See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/230700682

1-[(3-Benz-yloxy-2-nitro-phen-oxy)meth-yl]benzene

Article *in* Acta Crystallographica Section E Structure Reports Online - August 2012 DOI: 10.1107/S1600536812029194 - Source: PubMed

citations 0	; ;	reads 50	
5 authoi	s, including:		
٢	Suhana Arshad Universiti Sains Malaysia 336 PUBLICATIONS 359 CITATIONS SEE PROFILE	Ģ	Prakash Shetty Manipal Academy of Higher Education 198 PUBLICATIONS 1,007 CITATIONS SEE PROFILE
	Arun M Isloor National Institute of Technology Karnataka 548 PUBLICATIONS 4,255 CITATIONS SEE PROFILE		
Some of	the authors of this publication are also working on these related projects:		
Project	Fabrication of membranes for water purification View project		

Thin film nanocomposite membranes for power generation by pressure retarded osmosis (PRO) View project

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

1-[(3-Benzyloxy-2-nitrophenoxy)methyl]benzene

Hoong-Kun Fun,^a* \$ Suhana Arshad,^a S. R. Ubaradka,^b Prakash Shetty^c and Arun M. Isloor^d

^aX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, ^bChemistry Department, Manipal Institute of Technology, Manipal, India, ^cDepartment of Printing, Manipal Institute of Technology, Manipal 576 104, India, and ^dDepartment of Chemistry, National Institute of Technology-Karnataka, Surathkal, Mangalore 575 025, India Correspondence e-mail: hkfun@usm.mv

Received 25 June 2012; accepted 27 June 2012

Key indicators: single-crystal X-ray study; T = 100 K; mean σ (C–C) = 0.002 Å; R factor = 0.042; wR factor = 0.117; data-to-parameter ratio = 21.5.

The asymmetric unit of the title compound, C₂₀H₁₇NO₄, consists of two crystallographically independent molecules. In one of the molecules, the central benzene ring forms dihedral angles of 2.26 (6) and 58.68 (6) $^{\circ}$ with the terminal benzene rings and the dihedral angle between the terminal benzene rings is $56.45 (6)^{\circ}$. The corresponding values for the other molecule are 35.17 (6), 70.97 (6) and 69.62 (6)°, respectively. In the crystal, an inversion dimer linked by a pair of $C-H \cdots O$ hydrogen bonds occurs for one of the unique molecules. C-H··· π and π - π [centroid-centroid distances = 3.7113 (8) and 3.7216 (7) Å] interactions link the components into a threedimensional network.

Related literature

For background to 1-((3-(benzyloxy)-2-nitrophenoxy)methvl)benzene derivatives, see: Altmann et al. (2004); Ohkubo et al. (1997). For related structures, see: Naveenkumar et al. (2009); Fun et al. (2011); Ren & Wang (2012). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986).

 $\gamma = 90.572 \ (1)^{\circ}$

Mo $K\alpha$ radiation $\mu = 0.09 \text{ mm}^{-1}$

Z = 4

T = 100 K

 $R_{\rm int}=0.032$

451 parameters

 $\Delta \rho_{\rm max} = 0.38 \text{ e} \text{ Å}^-$

 $\Delta \rho_{\rm min} = -0.29 \text{ e } \text{\AA}^{-3}$

V = 1661.80 (15) Å³

 $0.26 \times 0.19 \times 0.09 \text{ mm}$

35546 measured reflections

9716 independent reflections

7508 reflections with $I > 2\sigma(I)$

H-atom parameters constrained

Experimental

Crystal data C20H17NO4 M = 335.35Triclinic, P1 a = 7.6150 (4) Å b = 14.6248 (7) Å c = 15.2915 (8) Å $\alpha = 94.706(1)^{\circ}$ $\beta = 101.627 (1)^{\circ}$

Data collection

Bruker SMART APEXII DUO CCD diffractometer Absorption correction: multi-scan (SADABS; Bruker, 2009) $T_{\min} = 0.976, T_{\max} = 0.992$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.042$ $wR(F^2) = 0.117$ S = 1.039716 reflections

Table 1

Hydrogen-bond geometry (Å, °).

Cg2, Cg3 and Cg4 are the centroids of the C8A-C13A, C15A-C20A and C8B--C13B rings, respectively.

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$C17A - H17A \cdots O4B^{i}$	0.95	2.49	3.2100 (16)	133
$C9A - H9AA \cdots Cg4^{ii}$	0.95	2.68	3.5487 (13)	152
$C16A - H16A \cdots Cg2^{i}$	0.95	2.68	3.5161 (13)	147
$C20B - H20B \cdots Cg3^{iii}$	0.95	2.87	3.7013 (14)	146

Symmetry codes: (i) -x, -y, -z + 1; (ii) x - 1, y, z; (iii) -x + 1, -y, -z + 1.

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009).

HKF and SA thank Universiti Sains Malaysia (USM) for the Research University Grant (1001/PFIZIK/811160). SA

[‡] Thomson Reuters ResearcherID: A-3561-2009.

organic compounds

also thanks the Malaysian Government and USM for the Academic Staff Training Scheme (ASTS) award. AMI thanks the Board of Research in Nuclear Sciences, Government of India, for a 'Young Scientist' award.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB6876).

References

Altmann, E., Cowan-Jacob, S. W. & Martin Missbach, M. (2004). J. Med. Chem. 4, 5833–5836.

