
Computers and Structures 88 (2010) 539–548
Contents lists available at ScienceDirect

Computers and Structures

journal homepage: www.elsevier .com/locate /compstruc
A novel procedure for determination of hydrodynamic pressure along upstream
face of dams due to earthquakes

Indrani Gogoi a,*, Damodar Maity b

a National Institute of Technology, Surathkal, Karnataka, India
b Indian Institute of Technology Kharagpur, India

a r t i c l e i n f o
Article history:
Received 1 September 2008
Accepted 11 January 2010
Available online 1 February 2010

Keywords:
Earthquake
Hydrodynamic pressure
Infinite reservoir
Truncation boundary
Absorptive reservoir bottom
Short Time Fourier Transform
0045-7949/$ - see front matter � 2010 Elsevier Ltd. A
doi:10.1016/j.compstruc.2010.01.007

* Corresponding author. Tel.: +91 9449046152.
E-mail addresses: indranigogoi@yahoo.com (I. Gog

t.in (D. Maity).
a b s t r a c t

The estimation of hydrodynamic pressures along the upstream face of the dam is a critical parameter for
the accurate analysis and design of a dam. The accurate estimation of the hydrodynamic pressures neces-
sitates the consideration of interaction between the dam, the reservoir and the foundation. The interac-
tion effects of the unbounded domain of the reservoir and the absorptive materials deposited at the
reservoir bottom are frequency dependent which can be incorporated in a frequency domain procedure
easily. But in a time domain procedure the frequency dependent interaction effects are lost. In a fre-
quency domain solution, the excitation frequencies are extracted from the earthquake signal using a Fou-
rier transformation, but do not give any information about how it varies with time. To overcome this, a
short-time Fourier transform based formulation is presented in this paper to evaluate the hydrodynamic
pressures in time domain to account for the frequency dependent interaction effects of the dam–reservoir
system. Thus, the adequate accuracy in the determination of hydrodynamic pressure under earthquake
excitation is ensured with the proposed truncation boundary condition.

� 2010 Elsevier Ltd. All rights reserved.
1. Introduction

The issues of seismic safety of dams have been looked at with
increased attention in various parts of the world in recent years.
It has become a major factor in the planning and designing of
new dams proposed to be built in seismic regions and for safety
evaluation of existing dams in these regions. For the design of an
earthquake-resistant dam and the evaluation of the safety of an
existing dam, it is important to use a rational and reliable dynamic
analysis procedure. The dynamic response of a linearly elastic dam
can be determined by standard techniques if the reservoir is
empty. But the problem becomes complicated, when the interac-
tion effects of the unbounded reservoir and the elastic foundation
has to be adequately accounted for. The analysis procedure should
be capable of evaluating the dynamic deformations and stresses in
a dam subjected to a given ground motion. The deformations and
stresses so obtained will be more realistic if the interaction effect
of the unbounded reservoir is determined appropriately and the
dam–foundation interaction is considered.

For simplification of the analytical procedures, the bottom of
the reservoir is generally considered to be rigid, which does not
represent the actual behavior of the system. The sedimentary
ll rights reserved.
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material in the reservoir bottom absorbs or radiates energy at
the bottom that will affect the hydrodynamic pressure developed
at the upstream face of the dam. An analytical or a closed-form
solution cannot account for the arbitrary geometry of the dam or
reservoir (Fig. 1). This problem can be efficiently tackled with finite
element technique. The need for an accurate truncation boundary
is felt to reduce the computational domain of the unbounded res-
ervoir system.

The seismic analysis of dam–reservoir system has intrigued
researchers since 1933 [41,39]. The added mass approach was gen-
erally used to evaluate the hydrodynamic effects of the reservoir
on the dam. Since earthquakes are random in nature, Kotsubo
[24] emphasized that evaluation of hydrodynamic pressure using
the added mass approach was not accurate. Consequent research
carried out by Chopra [7], Chopra and Chakrabarti [9], Saini et al.
[32] and Maity and Bhattacharya [28] has shown the importance
of considering the compressibility of reservoir water as the hydro-
dynamic effects of the unbounded reservoir are frequency depen-
dent. Considering the enhanced capabilities of computer
processors and increased memory storage, the analysis techniques
have improved.

