276

A. R. Pais, S. Joshi

optimization techniques are proposed for LKH. The schemes
proposed in [5,8] optimize network bandwidth; the schemes
in [6,18,20] optimize rekey cost on membership changes;
finally the schemes in [1,13,14,17,19] restructure the LKH
tree to optimize one or more parameters like rekey cost, band-
width used, processing time, etc.

In this paper, we present a method for reducing rekey
cost in secure multicast groups by organizing LKH tree with
respect to member’s rekey probabilities. We provide new
insert and delete operations on LKH tree, which reduce num-
ber of rekey messages generated. The contributions of our
paper are as follows:

— We present new insert and delete operations, which
organize LKH tree with respect to rekey probabilities
of members such that it reduces the cost of rekeying on
membership changes or when members key are compro-
mised.

— We present new key identifier assignment algorithm that
generates unambiguous key identifiers.

— We provide Modified PUT (MPUT) operation, which
reduce rekey cost on member join.

— We show that our method reduces the rekey cost com-
pared to other schemes. We also show that our scheme
reduces number of nodes created for a given group size.

Organization of the paper: The paper is organized as
follows. In Sect. 2, we describe various methods available
in literature on secure group communication. In Sect. 3, we
describe our scheme. In Sect. 4, we present the simulation
results and analysis of the results. Finally, in Sect. 5, we con-
clude our work.

2 Literature survey

There are many approaches proposed in literature for scalable
group rekeying. Among them LKH, OFT, ELK, SDR and
SHKD are important approaches. The most efficient meth-
ods for multicast key management are based on the Log-
ical Key Hierarchy (LKH) scheme [3,4]. In LKH, group
members are organized as leaves of a tree with logical inter-
nal nodes. The cost of a compromise recovery operation in
LKH is proportional to depth of the compromised member
in the LKH tree. The original LKH scheme proposes main-
taining a balanced tree that gives a uniform cost of O (log N)
rekeys for compromise recovery in a N member group. More
details on LKH is given in Sect. 2.1.

In OFT [10] scheme, one-way function trees are used.
Here, each group member maintains the unblinded key of
the leaf with which he is associated and a list of blinded node
keys for all of the siblings of the nodes along the path from his
node to the root. This enables him to compute the unblinded

@ Springer

keys along his path to the root, including the root key, which
he also stores. If one of the blinded node keys changes and he
is told the new value, then he can recompute the keys on the
path and find the new group key. This scheme has complexity
of O(log N) for compromise recovery.

In the efficient large group key distribution (ELK) scheme
[16] on membership change to update a key K, the node
takes help of its left child key Ky and right child key Kg.
The new key K " is derived from K and contributions from
both children. The left child key K contributes n; bits to
the new key, which is derived by a pseudo-random function
using key K and applied to K. The left contribution C; =
PRF ;Lf_”” ~(K) will be of n; bits long. Similarly, the right
contribution Cg is ny bits long and is derived from the right
child key Kz and K as follows: Cg = PRFy. "7 (K).
Then concatenate the two contributions to form aRnew key of
length (n] +n3): CLg = Cp|Cg. To compute K’, ELK uses
pseudo-random function with Cr g as the key and the previ-
ous key K asthe data: K’ = PRF¢, . (K). Instead of broad-
casting the key update message that has length of (n1 + 1)
bits, K’ legitimate members who know K and either K or
K g can also recover the new key from a hint that is smaller
than the key update message, by trading off computation for
communication. Consider first the right-hand members who
know K and K. They can derive the right contribution Cg
of ny bits long. If they would also have a checksum, they
could brute force the missing n| bits of K’ from the left side
contribution. The hint message contains the key verification
Vi which is derived from the new key Vg = PRFg/(0)
and has a length of n3 bits. The right-hand members com-
pute the following candidate keys. The member verifies the
candidate key by checking against the key verification to see
if PRF(0) it equals V.

Among the rekeying protocols proposed in the literature,
the Subset Difference Rekeying (SDR) method [11] is one of
the few protocols that have the property of “statelessness”.
In a stateless rekeying protocol, if a member has missed pre-
vious rekey operations, it need not contact the key server to
obtain keys that were transmitted in the past to decode the
current group key. This property makes SDR very attractive
for secure multicast applications where members may go off-
line frequently. The idea of subset difference is to specify a
subset of valid users as the difference of two subtrees, v; —v;
where v; covers the valid users and v; covers the revoked
users. To have all differences necessary to cover all valid
users in a tree, a sender has to test all possible combinations
of revoked users. A naive exhaustive search for this purpose
takes O (r3) time, where r is number of revoked users. As
search time increases with revoked users, SDR method finds
less use in dynamic groups.