- Bruker (2009). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105-107.
- Fun, H.-K., Arshad, S., Sarojini, B. K., Khaleel, V. M. & Narayana, B. (2011). Acta Cryst. E67, 01372–01373.
- Naveenkumar, H. S., Sadikun, A., Ibrahim, P., Loh, W.-S. & Fun, H.-K. (2009). Acta Cryst. E65, 02540–02541.
- Ohkubo, M., Kawamoto, H., Ohno, T., Nakano, M. & Morishima, H. (1997). *Tetrahedron*, 53, 585–592.

Ren, D. & Wang, Y. (2012). Acta Cryst. E68, o1049.

- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Spek, A. L. (2009). Acta Cryst. D65, 148-155.

supplementary materials

Acta Cryst. (2012). E68, o2317-o2318 [doi:10.1107/S1600536812029194]

1-[(3-Benzyloxy-2-nitrophenoxy)methyl]benzene

Hoong-Kun Fun, Suhana Arshad, S. R. Ubaradka, Prakash Shetty and Arun M. Isloor

Comment

1-((3-(Benzyloxy)-2-nitrophenoxy)methyl)benzene derivatives are extensively used in Medicinal Chemistry as important intermediates for many pharmaceutical products (Altmann *et al.*, 2004). 3-(Benzyloxy)-2-nitrophenol is used as intermediate for the synthesis of anticancer products and many natural products as well (Ohkubo *et al.*, 1997). As part of our studies in this area, we hereby report the crystal structure of the title compound.

The asymmetric unit of the title compound (Fig. 1), consists of two crystallographically independent molecules, *A* and *B*. Bond lengths and angles are within normal ranges (Naveenkumar *et al.*, 2009; Fun *et al.*, 2011; Ren & Wang, 2012). In molecule *A*, the central benzene ring (C8A–C13A) forms dihedral angles of 2.26 (6) and 58.68 (6)°, respectively, with the terminal benzene rings (C1A–C6A & C15A–C20A). The dihedral angle between the terminal benzene rings is 56.45 (6)°. The corresponding values in molecule *B* are 35.17 (6), 70.97 (6) and 69.62 (6)°, respectively.

The crystal structure is shown in Fig. 2. The molecules are linked together with another neighbouring molecules *via* C17A—H17A···O4B hydrogen bonds (Table 1) to form inversion dimers. C—H··· π interactions (Table 1) and π – π interactions of Cg1···Cg1 = 3.7113 (8) Å (symmetry code: 1 - *x*, 1 - *y*, 1 - *z*) and Cg1···Cg2 = 3.7216 (7) Å (symmetry code: -*x*, 1 - *y*, 1 - *z*) link the molecules into a three-dimensional network. [Cg1, Cg2, Cg3 and Cg4 are the centroids of the C1A–C6A, C8A–C13A, C15A–C20A and C8B–C13B rings, respectively].

Experimental

To a stirred solution of 3-(benzyloxy)-2-nitrophenol (1 g, 0.006 mol) in acetonitrile (20 ml) was added potassium carbonate (0.89 g, 0.006 mol) benzyl bromide (1.1 g, 0.006 mol) drop-wise at 273 K. The reaction mixture was stirred at room temperature for 2 h. Mass analysis of crude reaction mixture confirms the completion of the reaction. The reaction mixture was concentrated and the residue was purified by column chromatography to get title compound, which was recrystallized using acetone to get orange plates. Yield: 55%, *M.p.* 351–353 K.

Refinement

All the H atoms were positioned geometrically [C-H = 0.95 or 0.99 Å] and refined using a riding model with $U_{iso}(H) = 1.2 U_{eq}(C)$. Three outliers were omitted (-1 1 0, -4 2 0 and 2 - 6 9) in the final refinement.

Computing details

Data collection: *APEX2* (Bruker, 2009); cell refinement: *SAINT* (Bruker, 2009); data reduction: *SAINT* (Bruker, 2009); program(s) used to solve structure: *SHELXTL* (Sheldrick, 2008); program(s) used to refine structure: *SHELXTL* (Sheldrick, 2008); molecular graphics: *SHELXTL* (Sheldrick, 2008); software used to prepare material for publication: *SHELXTL* (Sheldrick, 2008) and *PLATON* (Spek, 2009).

Figure 1

The molecular structure of the title compound, showing 50% probability displacement ellipsoids.

Figure 2

The crystal packing of the title compound, showing the formation of the inversion dimers. For the sake of clarity, those H atoms not involved in the intermolecular interactions (dashed lines) have been omitted.

1-[(3-Benzyloxy-2-nitrophenoxy)methyl]benzene

Crystal data

 $C_{20}H_{17}NO_4$ $M_r = 335.35$ Triclinic, P1 Hall symbol: -P 1 a = 7.6150 (4) Å b = 14.6248 (7) Å c = 15.2915 (8) Å $a = 94.706 (1)^{\circ}$ $\beta = 101.627 (1)^{\circ}$ $\gamma = 90.572 (1)^{\circ}$ $V = 1661.80 (15) \text{ Å}^3$

Data collection

Bruker SMART APEXII DUO CCD diffractometer Radiation source: fine-focus sealed tube Graphite monochromator φ and ω scans Absorption correction: multi-scan (*SADABS*; Bruker, 2009) $T_{\min} = 0.976, T_{\max} = 0.992$

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.042$ $wR(F^2) = 0.117$ Z = 4 F(000) = 704 $D_x = 1.340 \text{ Mg m}^{-3}$ Mo K α radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 9997 reflections $\theta = 2.7-30.1^{\circ}$ $\mu = 0.09 \text{ mm}^{-1}$ T = 100 K Plate, orange $0.26 \times 0.19 \times 0.09 \text{ mm}$