The versatility of the finite element method has motivated
researchers to apply the technique in the analysis of dam–reservoir
systems. However, while using finite element technique in the
analysis of a dam–reservoir system, difficulty arises in effectively
modeling the large extent of the reservoir that is practically
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Fig. 1. Reservoir and its boundary conditions.
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unbounded. The unbounded reservoir has important consequence
in the analysis of the dam–reservoir system, as waves traveling
to infinity are not reflected back towards the dam. This leads to
the development of an energy dissipation mechanism called radia-
tion damping, which is frequency dependent. The accurate model-
ing of radiation damping is of extreme importance as it affects the
hydrodynamic pressure generated in the reservoir and hence the
response of the dam. For efficient numerical solution of the system,
the unbounded reservoir is truncated at a certain distance away
from the dam. Accuracy in the results may be obtained by truncat-
ing the reservoir at a larger distance away from the dam. However,
this results in an increased cost of computation. If the effect of
dam–reservoir interaction is included in the analysis, the cost of
computation will further increase to be prohibitive. Therefore, it
is necessary to impose an efficient boundary condition at the trun-
cated surface of the reservoir that can account for radiation damp-
ing and reservoir bottom absorption. Various boundary conditions
along the truncation surface for the analysis of dam–reservoir sys-
tem have been developed and used effectively in the frequency do-
main by Humar and Roufaiel [23], Sharan [34,35] and Li et al. [26].
Although similar boundary conditions have been proposed by Tsai
and Lee [36], Maity and Bhattacharyya [28] and Birk and Ruge [2]
in the time domain, the boundary conditions do not consider the
excitation frequency. The truncation boundary conditions (TBC)
using frequency domain approach [34,35] can effectively include
the absorption effect of the reservoir bed, which generally cannot
be accounted for in time domain approach. The earthquake excita-
tion is generally recorded and used in a time domain solution as a
time history, its sensitiveness to the frequency content at every
time instant is generally ignored.

The dynamic analysis of a dam–reservoir system can be per-
formed either in time domain or frequency domain. A frequency
domain analysis can be adopted when the behavior of the coupled
dam–reservoir system is considered to be linear [32,40,5]. Semi-
analytical solutions [10] or a combination of finite elements and
semi-analytical solution [20,27] may be used for semi-infinite
and irregularly shaped reservoirs.

The dynamic performance of a structural system beyond the
linear elastic limit cannot be evaluated in the frequency domain
using Fourier synthesis as in Chopra and Chakrabarti [9] to obtain
solutions due to transient excitations. An effective time domain
analysis technique is required for a dynamic nonlinear analysis of
a dam–reservoir system. The interaction effects in time domain
using a two-dimensional dam–reservoir model were computed
by evaluation of convolution integrals [14,37,19] that require con-
siderable computational effort. Darbre [12] and Chavez and Fenves
[6] used the hybrid frequency time domain procedure to evaluate
the dam–reservoir interaction forces, where the response of the
system is computed in frequency domain. The radiation damping
in the unbounded reservoir was represented by standard viscous
dampers [1,11,25] that need large extent of the reservoir to be con-
sidered to obtain an adequate accuracy. Most of the analysis proce-
dures in time domain are too rigorous and complicated; and
simplified techniques may not give accurate results. This necessi-
tates an analysis procedure in time domain that can be easily
implemented.

For seismic analysis of a dam–reservoir system, the time varia-
tion of ground acceleration (ag) is the most useful way of defining
the shaking of the ground during an earthquake. In an accelero-
gram, the ground motion is defined by numerical values at discrete
time instants. Typically the time interval is chosen to be 1/100 to 1/
50 of a second [8]. A seismic analysis can be carried out either in
the time domain, using time-histories of acceleration or in the fre-
quency domain, calculating frequency content using Fast Fourier
Transforms (FFT). The drawback of carrying out a seismic analysis
in frequency domain is that when an accelerogram is converted
into the frequency domain using an FFT, the time-dependent
behavior is lost. In a seismic analysis carried out in time domain,
the ground acceleration input is used as a time history and the fre-
quency dependent response of a system can not be determined.