Another example of a stateless protocol is the Self-Heal-
ing Key Delivery (SHKD) protocol proposed in [12]. In

A new probabilistic rekeying method for secure multicast groups

277

M1 M2 M3 M4 M5 M6 M7 M8

Fig. 1 An example LKH tree with eight members

addition to statelessness, this protocol has the property called
“self-healing” where a group member who has not received
a group key (due to network packet loss) can recover the
group key on its own without contacting the key server. This
property is useful as it reduces network traffic by cutting
down retransmission requests. SHKD uses polynomial-based
secret sharing techniques to achieve broadcast overhead of
O (t*m) key sizes, where m is the number of sessions over
which self-healing is possible and 7 is the maximum allowed
number of revoked nodes in the m sessions. This scheme
has several limitations that may discourage its deployment
in some applications. First, in this scheme, an application is
pre-divided into m sessions, and the key server initiates a
group rekeying at the beginning of each session. Thus, this
scheme cannot be used for applications that demand immedi-
ate user revocation due to security requirement. Second, ¢, the
maximum allowed number of revoked users during these m
sessions, has to be predetermined and must not be exceeded;
otherwise, the security of this scheme is broken. Third, the
broadcast size becomes very large even for reasonable values
of t and m.

2.1 LKH scheme

The basis for the LKH approach for scalable group rekeying
is a logical key tree which is maintained by the key server.
The root of the key tree is the group key used for encrypt-
ing data in group communications and it is shared by all
users (see Fig. 1). The leaf nodes of the key tree are keys
shared only between the individual users and the key server,
whereas the middle level keys are auxiliary key encryption
keys (KEK’s) used to facilitate the distribution of the root
key. Of all these keys, each user owns and only owns those
on the path from its individual leaf node to the root of the
key tree. As a result, when a user join/leave the group, all
the keys on its path have to be changed and redistributed to
maintain backward / forward data confidentiality.

In Fig. 1, member M1 holds a copy of the keys Koo, Koo,
Ko, and K goor; member M2 holds a copy of Koo1, Koo, Ko

and K g, and so on. If keys of a member is compromised,
the key server changes compromised keys and multicast new
keys to the group encrypted using compromised members
KEKSs. For example, assume the keys of member M2 are
compromised. First, key server changes Kop; and sends to
member M2 over a secure unicast channel. Then, key server
changes Koo and two copies of the new key encrypted using
Kooo and Ko are sent to the group. Then, key server changes
Ko and sends to the group, encrypted by Kpo and Kp;.
Finally, K g, is changed by key server and sent to the group,
encrypted by Ko and K;. From each encrypted message,
the new keys are extracted by the group members who have
a valid copy of encryption keys. In case of member join,
all the keys in the path from joining member node to root
are changed, and the new keys are multicast to the group
encrypted using KEKs.

2.2 Shortcomings of LKH

Although LKH scheme is a secure rekeying method that pro-
vides both backward and forward confidentiality, it has some
drawbacks in terms of scalability and reliability.

2.2.1 Individual rekeying

Ateach arrival or departure of a member, the key server needs
to immediately rekey the whole group in order to ensure back-
ward and forward confidentiality, which prevents a member
from accessing the data sent before its arrival or after its
departure. However, individual rekeying is relatively ineffi-
cient for large groups where join/leave requests happen very
frequently. For example, if members M1 and M2 (see Fig. 1)
leave the group one after the other with a very short delay
between the two departures, the key server will need to mod-
ify twice, the keys located at same vertices in the tree. On
the contrary, if the key server had regrouped these two depar-
tures in one rekeying operation, the rekeying cost would be
reduced by a half.

2.2.2 Key dependency

At a new rekeying interval, the key server uses the keys of
the previous interval to encrypt new keys. Because of this
strong dependency between keys, when a member miss some
rekeying packets during a rekeying interval, he need to con-
tact the key server to refresh its key set otherwise he will not
be able to decrypt multicast data sent after this rekeying inter-
val even though he is still member of the group. Thus, the key
server needs a reliable key distribution protocol to ensure the
receipt of keys by a maximum number of members before
the beginning of the next rekeying interval.

@ Springer

278

A. R. Pais, S. Joshi

2.2.3 “One Affects All” failure

In LKH scheme, as well as in most of rekeying solutions, any
arrival or departure of a recipient causes the update of the
keying material of all members alike. Indeed, any rekeying
operation at least requires the update of the data encryption
key which is shared with all members of the group. The key
server does not minimize the impact of rekeying due to the
frequent dynamics of short-lived members on members who
remain for longer periods during entire session.

2.3 Optimization schemes proposed for LKH

There are many optimization schemes proposed in literature
for LKH. Some of them optimize network bandwidth, some
reduce rekey cost and some restructure the LKH tree opti-
mize one or more parameters like reduce bandwidth, rekey
cost, processing time, etc.

The OFC [5] proposed a variation of LKH by employ-
ing a functional relationship among the node keys for binary
key trees along the path from the leaf node representing the
leaving member to the root. OFC reduces the communica-
tion overhead from LKH’s 2(logy N)— 1 to (logy N), but it
is limited to the binary key tree case.

The Bezawada scheme [8] proposed a key distribution
algorithm for distributing keys to only those users who need
them. It proposes a compact descendant tracking scheme to
track the descendants of the intermediate nodes in the mul-
ticast tree. Using this descendant information, a node for-
wards an encrypted key update only if it believes that there
are descendants who know the encryption key. The scheme
also proposes identifier assignment algorithm which assigns
closer logical identifiers to users who are physically close in
the multicast tree.