35546 measured reflections 9716 independent reflections 7508 reflections with $I > 2\sigma(I)$ $R_{int} = 0.032$ $\theta_{max} = 30.1^{\circ}, \theta_{min} = 1.4^{\circ}$ $h = -10 \rightarrow 10$ $k = -20 \rightarrow 20$ $l = -21 \rightarrow 21$

S = 1.039716 reflections 451 parameters 0 restraints

Primary atom site location: structure-invariant	H-atom parameters constrained
direct methods	$w = 1/[\sigma^2(F_o^2) + (0.054P)^2 + 0.4706P]$
Secondary atom site location: difference Fourier	where $P = (F_o^2 + 2F_c^2)/3$
map	$(\Delta/\sigma)_{\rm max} < 0.001$
Hydrogen site location: inferred from	$\Delta \rho_{\rm max} = 0.38 \text{ e } \text{\AA}^{-3}$
neighbouring sites	$\Delta ho_{ m min} = -0.29 \ m e \ m \AA^{-3}$
neighbouring sites	$\Delta \rho_{\rm min} = -0.29 \ {\rm e} \ {\rm \AA}^{-3}$

Special details

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
O1A	0.13559 (11)	0.36930 (5)	0.49220 (6)	0.02214 (17)	
O2A	-0.10558 (10)	0.09202 (5)	0.55126 (5)	0.02063 (17)	
O3A	0.25107 (14)	0.20447 (9)	0.62840 (7)	0.0468 (3)	
O4A	0.04238 (16)	0.28956 (9)	0.65945 (7)	0.0513 (3)	
N1A	0.10941 (13)	0.24213 (7)	0.60732 (7)	0.0215 (2)	
C1A	0.32496 (16)	0.52370 (8)	0.57710 (9)	0.0262 (2)	
H1AA	0.3024	0.4741	0.6101	0.031*	
C2A	0.42369 (17)	0.60071 (9)	0.62090 (11)	0.0336 (3)	
H2AA	0.4673	0.6039	0.6838	0.040*	
C3A	0.45841 (18)	0.67279 (9)	0.57274 (12)	0.0381 (4)	
H3AA	0.5258	0.7253	0.6028	0.046*	
C4A	0.39539 (19)	0.66844 (9)	0.48159 (12)	0.0374 (3)	
H4AA	0.4204	0.7176	0.4487	0.045*	
C5A	0.29527 (17)	0.59230 (8)	0.43760 (10)	0.0302 (3)	
H5AA	0.2509	0.5898	0.3747	0.036*	
C6A	0.25959 (15)	0.51938 (8)	0.48546 (9)	0.0230 (2)	
C7A	0.14950 (15)	0.43950 (8)	0.43354 (8)	0.0218 (2)	
H7AA	0.0283	0.4599	0.4070	0.026*	
H7AB	0.2068	0.4148	0.3842	0.026*	
C8A	0.03602 (14)	0.29318 (7)	0.45495 (8)	0.0185 (2)	
C9A	-0.04526 (15)	0.27616 (8)	0.36507 (8)	0.0201 (2)	
H9AA	-0.0334	0.3195	0.3235	0.024*	
C10A	-0.14422 (15)	0.19488 (8)	0.33674 (8)	0.0206 (2)	
H10A	-0.1983	0.1832	0.2751	0.025*	
C11A	-0.16659 (15)	0.13023 (8)	0.39534 (8)	0.0196 (2)	
H11A	-0.2345	0.0752	0.3741	0.024*	
C12A	-0.08803 (14)	0.14722 (7)	0.48569 (7)	0.0176 (2)	
C13A	0.01607 (14)	0.22707 (7)	0.51330 (7)	0.0176 (2)	
C14A	-0.24977 (15)	0.02361 (8)	0.52786 (8)	0.0198 (2)	