In both soil–structure interaction analyses and fluid–structure
interaction, there are phenomena which are frequency dependent,
such as radiation damping and reservoir bottom absorption; for
which accurate time domain representations are sought. Wolf
[42], Wolf and Paronesso [43], Ruge et al. [30], Haigh et al. [22], Sa-
fak [31] and Birk and Ruge [2] proposed different techniques to ac-
count for the scalar frequency dependent impedance functions into
the time domain. The referred literature emphasizes the impor-
tance of the need to account for the frequency content of an earth-
quake excitation, when the dynamic response of the system
analyzed is frequency dependent. The Short Time Fourier Trans-
form (STFT) algorithm used by Nagarajaiah and Varadarajan [29]
is an effective technique that may be used to determine the
time-frequency distribution of an earthquake excitation. The basic
idea of STFT is to break up the non-stationary signal into small time
segments and obtain the FFT of each time segment to ascertain the
frequencies that exist in it.

Since, it is observed that the effect of the boundary conditions
imposed at the far end of the reservoir is frequency dependent
[17], the hydrodynamic pressure obtained in a time domain solu-
tion due to an earthquake may not be sensitive to the frequency
content of the earthquake at every time instant. Therefore, in this
paper, a unique method of evaluation of hydrodynamic pressure
developed on the upstream face of a concrete dam due to seismic
excitation is presented. Applying STFT to the time-signal for each
time instant, a corresponding frequency is obtained. The coefficient
matrices of the time domain model can be calculated in each time
step for this frequency. The resulting time domain solution thus
takes the frequency content of the transient excitation into
account.
2. Time history analysis procedure with frequency dependent
boundaries

The present formulation is in time domain, where the dam, the
water and the foundation are assumed to have a linear behavior.
The reservoir is assumed to have regular rectangular boundaries.
The water in the reservoir is considered as non-viscous, linearly
compressible and is of small amplitudes of motion. The dam–reser-
voir–foundation system is treated as two-dimensional. The dam
and the reservoir are supported on a flexible foundation modeled
as viscoelastic half-plane. The reservoir water is modeled by finite
element technique considering pressure as nodal degrees of free-
dom. The pressure based wave equation may be used to obtain
an equation to determine the magnitude of hydrodynamic pres-
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sure generated due to small amplitude vibration of compressible
but non-viscous water, which can be expressed as

r2pðx; y; tÞ ¼ 1
c2

€pðx; y; tÞ ð1Þ

Here p(x, y, t) is hydrodynamic pressure, t is the time variable, x and
y are space variables. The hydrodynamic pressure due to horizontal
ground acceleration of rigid dam is the solution of Hemholtz equa-
tion (Eq. (1)) subject to the following boundary conditions (Fig. 1).
The origin of the horizontal x-axis and vertical y-axis is considered
at the bottom of the dam–reservoir interface and accordingly the
boundary conditions have been defined.

2.1. At the free surface (Cf)

Considering the effects of surface waves of the water, the
boundary condition of the free surface [28] is taken as

1
g

€pþ @p
@y
¼ 0 ð2aÞ

However, neglecting the effects of surface waves of the water, the
boundary condition of the free surface may be expressed as

pðx;Hf ; tÞ ¼ 0 ð2bÞ

Here, Hf is the depth of the reservoir.

2.2. At the dam–reservoir interface (Cfs)

At the dam–reservoir interface, the pressures should satisfy

@p
@n
ð0; y; tÞ ¼ �qf aeixt ð3Þ

where aeixt is the horizontal component of the ground acceleration
in which, x is the circular frequency of vibration and i ¼

ffiffiffiffiffiffiffi
�1
p

, n is
the outwardly directed normal to the elemental surface along the
interface. qf is the density of the reservoir water.

2.3. At the reservoir bed interface (Cr)

The absorption of pressure waves at the bottom of the reservoir
is modeled by using the technique proposed by Hall and Chopra
[20]. Thus the condition may be expressed as:

@p
@n
ðx; 0; tÞ ¼ �qf anðtÞ � q _pðx; 0; tÞ ð4Þ

Assuming a time harmonic behavior of pressure pðx;0; tÞ ¼
pðx;0; tÞeixt , the above equation may also be expressed as