In the schemes [6,18], the groups are rekeyed periodi-
cally instead of on every membership change, which reduce
both the processing and communication overhead at the key
server. The Kronos scheme [6] is based on periodic rekeying
that decouples the frequency of rekeying from the size and
membership dynamics of the group. Another feature of Kro-
nos is that it can be used in conjunction with a distributed
framework for key management that uses a single group wide
session key for encrypting communications between mem-
bers of the group.

The Reliable Group Rekeying (RGR) scheme [18] also
uses periodic batch rekeying to improve scalability and alle-
viate out of sync problems among rekey messages as well as
between rekey and data messages. This scheme discusses a
reliable multicast of rekey messages using proactive forward
error correction codes (FEC).

In synchro-difference LKH (SDLKH) scheme [20], new
keys are generated based on previous ones by employing the
distribution of the difference. But this scheme is insecure

@ Springer

against attack from collusion of two or more malicious
adversaries [9].

The studies of Almeroth and Ammar [7] about the behav-
ior of multicast group members in the MBone show that sig-
nificant differences may exist among the members of a group.
When significant differences exist among the group mem-
bers, it is practical to maintain data regarding past behavior
of the members. The algorithms designed to handle such
difference in member’s behavior can provide significant
reductions in the cost of rekey operations in multicast key
management. Based on this study, many LKH optimization
schemes are proposed in literature, which restructure the
LKH tree to improve rekey cost, bandwidth, processing time,
etc.

The scheme [19] proposed two optimizations for logi-
cal key tree organizations that utilize information about the
characteristics of group members to further reduce the over-
head of group rekeying. First, it proposes a partitioned key
tree organization that exploits the temporal patterns of group
member joins and departures to reduce the overhead of rekey-
ing. The tree is partitioned into S-partition for short duration
members and L-partition for long duration members. Second,
it proposes an approach under which the key tree is organized
based on the loss probabilities of group members.

In the scheme [13], the key server partitions members
in different categories based on their membership duration.
The key server then uses error correction mechanisms with
a degree of reliability that depends on the “loyalty” of
each category. This scheme restructure the LKH tree, by
separately regrouping members based on their membership
duration aiming at preserving members with long dura-
tion membership from the impact of rekeying operations
caused by arrivals or departures of short-lived members. This
scheme uses a hybrid reliability scheme based on a combi-
nation of ARQ and FEC that assures a quasi certain delivery
of keying material to long-lived members.

Inthe Refined LKH (RLKH) scheme[17], on member join,
his behavior (namely active and non-active) is used to parti-
tion the member. On leave by a member, “dirty path” is set
in the path from leaving node to root and rekeying is delayed
until a join operation in the same path of leaving member.
This scheme tries to merge leave operation rekey cost with
next join operation in that sub tree. But the performance of
algorithm is not adequate in all circumstances.

Most of the LKH-based schemes suggest to keep the key
tree balanced so that the rekey cost is fixed to be logarith-
mic to the height of the key tree. However,the schemes [1]
shows that organizing members in a key tree according to
their topological locations would also be very beneficial, if
the multicast topology is known to the key server.

Probabilistic optimization of LKH [14], called PLKH,
show that it could be beneficial to use an unbalanced key
tree in some cases. The idea in PLKH is to organize the

A new probabilistic rekeying method for secure multicast groups

279

key tree with respect to the compromise probabilities of
members, in a spirit similar to data compression algorithms
such as Huffman and Shannon-Fano coding. Basically, the
key server places members who are more likely to be revoked
closer to the root of the key tree. If the key server can know in
advance or can make a good guess of the leaving probability
of each member, then PLKH can achieve better performance
than that based on a balanced one.

2.4 PLKH scheme

PLKH [14] scheme shows that average rekey cost of a LKH-
based protocol can be minimized by organizing the LKH
tree with respect to rekey likelihoods of members. Instead
of maintaining uniform balanced tree, PLKH puts more
dynamic members closer to the root and moves more sta-
ble members further down the tree. Here, the average rekey
cost is reduced by decreasing the cost for more dynamic (i.e.
more likely to rekey) members at the expense of increasing
that cost for more stable members.

The tree construction requires rekey probability distribu-
tions for all current and prospective members of the group,
which is not practical. Instead, PLKH uses alternative weight
assignment technique. PLKH focuses on minimizing the cost
of the next rekey operation. The expected costs of the next
rekey operation, due to a leave or compromise event, is equal
to

> pid; e

where p; is the probability that member M; will be the next
to be evicted/compromised, and d; is depth of that member in
the tree. This quantity >, p;d; is known as the average exter-
nal path length of the tree. This problem has many similarities
to the data compression problem (for details see [14]).

PLKH proposes two insert algorithms. The first algorithm,
insert], organizes the LKH tree in a way which imitates
the Shannon-Fano data compression trees. The insert; algo-
rithm tries to keep the subtree probabilities as balanced as
possible at every level, so that the resulting tree will have
an average external path length close to the optimal bound
of — >, pi log pi. The second algorithm, insert,, finds the
best insertion point for each member by searching all possible
insertion points in the tree. The insert, searches the whole
tree to find the location which minimizes average external
path length. But insert, adds extra computational cost of
O(N) on N-member group.

2.5 Shortcomings of PLKH
Although the PLKH scheme reduces the rekeying cost com-

pared to LKH protocol, it has some drawbacks that we discuss
below.