H14A	-0.2090	-0.0319	0.4969	0.024*
H14B	-0.3530	0.0480	0.4870	0.024*
C15A	-0.30454 (14)	-0.00015 (7)	0.61225 (8)	0.0179 (2)
C16A	-0.29037 (15)	-0.08909 (8)	0.63851 (8)	0.0207 (2)
H16A	-0.2380	-0.1348	0.6049	0.025*
C17A	-0.35264 (16)	-0.11121 (9)	0.71380 (9)	0.0260 (3)
H17A	-0.3434	-0.1721	0.7313	0.031*
C18A	-0.42811 (17)	-0.04469 (10)	0.76329 (9)	0.0297 (3)
H18A	-0.4709	-0.0600	0.8146	0.036*
C19A	-0.44114 (19)	0.04415 (10)	0.73792 (9)	0.0322 (3)
H19A	-0.4920	0.0900	0.7722	0.039*
C20A	-0.38016 (17)	0.06621 (8)	0.66276 (9)	0.0257(2)
H20A	-0.3900	0.1272	0.6455	0.031*
O1B	0.61240 (11)	0.48372 (5)	0.17237 (6)	0.02478 (18)
O2B	0.81078 (10)	0.19193 (5)	0.10404 (6)	0.02094 (17)
O3B	0.44330 (11)	0.33094 (6)	0.04889 (6)	0.0286 (2)
O4B	0.49167 (11)	0.25710 (6)	0.16793 (6)	0.02714 (19)
N1B	0.54058 (12)	0.30732 (6)	0.11650 (7)	0.01836 (18)
C1B	0.31381 (17)	0.57666 (8)	0.08217 (8)	0.0234 (2)
H1BA	0.3444	0.5245	0.0477	0.028*
C2B	0.14345 (17)	0.61162 (8)	0.06114 (8)	0.0257(2)
H2BA	0.0577	0.5829	0.0126	0.031*
C3B	0.09729 (18)	0.68790 (9)	0.11025 (10)	0.0316(3)
H3BA	-0.0192	0.7121	0.0951	0.0318(5)
C4B	0.2218(2)	0.72864(10)	0.18152(11)	0.0401 (4)
H4BA	0.1905	0 7809	0.2157	0.048*
C5B	0.39273(19)	0.69359 (9)	0.2137 0.20353(10)	0.0342(3)
H5BA	0.4774	0.7217	0.2529	0.041*
C6B	0 44001 (16)	0.61761(8)	0.15347(8)	0.0223(2)
C7B	0.62756 (17)	0 58239 (8)	0.17359 (9)	0.0223(2) 0.0262(2)
H7BA	0.6945	0.5995	0.1279	0.0202 (2)
H7BB	0.6923	0.6090	0.2331	0.031*
C8B	0.76005 (15)	0.0090 0.43423(8)	0.16589 (8)	0.031
C9B	0.93703 (16)	0.46798(8)	0.18596 (8)	0.0203(2) 0.0243(2)
HORA	0.9639	0.5306	0.10550 (0)	0.0243 (2)
C10B	1.07298 (16)	0.3300	0.17527 (8)	0.029 0.0249 (2)
HIOR	1 1932	0.4313	0.1877	0.0249 (2)
C11B	1.1752	0.31547 (8)	0.1677	0.030
H11B	1 1365	0.31547 (8)	0.14720 (8)	0.0224 (2)
C12B	0.86381 (14)	0.2705 0.28059 (7)	0.1401 0.12962 (7)	0.027 0.0186 (2)
C12D C13B	0.72783(14)	0.28037(7) 0.34141(7)	0.12902(7) 0.13854(7)	0.0180(2)
C14B	0.72703(14) 0.94773(16)	0.34141(7) 0.12652(8)	0.13834(7) 0.09238(10)	0.0160(2) 0.0267(3)
H_{14C}	1 0539	0.12032 (0)	0.1417	0.0207 (5)
H14D	0.0856	0.1375	0.03/0	0.032
C15P	0.9650	0.1330	0.00784 (8)	0.032
C16P	0.00010(13) 0.74630(17)	-0.00220(0)	0.09204(0) 0.01872(0)	0.0223(2) 0.0271(3)
H16R	0.74039(17)	0.00707(3)	-0.0334	0.0271(3) 0.033*
C17B	0.7132	-0.02320 (0)	0.0334	0.033
	0.07035 (10)	-0.1106	-0.02032(10)	0.0307 (3)
111/D	0.5000	0.1190	0.0502	0.057