@p
@n
ðx; 0; tÞ ¼ �qf anðtÞ þ ixqpðx;0; tÞ ð5Þ

Here, n is the outwardly directed normal to the elemental surface
along the interface and the coefficient

q ¼ 1
c

1� a
1þ a

� �
ð6Þ

The frequency independent reflection coefficient, a is given as

a ¼
1� qc

qscs

1þ qc
qscs

ð7Þ

Here, qs is the mass density of sediment, cs ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
Es=qs

p
is the com-

pression wave velocity in the reservoir bed, where Es = elastic mod-
ulus of the sediment.
2.4. At the truncation boundary (Ct)

The specification of the far-boundary condition is one of the
most important features in the FE analysis of a semi-infinite or infi-
nite reservoir. This is due to the fact that the developed hydrody-
namic pressure, which affects the response of the structure, is
dependent on the truncation boundary condition. Application of
Sommerfeld radiation condition [44] at the truncation boundary
leads to

@p
@x
ðL; y; tÞ ¼ 0 ð8Þ

L represents the distance between the structure and the truncation
boundary. Incorporating the effect of reservoir bottom absorption,
Sharan [35] has incorporated the following condition

@p
@x
ðL; y; tÞ ¼ � f

H
pðL; y; tÞ ð9Þ

Here, f is a complex damping parameter imposed at the truncation
boundary. The main drawback of the above condition is that it is
non-local and does not produce reasonably accurate results at sec-
ond and third eigen frequencies [33].

The proposed condition along the truncation boundary for the
compressible fluid domain is derived from the wave equation.
The general solution of Eq. (1) satisfying Eqs. (2)–(4) and the radi-
ation condition, can be solved by the method of separation of vari-
ables [3] to obtain the hydrodynamic pressure p(x, y, t) at any point
(x, y) at a time instant t can be given,

pðx; y; tÞ ¼ �2qaHf

X1
m¼1

k2
mIm

bmkm
eð�kmxÞðWmÞeixt ð10Þ

where a is the applied acceleration at the fluid–structure interface
in the normal direction and

Im ¼
1

Hf

Z Hf

0
Wm dy ð11Þ

Wm ¼
1

2km
ðkm þxqÞeikmy þ ðkm �xqÞe�ikmy
� �

ð12Þ

k2
m ¼

ð2m� 1Þp
2Hf

� �2

þ i2xq=Hf ð13Þ

km ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2

m �X0
2

q
ð14Þ

bm ¼ k2
m �x2q2� �

H � v
k2

m þ v2

 !
þ ixq ð15Þ

X0 ¼ x=c ð16Þ

v ¼ x2

g
ð17Þ

The value of v can be considered to be zero if the effect of gravity
waves is neglected. For a rigid reservoir bottom, q = 0.0 and
a = 1.0, for which the pressure obtained is real valued. Generally,
determination of the eigenvalues km requires use of advanced pro-
gramming techniques such as Newton-Raphson method imple-
mented in specialized finite element program like Earthquake
Analysis of Concrete Gravity Dams, EAGD [15]. Here, a simplified
technique as proposed by Bouaanani et al. [4] is used to determine
the eigenvalues. To obtain a finite model of the infinite reservoir, a
truncation boundary proposed by Gogoi and Maity [17] is imposed
on the truncation surface as:

@p
@n
¼ fm �

1
c

� �
_p ð18Þ

where fm is obtained as follows:
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Fig. 2. Horizontal accelerogram of Koyna earthquake, December 11, 1967.
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fm ¼ �
i
P1

m¼1
k2

mIm
bm

eð�kmxÞðWmÞ

X0c
P1

m¼1
k2

mIm
bmkm

eð�kmxÞðWmÞ
ð19Þ

The effect of reservoir bottom absorption is an important
parameter that influences the response of a dam–reservoir system
during an earthquake. The dynamic problem of a dam–reservoir
system has been rigorously analyzed in the frequency domain con-
sidering the effects of radiation damping and reservoir bottom
absorption [20,35,21]. Many time domain models consider radia-
tion damping with standard viscous dampers [38,13,37]. The reser-
voir bottom absorption effect is frequency dependent, which
makes it difficult to incorporate in a time history analysis as the
solution procedure cannot account for the frequency content of
the seismic excitation at every time instant. In an endeavor to
understand the behavior of structural systems due to earthquake
excitation various techniques are being developed to account for
the frequency dependent parameters [22,31] in a time history
analysis. It is evident from Eqs. (4) and (18) that boundary condi-
tions at the reservoir bottom and truncation surface respectively
are sensitive to excitation frequency. Hence, it is important to esti-
mate the frequency content of an earthquake signal at every time
step to effectively account for radiation damping and reservoir bot-
tom absorption effect.