2.5.1 Strict binary tree structure

The insert; algorithm of PLKH always uses PUT operation
to insert new member in the tree. When a member joins the
group, PUT operation inserts that member as left child of new
internal node in the tree. The PUT operation ensures that all
members are inserted as leaf nodes in the tree and maintains
strict binary tree structure. This increases the depth of newly
inserted member in the tree which in turn increases rekey
cost. The insert, algorithm finds the best insertion point for
member M by searching all possible insertion points in the
tree. But it reduces number of rekeys at the expense of addi-
tional computational cost of O(N).

2.5.2 Probability considered

In PLKH trees, each node X in the tree has a probability field
X. p that shows the cumulative probability of the members in
the subtree rooted at X, similar to that in Huffman trees. The
probability of member X is equal to the rekey probability of
the corresponding member if X is a leaf node, and it is equal
to X.left.p + X.right.p if X is an internal node.

The insert algorithms of PLKH use this cumulative prob-
ability for deciding where to insert new member in tree. The
problem with cumulative probability is that it changes on
every membership change done in the subtree. The new mem-
ber is inserted based on cumulative probabilities of internal
nodes even though he may have higher rekey probability than
some of the members in the tree. This causes new member
to be pushed further down the tree, increasing the rekey cost
for that member.

2.5.3 Ambiguous key identifiers

PLKH does not discuss how the key identifiers are assigned.
The key identifier generated using original LKH identifier
scheme or using special flag indicator for node created in
PUT operation [14] will end up in having some nodes with
ambiguous key identifier. This problem arises as PLKH does
not affect existing nodes on membership change; so when
a change occurs, only nodes in the path from member node
to root are updated. But this information is not updated in
descendants of affected member’s node.

3 Our method

In this paper, we focus on minimizing the average rekey
cost of LKH-based protocols by organizing the LKH tree
with respect to the rekey probabilities of members. The aver-
age rekey cost can be reduced by decreasing the cost for
more dynamic (i.e. more likely to rekey) members at the
expense of increasing that cost for more stable members. The

@ Springer

280

A. R. Pais, S. Joshi

communication and computation costs of these rekey opera-
tions are proportional to depth of member in tree.

The rekeys happen whenever change occurs in group
membership or when keys of group members are compro-
mised. The rekey probability of a member M gives measure
of how quick that member will cause rekey due to compro-
mise or eviction. Our key server calculates and stores rekey
probabilities of all members of the group.

We organize the LKH tree with respect to members rekey
probabilities as opposed to cumulative probability of PLKH.
We concentrate on reducing number of rekeys that are caused
due to member compromise or eviction. Also, to minimize
rekey cost on insert, the keys each member is holding after an
insert operation should be the same as those it was holding
before insert operation (or the corresponding new keys, for
the keys that are changed), plus possibly some newly added
keys to the tree.

The optimal solution to get such probability-based LKH
tree is given by Huffman trees [2]. But the Huffman tree
requires changes in the locations of the existing members in
the tree, which means extra rekey operations. Shannon-Fano
trees [2] are another solution which avoid changes in loca-
tion, but are slightly suboptimal. We use Shannon-Fano trees
to preserve the position of members in the tree when group
membership changes.

Instead of placing the members as leaf nodes as in PLKH,
we provide new insert operation which place the members
either as leaf node or as internal node in LKH tree based on
their probabilities. When a new member M joins the group,
we place member M in a position such that all ancestors of
M will have higher probability and all descendents of M
will have lesser probability. Our insert operation imitates
Shannon-Fano trees to avoid changes in positions of members
and also to balance the probabilities of left and right subtrees
of each member. Our delete operation removes unwanted
nodes in tree based on some conditions.

In the following sections, we present different node types
used in our scheme along with new insert and delete opera-
tions. Also, we present our Modified PUT operation and new
key identifier assignment scheme, which generates unambig-
uous key identifiers for nodes in the tree.

3.1 Node types

In this section, we define three types of nodes used in our
probability-based LKH tree namely physical, logical and
replaceable. A physical node represents a group member.
A logical node represents an internal node created by our
Modified PUT (called MPUT) operation. A replaceable node
represents internal node that may be replaced as physical
node on future join with a suitable member details.

When a member joins the group, a new physical node is
created to represent that member. A logical node is created

@ Springer

Root Root
G/P MPUT (N, P) 4
— "\
=] L
/\ N/\P
/\

Fig. 2 Our MPUT operation. It creates new logical node L with P&N
as its children

by MPUT operation to preserve relative locations of present
members in the tree. When a member leaves the group, we
delete that node only when it is a leaf node. Otherwise, we set
it to replaceable node as it may have one or more dependent
nodes and deleting that node will cause more rekeys. The
replaceable node will be changed to physical node when a
suitable member who fits the probability requirement joins
the group in future. This reduces rekey cost of a future join
operation by suitable member.

3.2 Modified PUT operation

When a member joins the group, we find suitable location
where he can be placed in the tree such that dynamic mem-
bers will be closer to root and more stable members further
down the tree. Our Modified PUT (called MPUT) operation
is used to insert new member in a position which preserves
relative locations of existing members in the tree. It is similar
to PUT operation of PLKH but creates a logical node.