C18B	0.71567 (17)	-0.14099 (9)	0.09577 (10)	0.0293 (3)
H18B	0.6627	-0.1999	0.0969	0.035*
C19B	0.83853 (18)	-0.10289 (9)	0.16962 (10)	0.0313 (3)
H19B	0.8711	-0.1360	0.2211	0.038*
C20B	0.91417 (17)	-0.01623 (9)	0.16831 (9)	0.0281 (3)
H20B	0.9976	0.0100	0.2192	0.034*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
O1A	0.0237 (4)	0.0180 (4)	0.0246 (4)	-0.0058 (3)	0.0041 (3)	0.0039 (3)
O2A	0.0195 (4)	0.0217 (4)	0.0198 (4)	-0.0067 (3)	0.0004 (3)	0.0063 (3)
O3A	0.0319 (5)	0.0672 (8)	0.0343 (6)	0.0153 (5)	-0.0084 (4)	-0.0002 (5)
O4A	0.0507 (7)	0.0733 (8)	0.0250 (5)	0.0227 (6)	0.0016 (5)	-0.0121 (5)
N1A	0.0211 (4)	0.0216 (5)	0.0209 (5)	-0.0061 (4)	0.0016 (4)	0.0036 (4)
C1A	0.0207 (5)	0.0216 (5)	0.0378 (7)	-0.0006 (4)	0.0106 (5)	-0.0007 (5)
C2A	0.0237 (6)	0.0299 (6)	0.0467 (8)	-0.0024 (5)	0.0119 (6)	-0.0109 (6)
C3A	0.0257 (6)	0.0200 (6)	0.0697 (11)	-0.0039 (5)	0.0176 (7)	-0.0096 (6)
C4A	0.0325 (7)	0.0162 (5)	0.0684 (11)	0.0007 (5)	0.0208 (7)	0.0072 (6)
C5A	0.0267 (6)	0.0190 (5)	0.0483 (8)	0.0026 (5)	0.0132 (6)	0.0085 (5)
C6A	0.0170 (5)	0.0161 (5)	0.0382 (7)	0.0015 (4)	0.0109 (5)	0.0028 (4)
C7A	0.0193 (5)	0.0189 (5)	0.0287 (6)	-0.0008 (4)	0.0065 (4)	0.0072 (4)
C8A	0.0157 (5)	0.0167 (5)	0.0239 (6)	-0.0002 (4)	0.0053 (4)	0.0021 (4)
C9A	0.0206 (5)	0.0196 (5)	0.0213 (5)	0.0012 (4)	0.0061 (4)	0.0056 (4)
C10A	0.0208 (5)	0.0229 (5)	0.0182 (5)	0.0017 (4)	0.0035 (4)	0.0033 (4)
C11A	0.0193 (5)	0.0185 (5)	0.0204 (5)	-0.0015 (4)	0.0024 (4)	0.0019 (4)
C12A	0.0163 (5)	0.0174 (5)	0.0199 (5)	0.0005 (4)	0.0044 (4)	0.0044 (4)
C13A	0.0159 (4)	0.0188 (5)	0.0178 (5)	-0.0004 (4)	0.0025 (4)	0.0023 (4)
C14A	0.0186 (5)	0.0180 (5)	0.0223 (6)	-0.0049 (4)	0.0030 (4)	0.0025 (4)
C15A	0.0155 (4)	0.0173 (5)	0.0203 (5)	-0.0031 (4)	0.0021 (4)	0.0018 (4)
C16A	0.0180 (5)	0.0184 (5)	0.0251 (6)	-0.0013 (4)	0.0027 (4)	0.0025 (4)
C17A	0.0229 (5)	0.0266 (6)	0.0273 (6)	-0.0076 (4)	-0.0003 (5)	0.0097 (5)
C18A	0.0273 (6)	0.0413 (7)	0.0209 (6)	-0.0120 (5)	0.0058 (5)	0.0036 (5)
C19A	0.0345 (7)	0.0337 (7)	0.0304 (7)	-0.0027 (5)	0.0145 (5)	-0.0059 (5)
C20A	0.0293 (6)	0.0188 (5)	0.0298 (6)	0.0011 (4)	0.0082 (5)	0.0008 (4)
O1B	0.0241 (4)	0.0144 (4)	0.0377 (5)	0.0001 (3)	0.0098 (4)	0.0045 (3)
O2B	0.0170 (4)	0.0180 (4)	0.0286 (4)	0.0028 (3)	0.0059 (3)	0.0027 (3)
O3B	0.0220 (4)	0.0330 (5)	0.0293 (5)	-0.0011 (3)	-0.0010 (3)	0.0101 (4)
O4B	0.0240 (4)	0.0280 (4)	0.0327 (5)	-0.0033 (3)	0.0100 (4)	0.0121 (4)
N1B	0.0172 (4)	0.0153 (4)	0.0236 (5)	0.0010 (3)	0.0062 (3)	0.0026 (3)
C1B	0.0317 (6)	0.0186 (5)	0.0208 (6)	0.0006 (4)	0.0069 (5)	0.0024 (4)
C2B	0.0302 (6)	0.0223 (5)	0.0242 (6)	-0.0025 (5)	0.0032 (5)	0.0063 (4)
C3B	0.0268 (6)	0.0237 (6)	0.0455 (8)	0.0018 (5)	0.0089 (6)	0.0051 (5)
C4B	0.0364 (7)	0.0284 (7)	0.0531 (9)	0.0049 (6)	0.0095 (7)	-0.0129 (6)
C5B	0.0332 (7)	0.0261 (6)	0.0390 (8)	-0.0007 (5)	0.0024 (6)	-0.0099 (5)
C6B	0.0272 (6)	0.0154 (5)	0.0252 (6)	-0.0016 (4)	0.0070 (5)	0.0038 (4)
C7B	0.0276 (6)	0.0145 (5)	0.0357 (7)	-0.0020 (4)	0.0043 (5)	0.0027 (4)
C8B	0.0221 (5)	0.0187 (5)	0.0231 (6)	-0.0005 (4)	0.0054 (4)	0.0063 (4)
C9B	0.0244 (5)	0.0203 (5)	0.0280 (6)	-0.0048 (4)	0.0033 (5)	0.0065 (4)
C10B	0.0194 (5)	0.0277 (6)	0.0276 (6)	-0.0053 (4)	0.0018 (4)	0.0112 (5)

supplementary materials

C11B	0.0174 (5)	0.0263 (6)	0.0249 (6)	0.0008 (4)	0.0046 (4)	0.0100 (4)
C12B	0.0187 (5)	0.0193 (5)	0.0190 (5)	0.0003 (4)	0.0047 (4)	0.0059 (4)
C13B	0.0162 (5)	0.0184 (5)	0.0204 (5)	-0.0018 (4)	0.0044 (4)	0.0058 (4)
C14B	0.0192 (5)	0.0222 (6)	0.0406 (7)	0.0054 (4)	0.0100 (5)	0.0032 (5)
C15B	0.0185 (5)	0.0201 (5)	0.0298 (6)	0.0059 (4)	0.0081 (4)	0.0021 (4)
C16B	0.0288 (6)	0.0263 (6)	0.0265 (6)	0.0057 (5)	0.0054 (5)	0.0033 (5)
C17B	0.0301 (6)	0.0269 (6)	0.0334 (7)	0.0011 (5)	0.0051 (5)	-0.0040 (5)
C18B	0.0290 (6)	0.0212 (6)	0.0405 (8)	0.0032 (5)	0.0140 (5)	0.0015 (5)
C19B	0.0330 (7)	0.0300 (6)	0.0337 (7)	0.0066 (5)	0.0095 (5)	0.0115 (5)
C20B	0.0245 (6)	0.0295 (6)	0.0293 (7)	0.0037 (5)	0.0027 (5)	0.0039 (5)

Geometric parameters (Å, °)