A Fourier transformation generally breaks down a signal into
constituent sinusoids of different frequencies. While transforming
a time-based signal to frequency domain, the time information is
lost and it is difficult to obtain the frequency information at a par-
ticular time instant. To overcome this deficiency, Gabor [16]
adapted the Fourier transform to analyze only a small section of
the signal at a time – a technique called windowing the signal. Ga-
bor’s adaptation, called the Short-Time Fourier Transform (STFT),
maps a signal into a two-dimensional function of time and fre-
quency. However, the information obtained by STFT has limited
precision, and that precision is determined by the size of the
window.

Here, the technique commonly used in digital signal processing
called Short Time Fourier Transformation (STFT) has been adopted
to determine the frequencies at a time instant. To capture the time
variation of the frequency contents of the signal, the signal S(s) is
multiplied by a sliding window h(s � t), centered at time t, and tak-
ing the Fourier transform of the weighted signal. Mathematically,

StðxÞ ¼
Z þ1

�1
SðsÞhðs� tÞe�ixs ds ð20Þ

gives the Short Time Fourier Transform at every window. The spec-
tral density of the modified signal at every time instant, t can be ob-
tained by

Pðt;xÞ ¼ jStðxÞj2 ð21Þ

The instantaneous frequency at time t can be located from the cen-
ter of the St(x) by taking its first moment as

xt ¼
R
xjStðxÞj2 dxR
jStðxÞj2 dx

ð22Þ

The hydrodynamic pressure p(x, y, t) can be determined accurately
at every instant of time by incorporating the instantaneous excita-
tion frequency of the earthquake signal obtained by Eq. (22) in the
boundary conditions at the reservoir–reservoir bed interface and
truncation boundary defined by Eqs. (4) and (18) respectively. The
finite element implementation for determination of hydrodynamic
pressure due to horizontal ground acceleration is given in Appendix
A. The frequency dependent coefficient matrices [A] and [G] as in
Eq. (A-15) have different values in each time step. They are calcu-
lated in each time step using the frequency corresponding to this
time step obtained using the STFT of the earthquake excitation.
[A] and [G] are thus time-dependent, but piece-wise constant (con-
stant within one time step). In this case, a standard algorithm for
the numerical solution of (A-14) is used, with different values of
[A] and [G] in each time step.
3. Seismic analysis of dam–reservoir system using Short Time
Fourier Transform

The present boundary conditions at the reservoir bottom and
the truncated surface are frequency dependent (Eqs. (5) and
(18)). Therefore, to increase the efficiency and accuracy of present
algorithm for seismic analysis in time domain, the spectral content
of the seismic excitation is extracted and incorporated in the pres-
ent analysis as explained.

3.1. Extraction of frequencies from time history data of recorded
earthquake

The earthquake data represented by accelerograms as shown in
Figs. 2 and 3 do not indicate the frequency components of the
earthquake signal. A Fast Fourier Transform (FFT) converts the sig-
nal to frequency domain and can be used to obtain the power spec-
trum, which is a measurement of power at various frequencies
(Fig. 4). The ground accelerations due to El Centro earthquake
(1940) is recorded at a time step of Dt = 0.02. Therefore, this set
of data is sampled at frequency, fn = 1/Dt, i.e., 50 Hz. The accelera-
tions due to Koyna earthquake (1967) are recorded at a time step,
Dt = 0.01. Hence, this set of data is sampled at a frequency,
fn = 100 Hz. A FFT of El Centro earthquake gives its power spectrum
(Fig. 4) that shows the variation of energy with frequencies. A nor-
malized discrete-time Fourier transform can be obtained as
Pn = abs (FFT(S)) � 2/length(S) and is plotted in Fig. 5. Here S repre-
sents the earthquake excitation in time domain. It is apparent from
these figures that the amplitude of the earthquake excitation is not
significant at higher frequencies.