To insert new physical node N into tree using MPUT, new
logical node L is created at certain location in tree such that
N will be its left child and P will be its right child (see Fig. 2).
The G P, the previous parent of node P, will now point to
node L.

Every node will have two probability fields, namely ini-
tial probability denoted as initprob and aggregate proba-
bility denoted as aggrprob. The initial probability is same
as rekey probability of that member if the node is of type
physical or replaceable and for a logical node it is

max(leftChild.initprob, rightChild.initprob) + 0.001.

This ensures probability of logical node is more than all mem-
bers in the subtree and the probability tree structure is pre-
served. The aggregate probability of a node N is the sum of
initial probabilities of all nodes in subtree rooted at N.

3.3 Insert operation

When a new member joins the group, a new physical node
is created and is inserted in a position such that its ances-
tors will have bigger probability and its descendent (if
any) will have lesser probability. To insert a new node

A new probabilistic rekeying method for secure multicast groups

281

insert(N, GP , P, direction)

if(P!=NULL){
if(P.initprob < N.initprob){
if(P.type =replaceable)
replaceNode (P, N)
else
MPUT(N, P)

}
if(P.left.aggrprob > P.right.aggrprob)
insert(N, P, P.right, right)
else
insert(N, P, P.left, left)
}
elsef
if(direction = left)
insertNodeToLeft (GP, N)
else
insertNodeToRight (GP, N)

Fig. 3 Our insert algorithm which considers the node’s initial proba-
bility

N in suitable position with GP as grandparent and P as
parent nodes, our insert algorithm uses one of the follow-
ing operations M PUT, insertNodeToLeft, insert Node
ToRight and replaceNode (see Fig. 3). Among these,
four operations only M PUT creates strict binary tree
structure.

A suitable position for new node N is found when we get a
parentnode P with initial probability less than that of N. If P
is replaceable node then we replace P as physical node with
details of N by calling replaceNode. Otherwise, we call
M PUT that creates new logical node and puts N as left child
of new logical node. If P’s initial probability is more than
N’s, then we use aggregate probability of P’s children. We try
to balance the probabilities on left and right subtrees by mov-
ing N to either left or right subtree which has lesser aggre-
gate probability. The insert NodeT oLeft inserts new node
as left child of given parent node and insert NodeT oRight
inserts new node as right child of given parent node. Our
insert algorithm takes no additional computational cost and
has complexity of O(log d), where d is depth of inserted
member in the tree.

3.4 Delete operation

When a member leaves the group, his corresponding physical
node need to be deleted from the tree. The physical node may
be a leaf node or an internal node based on how it inserted
and whether it has any dependent nodes at present. Our delete
operation removes a physical node only if it is a leaf node;
otherwise, we set its node type as replaceable and refresh
affected keys (see Fig. 4). Our delete operation also removes
unwanted logical and replaceable nodes present in affected
subtree provided they do not have any dependent physical
nodes.

deleteNode(N)

P=getParent(N)
direction=getChildDirection(P, N)
if(isLeafNode(N)){
if(direction=Left)
deleteNodeFromLeft(P)
else
deleteNodeFromRight(P)
}
else{
if(N.type=physical)
setNodeAsReplacable(N)

}
if(isLeafNode(P) AND P.type != physical)
deleteNode(P)

Fig. 4 Our delete operation which removes unwanted nodes from tree

assignKeyID(P,C, direction)

keyid=P.keyid
if(direction=Left)
strcat keyid, “L”
else
strcat keyid, “R”
if C.type=logical
strcat keyid, "x”

id=getFreeSlot(P,C.type)
strcat keyid, id
C.keyid=keyid

Fig. 5 Our key identifier assignment algorithm

3.5 Key identifier assignment

When a new node C is inserted at some position with P
being its parent node, our assignment scheme will generate
new key identifier for C as shown in Fig. 5. First, we get
parent’s key identifier and assign direction of C from P to
it. The ‘'L’ and ‘R’ indicate the child direction with respect
to its parent. If C is logical node then we attach ‘x’ flag to
the key identifier. The ‘x’ flag helps in direction correction
to trace descendants. Finally, we attach a child number that
we get from first ancestor which is not a logical node starting
from C. Here, get FreeSlot recursively searches until a non-
logical parent is found. It then returns index to a free child
slot.

3.6 Tracing node using key identifier

An example is given in Fig. 6 to understand working of our
scheme. After M PUT operation if we need to trace node P
with key identifier R3R2, we first move up to new logical
node L using direction indicators ‘L.’ & ‘R’ representing left
and right directions. At node L, we detect that it is logical.
Now, we do direction correction. At any stage when we get a
logical node, if the remaining part of node to be traced does
not have ‘x” flag indicator then we move in right direction
irrespective of ‘L’ or ‘R’ of remaining part. This is because

@ Springer

282

A. R. Pais, S. Joshi

Fig. 6 Example shows the
working of our key identifier
assignment algorithm

..R3L1R2

..R3L1L1

the MPUT always inserts new node N to left of logical
node and parent to right. The left subtree will have nodes
with ‘x” prefix in their remaining part. Since the P node’s
remaining part R2 does not have ‘x” flag indicator, so we
move in right direction to find node at next level. Note that
on MPUT (N, P) operation, keys of all the nodes from G P
to root are refreshed. This scheme takes d steps for locating
any member, where d is node’s depth.