O1A—C8A	1.3579 (13)	O1B—C8B	1.3591 (14)
O1A—C7A	1.4343 (13)	O1B—C7B	1.4448 (13)
O2A—C12A	1.3636 (13)	O2B—C12B	1.3565 (13)
O2A—C14A	1.4476 (13)	O2B—C14B	1.4495 (13)
O3A—N1A	1.2131 (14)	O3B—N1B	1.2214 (12)
O4A—N1A	1.2073 (14)	O4B—N1B	1.2263 (12)
N1A—C13A	1.4675 (14)	N1B—C13B	1.4697 (14)
C1A—C6A	1.3854 (19)	C1B—C2B	1.3856 (17)
C1A—C2A	1.3924 (18)	C1B—C6B	1.3892 (17)
C1A—H1AA	0.9500	C1B—H1BA	0.9500
C2A—C3A	1.387 (2)	C2B—C3B	1.3815 (18)
C2A—H2AA	0.9500	C2B—H2BA	0.9500
C3A—C4A	1.376 (2)	C3B—C4B	1.381 (2)
СЗА—НЗАА	0.9500	СЗВ—НЗВА	0.9500
C4A—C5A	1.388 (2)	C4B—C5B	1.391 (2)
C4A—H4AA	0.9500	C4B—H4BA	0.9500
C5A—C6A	1.3961 (17)	C5B—C6B	1.3892 (17)
C5A—H5AA	0.9500	C5B—H5BA	0.9500
C6A—C7A	1.5026 (16)	C6B—C7B	1.5045 (17)
C7A—H7AA	0.9900	С7В—Н7ВА	0.9900
C7A—H7AB	0.9900	C7B—H7BB	0.9900
C8A—C9A	1.3899 (16)	C8B—C13B	1.3916 (15)
C8A—C13A	1.3954 (15)	C8B—C9B	1.3962 (16)
C9A—C10A	1.3909 (16)	C9B—C10B	1.3889 (17)
С9А—Н9АА	0.9500	С9В—Н9ВА	0.9500
C10A—C11A	1.3868 (15)	C10B—C11B	1.3909 (17)
C10A—H10A	0.9500	C10B—H10B	0.9500
C11A—C12A	1.3914 (16)	C11B—C12B	1.3997 (15)
C11A—H11A	0.9500	C11B—H11B	0.9500
C12A—C13A	1.3915 (15)	C12B—C13B	1.3919 (15)
C14A—C15A	1.4992 (16)	C14B—C15B	1.5010 (17)
C14A—H14A	0.9900	C14B—H14C	0.9900
C14A—H14B	0.9900	C14B—H14D	0.9900
C15A—C16A	1.3914 (15)	C15B—C20B	1.3907 (17)
C15A—C20A	1.3919 (16)	C15B—C16B	1.3910 (18)
C16A—C17A	1.3903 (17)	C16B—C17B	1.3869 (18)
C16A—H16A	0.9500	C16B—H16B	0.9500

C17A—C18A	1.3838 (19)	C17B—C18B	1.381 (2)
С17А—Н17А	0.9500	C17B—H17B	0.9500
C18A—C19A	1.385 (2)	C18B—C19B	1.386 (2)
C18A—H18A	0.9500	C18B—H18B	0.9500
C19A—C20A	1.3833 (19)	C19B—C20B	1.3903 (19)
C19A - H19A	0.9500	C_{19B} H_{19B}	0.9500
C_{20A} H20A	0.9500	C_{20B} H20B	0.9500
	0.9000		0.9200
C8A—O1A—C7A	116 28 (9)	C8B-01B-C7B	117 97 (9)
C12A - O2A - C14A	115.70 (8)	C12B - O2B - C14B	117.79 (9)
04A—N1A— $03A$	123 50 (11)	O3B-N1B-O4B	124 10 (10)
O4A—N1A—C13A	119 39 (10)	O3B—N1B—C13B	118 39 (9)
O3A - N1A - C13A	117 10 (10)	O4B—N1B—C13B	117 50 (9)
C6A - C1A - C2A	120.03(12)	C2B-C1B-C6B	120.28(11)
C6A - C1A - H1AA	120.05 (12)	C2B— $C1B$ — $H1BA$	119.9
C_{2A} C_{1A} H_{1AA}	120.0	C6B-C1B-H1BA	119.9
C_{3A} C_{2A} C_{1A}	120.08(14)	C_{3B} C_{2B} C_{1B}	120.54(12)
C_{3A} C_{2A} H_{2A}	120.00 (14)	C_{3B} C_{2B} H_{2BA}	110 7
$C_{1A} = C_{2A} = H_{2AA}$	120.0	$C_{1B} = C_{2B} = H_{2BA}$	119.7
$C_{1}A = C_{2}A = H_{2}AA$	120.0 120.12(13)	$CAB C_{2B} C_{2B}$	119.7 110.47(12)
$C_{A} = C_{A} = C_{A}$	110.0	C4B-C3B-H3BA	120.3
$C_{A} = C_{A} = H_{A}$	119.9	$C_{1D} = C_{2D} = H_{2DA}$	120.3
$C_{2A} = C_{3A} = C_{5A}$	119.9	C_{2D} C_{3D} C_{4D} C_{5D}	120.3 120.38(13)
$C_{3A} = C_{4A} = C_{5A}$	120.15 (15)	$C_{3}B = C_{4}B = U_{4}BA$	120.38 (13)
$C_{3A} = C_{4A} = \Pi_{4AA}$	119.9	$C_{3}D_{-}C_{4}D_{-}\Pi_{4}DA$	119.8
$C_{A} C_{A} C_{A$	119.9 120.20 (14)	$C_{3}D_{-}C_{4}D_{-}\Pi_{4}DA$	119.0 120.10(13)
C4A = C5A = C0A	120.20 (14)	C6P $C5P$ $U5PA$	120.19 (13)
C4A = C5A = H5AA	119.9	C4D C5D U5DA	119.9
C1A C6A C5A	119.9	$C_{4}D - C_{5}D - C_{1}D$	119.9
C1A = C6A = C7A	119.44(12) 122.28(11)	C_{5D} C_{6D} C_{7D}	119.13(11)
CIA = COA = C/A	123.20(11) 117.28(12)	$C_{JB} = C_{JB} = C_{JB}$	120.30(11)
CJA = COA = C/A	117.20(12) 100.51(10)	CIB - COB - C/B	120.20(11)
OIA = C7A = U7A A	109.31 (10)	O1D - C7D - U7D A	107.13 (9)
OIA - C/A - H/AA	109.8	OIB - C/B - H/BA	110.5
COA - C/A - H/AA	109.8	C_{0B} C_{B} H_{BA}	110.5
OIA - C/A - H/AB	109.8	OIB-C/B-H/BB	110.3
COA - C/A - H/AB	109.8	COB-C/B-H/BB	110.5
H/AA - C/A - H/AB	108.2	H/BA - C/B - H/BB	108.5
01A-C8A-C9A	125.74 (10)	OIB-C8B-CI3B	115.54 (10)
OIA - C8A - C13A	115.96 (10)	01B-08B-09B	125.85 (11)
C9A = C8A = C13A	118.30 (10)	CI3B—C8B—C9B	118.59 (10)
C8A—C9A—C10A	119.19 (10)	CI0B—C9B—C8B	118.60 (11)
С8А—С9А—Н9АА	120.4	CI0B—C9B—H9BA	120.7
CIUA—C9A—H9AA	120.4	C8B—C9B—H9BA	120.7
CIIA—CI0A—C9A	122.27 (11)	C9B—C10B—C11B	122.72 (11)
CIIA—CI0A—H10A	118.9	C9B—C10B—H10B	118.6
CYA—CI0A—H10A	118.9	C11B—C10B—H10B	118.6
C10A—C11A—C12A	119.00 (10)	C10B—C11B—C12B	118.96 (11)
C10A—C11A—H11A	120.5	C10B—C11B—H11B	120.5
C12A—C11A—H11A	120.5	C12B—C11B—H11B	120.5