The Short Time Fourier Transform (STFT) of the El Centro earth-
quake signal is evaluated at Dt = 0.02 s (Fig. 6) and at Dt = 0.002 s
(Fig. 7). The frequency inputs in the proposed algorithm at each
time step are the frequencies corresponding to the maximum spec-
tral density in the moving window. These dominant frequencies
are adopted as excitation frequency at each time step. When the
time step is large (Dt = 0.02 s), the number of samples per window
is less than when the signal is sampled at Dt = 0.002 s. It is ob-
served from the figures that a larger time sampling may lead to
inaccuracy in frequency evaluation, as it may not be possible to ex-
tract all the important frequencies present in the signal. The width
of the windowing function determines whether the frequency res-
olution or the time resolution is good. A wide window, i.e., a large
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Fig. 3. East–West Component of El Centro earthquake of May 18, 1940.

Fig. 4. Power spectrum of East–West Component of El Centro earthquake.

Fig. 5. Normalised FFT of the horizontal component of Koyna earthquake, 1967.
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Fig. 6. STFT of El Centro earthquake, 1940 (Dt = 0.02 s).
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Fig. 7. STFT of El Centro earthquake, 1940 (Dt = 0.002 s).
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Fig. 8. STFT of Koyna earthquake, 1967 (Dt = 0.005 s).
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time step gives better frequency resolution but poor time resolu-
tion. A narrower window, i.e., a small time step gives good time
resolution but poor frequency resolution. It is seen that the peak
frequency is less than 35 rad/s when sampled at Dt = 0.02 s
(Fig. 6), whereas the peak frequency reaches 70 rad/s when sam-
pled at Dt = 0.002 s (Fig. 7). Considering a very small time step such
as Dt = 0.001 may reflect inaccurate frequency. Fig. 8 shows the
STFT of the Koyna earthquake (Fig. 2) sampled at Dt = 0.005 s,
where the frequencies of the Koyna earthquake reach a peak value
of 80 rad/s. However, the time step selected should be same as that
adopted by a convergence study for the solution of hydrodynamic
pressure using Eq. (A-14) [18].

3.2. Hydrodynamic pressure neglecting dam flexibility due to seismic
excitation

The hydrodynamic pressure developed at the bottom of the
dam–reservoir interface due to seismic excitation is evaluated.
Here, the upstream face of the dam is considered to be vertical
and bottom of the reservoir to be horizontal. Due to lack of analyt-
ical technique to evaluate the hydrodynamic response of the reser-
voir due to seismic excitation, the accuracy of the proposed
technique is verified by convergence study. The effectiveness of
the proposed boundary condition using Short Time Fourier Trans-
form (STFT) is examined for different reservoir depths and earth-
quake excitations. The hydrodynamic pressure coefficient is
evaluated for a reservoir depth of (i) 30 m and (ii) 150 m consider-
ing the frequency content of East–West Component of El Centro
earthquake (1940). At a reservoir depth of 30 m, the fundamental
frequency of the reservoir is 75.398 rad/s, which is higher than
the peak frequency content of the earthquake excitation (approxi-
mately 70 rad/s as seen in Fig. 7). At a reservoir depth of 150 m, the
fundamental frequency of reservoir becomes 15.07 rad/s which is
less than the peak frequency content of the earthquake excitation.
A convergence study was carried out by Gogoi and Maity [17] to
study the effectiveness of the present boundary condition. It was
observed from the results that a reservoir length of L = 0.5Hf is
effective for all ranges of excitation frequencies to determine the
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hydrodynamic pressure in the reservoir due to harmonic excita-
tion. Therefore, the hydrodynamic pressure coefficients, are evalu-
ated at the vertical upstream face of the dam considering a length
of the reservoir, L = 0.5Hf for the first 6 s and compared with that
obtained at L = 3.0Hf, which is considered to be the exact result
as a large fluid domain is included in the analysis. Here, the hydro-
dynamic pressure coefficient is given by cb = pb/qf aHf , where pb is
the maximum hydrodynamic pressure at the base of the upstream
face of the dam. The reflection coefficient is considered as 0.5 for
the seismic analysis. It is interesting to note from Figs. 9 and 10
that consideration of STFT in the seismic analysis increases the
effectiveness of the proposed truncation boundary condition.