3.7 Choosing probability

To use the insertion algorithm as described earlier, it is crucial
to know the rekey probability values of all group members
at the time of insertion. The optimal solution to this problem
is not practical since that would require the knowledge of
rekey probability distributions for all current and prospec-
tive members of the group as well as the cost calculations for
every possible sequence of future join, leave, and compro-
mise events.

The PLKH [14] has proposed a solution to this prob-
lem using weight-based scheme. We are also using the same
scheme to calculate rekey probabilities of members. The key
server calculates and maintains rekey probability of each
member. Whenever a member is evicted or compromised
our key server updates his rekey probability.

The rekey probability in weight assignment is calculated
using the inverse of the mean inter-rekey time of members
as follows:

pi =wi/W @

where p; is rekey probability of member M;, w; = 1/u; and
W = > w;. The p; is the average time between two rekeys
by member M;. The reasons for choice of 1/; as the weight
measure among many other candidates are:

1. TIts simplicity and convenience.
In the special case where the members inter-rekey time
distributions are exponential, p; = w;/ W gives exactly
the probability that M; will be the next member to rekey.

@ Springer

..R3L1L1 ..R3L1R2 ..R3Rx1L3

4 Simulation results and analysis

We have chosen LKH and PLKH for comparison with our
scheme as they address rekey cost reduction on group mem-
bership changes and on key compromises by the members,
whereas other schemes concentrate on reducing bandwidth
and computational cost. We simulated LKH, PLKH and our
scheme using ns2 network simulator [15]. We call our
scheme as OPLKH for simplicity. We performed experi-
ments on randomly generated network topologies for groups
of 128, 256, 512, 768 and 1,024 members. For each experi-
ment, we selected a random set of members to join and leave
the group and recorded number of rekey messages generated.
We considered three scenarios namely static, semi dynamic
and dynamic group.

4.1 Scenario 1-static group

In this scenario, we assign relatively lesser rekey probability
to members. Most of the members in this scenario stay in
group till session is over. The members are added at random
intervals. In this scenario, number of members who leave the
group is chosen to be roughly 25% of the group size. The
members leave the group at random times (chosen based on
their rekey probability) during the entire session of the group.
From the results obtained, we observe that for static groups
our scheme performs 41% better compared to LKH and 29%
better compared to PLKH (see Fig. 7).

4.2 Scenario 2-semi dynamic group

In this scenario, we assign relatively higher probability to
members compared to static group. The members are added
at random intervals. In this scenario, number of members
to leave the group is chosen to be roughly 50% of group
size. The member’s leave time is selected at random based
on their probabilities. From the results obtained, we observe
that for semi dynamic groups our scheme performs 38% bet-
ter compared to LKH and 21% better compared to PLKH
(see Fig. 8).

A new probabilistic rekeying method for secure multicast groups

283

Static Group

18000

16000

14000

12000

10000

8000

6000

4000

Number of rekeys generated

2000

128 256 512 768 1024
Number of users

Fig. 7 Simulation results for static group with various group sizes

Semi-dynamic Group
20000

18000

16000

14000

12000

10000

8000

6000

4000

Number of rekeys generated

2000

0+
128 256 512 768 1024
Number of users

Fig. 8 Simulation results for semi dynamic group with various group
sizes

4.3 Scenario 3-dynamic group

In this scenario, we assign high probability to members. The
members are allowed to join and leave the group at rapid
rate. The group experiences lot of join/leave requests in quick
time, which increases the rekey messages generated. From
the results obtained, we observe that for dynamic groups our
scheme performs 32% better compared to LKH and 18%
better compared to PLKH (see Fig. 9).

4.4 Nodes created

LKH maintains uniform balanced tree that increases number
of nodes created in tree. On every join by members, the LKH
increases logical node(s) to ensure that members are at leaf.
Figure 10 shows the tree structure formed when members
with probabilities 0.001, 0.041, 0.067, 0.034, 0.069, 0.024,
0.078, 0.058, 0.062, 0.064, 0.005 are joined in order. The
LKH created 23 nodes with 11 physical nodes and 12 logical

Dynamic Group

60000

50000

40000

30000

20000

10000

Number of rekeys generated

128 256 512 768 1024
Number of users

Fig. 9 Simulation results for dynamic group with various group sizes

Physical Node

initial
probability

Logical Node

Fig. 12 OPLKH Tree formed when members arrive in given order

nodes. Note here that LKH does not consider probabilities
of members. The probability shown in figure is for under-
standing purpose only to indicate where each member node
is inserted.

PLKH creates intermediate node on every PUT
operation. The PLKH always inserts members using PUT
operation. Figure 11 shows the tree structure formed when
members with probabilities 0.001, 0.041, 0.067, 0.034,
0.069, 0.024, 0.078, 0.058, 0.062, 0.064, 0.005 are joined
in order. PLKH created 19 nodes. Note that PLKH does not
distinguish between physical and logical nodes.