024 0124 0114	125.22 (10)	OND CIND CIND	115.04(0)
02A—C12A—C11A	125.33 (10)	02B-012B-013B	115.94 (9)
02A—C12A—C13A	116.09 (10)	O2B—C12B—C11B	126.05 (10)
C11A—C12A—C13A	118.58 (10)	C13B—C12B—C11B	118.01 (10)
C12A—C13A—C8A	122.56 (10)	C8B—C13B—C12B	123.08 (10)
C12A—C13A—N1A	118.74 (9)	C8B—C13B—N1B	117.85 (9)
C8A—C13A—N1A	118.70 (9)	C12B—C13B—N1B	119.06 (10)
O2A—C14A—C15A	108.45 (9)	O2B—C14B—C15B	107.41 (9)
O2A—C14A—H14A	110.0	O2B—C14B—H14C	110.2
C15A—C14A—H14A	110.0	C15B—C14B—H14C	110.2
O2A—C14A—H14B	110.0	O2B-C14B-H14D	110.2
C15A—C14A—H14B	110.0	C15B—C14B—H14D	110.2
H14A—C14A—H14B	108.4	H14C—C14B—H14D	108.5
C16A - C15A - C20A	119 12 (11)	C_{20B} C_{15B} C_{16B}	119 24 (11)
C16A - C15A - C14A	121.02(10)	C_{20B} C_{15B} C_{14B}	120.06(11)
C_{10} C_{15} C_{14} C_{14}	121.02(10) 110.76(10)	C_{16}^{16} C_{15}^{15} C_{14}^{14}	120.00(11)
$C_{20A} = C_{15A} = C_{14A}$	119.70(10) 120.20(11)	C17D $C16D$ $C15D$	120.09(11)
C17A - C10A - C15A	120.20 (11)	C17B = C10B = C13B	120.30 (12)
C1/A— $C16A$ — $H16A$	119.9	C1/B— $C16B$ — $H16B$	119.8
С15А—С16А—Н16А	119.9	CI5B—CI6B—HI6B	119.8
C18A—C17A—C16A	120.13 (11)	C18B—C17B—C16B	120.26 (13)
C18A—C17A—H17A	119.9	C18B—C17B—H17B	119.9
C16A—C17A—H17A	119.9	C16B—C17B—H17B	119.9
C17A—C18A—C19A	119.93 (12)	C17B—C18B—C19B	119.92 (12)
C17A—C18A—H18A	120.0	C17B—C18B—H18B	120.0
C19A—C18A—H18A	120.0	C19B—C18B—H18B	120.0
C20A—C19A—C18A	120.04 (12)	C18B—C19B—C20B	120.00 (12)
C20A—C19A—H19A	120.0	C18B—C19B—H19B	120.0
C18A—C19A—H19A	120.0	C20B—C19B—H19B	120.0
C19A—C20A—C15A	120.57 (11)	C19B—C20B—C15B	120.27 (12)
C19A—C20A—H20A	119.7	C19B—C20B—H20B	119.9
C15A—C20A—H20A	119.7	C15B—C20B—H20B	119.9
C6A-C1A-C2A-C3A	-0.70 (18)	C6B—C1B—C2B—C3B	0.48 (18)
C1A—C2A—C3A—C4A	0.03 (19)	C1B—C2B—C3B—C4B	-0.8 (2)
C2A—C3A—C4A—C5A	0.6 (2)	C2B—C3B—C4B—C5B	0.4 (2)
C3A—C4A—C5A—C6A	-0.65 (19)	C3B—C4B—C5B—C6B	0.5 (2)
C2A—C1A—C6A—C5A	0.69 (17)	C4B—C5B—C6B—C1B	-0.8(2)
C2A—C1A—C6A—C7A	-178.96 (11)	C4B—C5B—C6B—C7B	176.62 (13)
C4A—C5A—C6A—C1A	-0.02(18)	C2B-C1B-C6B-C5B	0.36 (18)
C4A - C5A - C6A - C7A	179 65 (11)	C2B-C1B-C6B-C7B	-177 11 (11)
C8A = O1A = C7A = C6A	178 60 (9)	C8B-O1B-C7B-C6B	163 48 (10)
C1A - C6A - C7A - O1A	-3.76(15)	C5B-C6B-C7B-01B	135,13(12)
C_{5A} C_{6A} C_{7A} O_{1A}	176 59 (9)	$C_{1B} = C_{6B} = C_{7B} = O_{1B}$	-47.45(15)
C7A O1A C8A C9A	3 17 (15)	C7B $O1B$ $C8B$ $C13B$	-161.68(10)
C7A = 01A = C8A = C13A	-177.00(0)	C7P O1P C9P C0P	101.00(10) 10.92(19)
$C_{A} = O_{A} = C_{A} = C_{A} = C_{A}$	170.70 (10)	$C_{D} = C_{D} = C_{D} = C_{D}$	17.03 (10)
OIA - OA - OA - OIA	-1/9.70(10)		-1/9./1(11)
CI3A - C8A - C9A - C10A	0.56 (16)	CI3B-C8B-C9B-C10B	1.85 (17)
C8A—C9A—C10A—C11A	0.73(17)	CSB—C9B—C10B—C11B	-1.37 (19)
С9А—С10А—С11А—С12А	0.23 (17)	C9B—C10B—C11B—C12B	-0.57 (18)
C14A—O2A—C12A—C11A	-15.49 (15)	C14B—O2B—C12B—C13B	178.94 (10)