OPLKH creates logical node only when MPUT is called.
In OPLKH, the replaceable nodes are replaced when suit-
able member joins in future. It helps in reducing number
of nodes created. Figure 12 shows the tree structure formed
when members with probabilities 0.001, 0.041, 0.067, 0.034,
0.069, 0.024, 0.078, 0.058, 0.062, 0.064, 0.005 are joined in
order. OPLKH created 14 nodes with 3 logical nodes, 11
physical nodes and 0 replaceable nodes.

@ Springer

284

A. R. Pais, S. Joshi

Fig. 10 LKH Tree formed
when members arrive in given
order

Fig. 11 PLKH Tree formed
when members arrive in given
order

13
0.062 0.078 0.058
7

3

()

Logical Node

Proba
biility

Physical Node

probability

0.046

0.064 0.069 0.058 0.067

17 1

0.024 0.034/ \0.005/ \0.041

4.5 Nodes remaining at the end of session

From the results obtained, it is clear that OPLKH has less
number of nodes at the end of session. This is because
OPLKH removes unwanted nodes (i.e. non-physical nodes
which have no dependents) from tree. This reduces total
nodes in tree. Whereas PLKH removes internal nodes only if
there are no dependent members and LKH removes logical
nodes only if they are leaf nodes. Figure 13 shows the com-
parison of three algorithms with respect to number of nodes
remaining at the end of session.

From results obtained, it is clear that OPLKH has 23% to
36% less nodes than LKH (for more details see Table 1). We
can see that OPLKH has reduced number of nodes remaining
by removing unwanted nodes from tree.

4.6 Analysis

The number of rekey messages generated for same mem-
ber join/leave operations in all schemes show that our
scheme, OPLKH, performs better than both LKH and PLKH.

@ Springer

Node

Number of nodes left after a group session

1800 - O LKH
W PLKH
1600 -
0O OPLKH
o 1400
2
o 1200 -
o
8
Q 1000 -
‘©
o 800 -
]
1
£ 600
2
400 -
200
0 4

Scenario 1

Scenario 3
Different scenarios with 1024 nodes

Scenario 2

Fig. 13 Simulation results for nodes left at the end of session

OPLKH scheme not only optimizes the rekey cost, it also
optimizes number of nodes created in the tree. OPLKH
avoids strict binary tree structure, unwanted PUT operations

A new probabilistic rekeying method for secure multicast groups

285

Table1 Reductioninnodesremaining with various scenariosina 1,024
node group

Over LKH (in %) Over PLKH (in %)

Scenario 1 23 17
Scenario 2 29 20
Scenario 3 36 25

Table 2 Reduction in rekey cost of OPLKH compared to LKH and
PLKH

Over LKH (in %) Over PLKH (in %)

Scenario 1 41 29
Scenario 2 38 21
Scenario 3 32 18

and unnecessary logical nodes. Table 2 shows rekey cost
improvement obtained by OPLKH over LKH & PLKH in
different scenarios. Table 1 shows improvement obtained on
nodes remaining at end of session in the tree by OPLKH over
LKH & PLKH in different scenarios.

4.7 Limitations of our scheme

Some of the limitations of our scheme are discussed here.
First, our key identifier assignment requires more memory to
store key identifiers. Typical LKH scheme needs only 1 bit
for choosing left or right child. Whereas our scheme needs
6 bits with 1 bit for direction, 1 bit for ‘x’ flag and 4 bits
for index to free child slot in parent. Second limitation is
that, though total nodes created are less than PLKH & LKH
schemes, our scheme treats some nodes harshly in terms of
depth assigned. Thirdly, our scheme only ensures that tree
structure is binary. It neither tries to maintain strict binary
tree as PLKH nor tries to balance all nodes at same level
as LKH. Finally, our scheme does not optimize rekey cost
when one or more members are compromised in same sub-
tree.

5 Conclusion

In this paper, we addressed the issue of reducing rekey
messages generated on member leave in secure multicast
groups. We presented new method to form the LKH tree with
member’s rekey characteristics using our insert and delete
operations. Also, we gave generic key identifier assignment
scheme which avoids ambiguous key identifiers. The simu-
lation results show that our scheme achieves rekey reduction
of 18% compared to PLKH and 32% on original LKH for

dynamic group of 1024 members. Our scheme also reduces
number of nodes created for given size and number of nodes
left after a group session by eliminating unwanted non-
physical leaf nodes.

References

1. Bhattacharjee, B., Banerjee, S.: Scalable secure group communi-
cation over ip multicast. International Conference on Network Pro-
tocols (ICNP) 2001 (2001)

2. Cleary, J.G., Bell, T.C., Witten, I.H.: Text compression. Prentice-
Hall, New Jersey (1990)

3. Gouda, M., Wong, C.K., Lam, S.S.: Secure group communications
using key graphs. IEEE/ACM Trans. Networking 8, 16-30 (2000)

4. Harder E.J., Wallner, D.M., Agee, R.C.: Key management for mul-
ticast: Issues and architectures. RFC 2627 (1999)

5. Itkis, G., Micciancio, D., Naor, M., Canetti, R., Garay, J., Pinkas,
B.: Multicast security: a taxonomy and some efficient construc-
tions. Proc. IEEE INFOCOM ’99 2, 708-716 (1999)