C14A—O2A—C12A—C13A	163.81 (9)	C14B—O2B—C12B—C11B	-0.86 (16)
C10A—C11A—C12A—O2A	176.84 (10)	C10B—C11B—C12B—O2B	-178.27 (11)
C10A—C11A—C12A—C13A	-2.44 (16)	C10B—C11B—C12B—C13B	1.93 (17)
O2A—C12A—C13A—C8A	-175.50 (9)	O1B—C8B—C13B—C12B	-179.07 (10)
C11A—C12A—C13A—C8A	3.85 (16)	C9B—C8B—C13B—C12B	-0.46 (17)
O2A—C12A—C13A—N1A	4.89 (14)	O1B—C8B—C13B—N1B	2.22 (15)
C11A—C12A—C13A—N1A	-175.76 (10)	C9B—C8B—C13B—N1B	-179.17 (10)
O1A—C8A—C13A—C12A	177.34 (10)	O2B—C12B—C13B—C8B	178.73 (10)
C9A—C8A—C13A—C12A	-2.89 (16)	C11B—C12B—C13B—C8B	-1.46 (17)
O1A—C8A—C13A—N1A	-3.04 (14)	O2B—C12B—C13B—N1B	-2.58 (15)
C9A—C8A—C13A—N1A	176.72 (10)	C11B—C12B—C13B—N1B	177.24 (10)
O4A—N1A—C13A—C12A	-97.23 (14)	O3B—N1B—C13B—C8B	69.71 (14)
O3A—N1A—C13A—C12A	81.92 (14)	O4B—N1B—C13B—C8B	-109.84 (12)
O4A—N1A—C13A—C8A	83.14 (14)	O3B—N1B—C13B—C12B	-109.06 (12)
O3A—N1A—C13A—C8A	-97.71 (13)	O4B—N1B—C13B—C12B	71.39 (14)
C12A—O2A—C14A—C15A	-154.61 (9)	C12B—O2B—C14B—C15B	162.67 (10)
O2A—C14A—C15A—C16A	-118.80 (11)	O2B—C14B—C15B—C20B	-103.79 (12)
O2A—C14A—C15A—C20A	64.84 (13)	O2B—C14B—C15B—C16B	75.37 (14)
C20A—C15A—C16A—C17A	0.58 (17)	C20B—C15B—C16B—C17B	0.69 (18)
C14A—C15A—C16A—C17A	-175.80 (10)	C14B—C15B—C16B—C17B	-178.48 (11)
C15A—C16A—C17A—C18A	-0.37 (17)	C15B—C16B—C17B—C18B	-0.35 (19)
C16A—C17A—C18A—C19A	-0.19 (19)	C16B—C17B—C18B—C19B	-0.43 (19)
C17A—C18A—C19A—C20A	0.5 (2)	C17B—C18B—C19B—C20B	0.85 (19)
C18A—C19A—C20A—C15A	-0.3 (2)	C18B—C19B—C20B—C15B	-0.50 (19)
C16A—C15A—C20A—C19A	-0.23 (18)	C16B—C15B—C20B—C19B	-0.27 (18)
C14A—C15A—C20A—C19A	176.19 (11)	C14B—C15B—C20B—C19B	178.91 (11)

Hydrogen-bond geometry (Å, °)

Cg2, Cg3 and Cg4 are the centroids of the C8A–C13A, C15A–C20A and C8B–C13B rings, respectively.

D—H···A	D—H	H…A	D····A	D—H···A
C17 <i>A</i> —H17 <i>A</i> ···O4 <i>B</i> ⁱ	0.95	2.49	3.2100 (16)	133
C9A—H9AA···Cg4 ⁱⁱ	0.95	2.68	3.5487 (13)	152
$C16A$ — $H16A$ ··· $Cg2^{i}$	0.95	2.68	3.5161 (13)	147
С20В—Н20В…Сд3ііі	0.95	2.87	3.7013 (14)	146

Symmetry codes: (i) -*x*, -*y*, -*z*+1; (ii) *x*-1, *y*, *z*; (iii) -*x*+1, -*y*, -*z*+1.