6. Jajodia, S., Setia, S., Koussih, S.: Kronos: A scalable group
re-keying approach for secure multicast. IEEE Symposium on
Security and Privacy, Oakland, CA (2000)

7. Judge, P., Ammar, M.: Security issues and solutions in multicast
content distribution: a survey. IEEE Network 17, 30-36 (2003)

8. Kulkarni, S.S., Bezawada, B.: Distributing key updates in secure
dynamic groups. International Conference on Distributed Comput-
ing and Internet Technology, ICDCIT-04 (2004)

9. Lee, Y., Park, Y., Kim, H., Chung, B., Yoon, H.: Weakness of the
synchro-difference lkh scheme for secure multicast. IEEE Com-
mun. Lett. 11(9), 765-767 (2007)

10. McGrew, D.A., Sherman, A.T.: Key establishment in large dynamic
groups using one-way function trees. IEEE Trans. Software Eng.
29(5), 444458 (2003)

11. Naor, M., Naor, D., Lotspiech, J.: Revocation and tracing schemes
for stateless receivers. Advances in Cryptology-CRYPTO 2001,
Springer-Verlag Inc. LNCS 2139, pp. 41-62 (2001)

12. Ning, P, Liu, D., Sun, K.: Efficient self-healing group key distribu-
tion with revocation capability. In: Proceedings of the 10th ACM
conference on Computer and Communications Security (2003)

13. Onen, M., Molva, R.: Group rekeying with a customer perspective.
In: Proceedings of Tenth International Conference on Parallel and
Distributed Systems (2004)

14. Selguk A.A., Sidhu, D.P.: Probabilistic methods in multicast key
management. In: Proceedings of the Third International Workshop
on Information Security (2000)

15. The Network Simulator: ns-2, vesion 2.32. http://www.isi.edu/
nsnam/ns/ (2008)

16. Tygar, D., Perrig, A., Song, D.: Elk, a new protocol for efficient
large group key distribution. In: Proceedings of the IEEE Security
and Privacy Symposim 2001 (2001)

17. Xu, Y., Sun, Y.: A new group rekeying method in secure multi-
cast. International conference on Computational intelligence and
security (2005)

18. Zhang X., Yang, Y., Li, X., Lam, S.: Reliable group rekeying:
Design and performance analysis. In: Proceedings of ACM SIG-
COMM2001 (2001)

19. Zhu, S.S.S., Jajodia, S.: Performance optimizations for group key
management schemes for secure multicast. In: Proceedings of
23rd International Conference on Distributed Computing Systems
(2003)

20. Zhu, W.T.: Optimizing the tree structure in secure multicast key
management. IEEE Commun. Lett. 9(5), 477-479 (2005)

@ Springer

http://www.isi.edu/nsnam/ns/
http://www.isi.edu/nsnam/ns/

286

A. R. Pais, S. Joshi

Author Biographies

@ Springer

Alwyn R. Pais is Assistant
Professor in Department of
Computer Engineering, NITK
Surathkal. He completed his
B.Tech.(CSE) from Mangalore
University, India and M.Tech.
(CSE) from IIT Bombay, India.
His area of interest include Infor-
mation Security, Image Process-
ing and Computer Vision.

Shankar Joshi is Senior
Lecturer in Department of Infor-
mation Science & Engineering,
B. V. Bhoomaraddi College of
Engg. & Tech., Hubli. He com-
pleted B.E.(CSE) from Visvesva-
raya Technological University,
India and M.Tech.(CSE) from
NITK Surathkal, India. His areas
of interest include Information
Security, Distributed Systems
and Computer Networks.

	A new probabilistic rekeying method for secure multicast groups
	Abstract
	1 Introduction
	2 Literature survey
	2.1 LKH scheme
	2.2 Shortcomings of LKH
	2.2.1 Individual rekeying
	2.2.2 Key dependency
	2.2.3 ``One Affects All'' failure

	2.3 Optimization schemes proposed for LKH
	2.4 PLKH scheme
	2.5 Shortcomings of PLKH
	2.5.1 Strict binary tree structure
	2.5.2 Probability considered
	2.5.3 Ambiguous key identifiers

	3 Our method
	3.1 Node types
	3.2 Modified PUT operation
	3.3 Insert operation
	3.4 Delete operation
	3.5 Key identifier assignment
	3.6 Tracing node using key identifier
	3.7 Choosing probability

	4 Simulation results and analysis
	4.1 Scenario 1-static group
	4.2 Scenario 2-semi dynamic group
	4.3 Scenario 3-dynamic group
	4.4 Nodes created
	4.5 Nodes remaining at the end of session
	4.6 Analysis
	4.7 Limitations of our scheme

	5 Conclusion
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 149
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 149
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 599
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200038002000280038002e0032002e00310029000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f0061006400650064002000610074002000680074007400700073003a002f002f0070006f007200740061006c002d0064006f0072006400720065006300680074002e0073007000720069006e006700650072002d00730062006d002e0063006f006d002f00500072006f00640075006300740069006f006e002f0046006c006f0077002f00740065006300680064006f0063002f00640065006600610075006c0074002e0061007300700078000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c00200030003800200061006e0064002000500069007400530074006f0070002000530065007200760065007200200030003800200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