The hydrodynamic pressure coefficients are determined for the
reservoir having the same parameters as in the previous case con-
sidering the Koyna earthquake. It is seen from the Figs. 11 and 12,
that the hydrodynamic response due to Koyna earthquake can be
obtained accurately by imposing the proposed truncation bound-
ary at a distance of L = 0.5Hf. This is because the fundamental fre-
quencies of the reservoir having depth of 30 m and 150 m are
less than the peak frequency content of Koyna earthquake, which
is approximately 80 rad/s. It is observed from the results (Figs. 13
and 14) that effectiveness of the proposed algorithm in determin-
ing the hydrodynamic pressures is improved with the use of STFT.
When the STFT of the earthquake is not considered the effect of fre-
quency dependent absorption at the reservoir can not be effec-
tively accounted for, which as a result gives higher magnitudes
of hydrodynamic response.

The hydrodynamic pressure distribution developed due to seis-
mic excitation (Koyna earthquake, 1967) along the dam–reservoir
interface is further studied for different depths of sediment layer.
The depth of the reservoir (Hf) is considered to be 150 m. The depth
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)

of dam–reservoir interface due to Koyna earthquake (Hf = 30 m).
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Fig. 13. Hydrodynamic pressure distribution along dam–reservoir interface due to
seismic excitation at t = 2.94 s (ds = 0.01Hf).
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of sediment layer (ds) is expressed in terms of the reservoir depth
(Hf). The infinite domain of the reservoir is truncated at L = 0.5Hf. It
is observed from Fig. 15 that the effect of increase in sediment
layer depth is significant until ds = 0.1Hf, beyond which an increase
in sediment depth to ds = 0.5Hf has no effect on the hydrodynamic
pressure developed.

3.3. Hydrodynamic pressure considering dam–reservoir interaction
due to seismic excitation

To evaluate the effectiveness of the developed truncation
boundary condition (TBC) with the incorporation of Short Time
Fourier Transform (STFT) in the proposed algorithm for dam–reser-
voir interaction, a typical dam–reservoir system is considered hav-
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Fig. 15. Effect of sediment layer thickness on hydrodynamic pressure distribution
along dam–reservoir interface due to seismic excitation at t = 2.94 s.
ing geometry as shown in Fig. 16. The dimension and the material
properties of the dam in the present case are: height of the
dam = 103 m; width at the top of the dam is 14.8 m and at the base
is 70.0 m, modulus of elasticity = 31,500 MPa; Poisson’s ra-
tio = 0.235 and mass density = 2415.816 kg/m3. Structural damp-
ing is considered as 3%. The dam is discretized with 8-noded
quadratic elements and is analyzed using plain strain formulation.
In the present investigation, the dynamic magnifications of
strength and stiffness parameters due to rapid application of seis-
mic strains are not considered. The depth of the water is consid-
ered to be equal to the height of the dam. The acoustic wave
speed in water and the mass density of water are considered to
be 1438.7 m/s and 999.8 kg/m3 respectively. Due to lack of classi-
cal solution, the response of the coupled dam–reservoir system is
compared with those obtained at L = 3.0Hf. The crest displacement
of the dam and the hydrodynamic pressure coefficient (cb) at the
bottom of the upstream face of the dam due to the horizontal com-
ponent of Koyna earthquake are presented herein. It is evident
from Figs. 17 and 18 that at L = 0.5Hf, the algorithms using STFT
gives crest displacements and pressure coefficients without much
loss in accuracy.

The random vibration caused by an earthquake generally con-
sists of many frequencies. Hence, it is important to evaluate the
effectiveness of the proposed algorithm for seismic analysis of
dam–reservoir system in time domain. To observe the effect of
the reservoir bottom absorption due to seismic excitation, the
dam with the same material and geometrical properties as above
is considered. The variation of normalized crest displacement due
to Koyna earthquake (Fig. 2) is plotted to observe the effect of
absorption at the reservoir bottom. It is observed from Figs. 19
and 20 that the crest displacement and hydrodynamic pressure
coefficient (cb) is reduced considerably due to absorptive reservoir
Fig. 16. Finite element mesh of dam–reservoir system.
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Fig. 17. Crest displacement of dam due to Koyna earthquake.



0.0E+00

2.0E+06

s 
(P

a)

546 I. Gogoi, D. Maity / Computers and Structures 88 (2010) 539–548
bottom with reflection coefficient of a = 0.5. The hydrodynamic
pressure at the upstream face of the dam depends on the acceler-
ation of the dam–reservoir interface. The acceleration of the flexi-
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Fig. 21. Effect of reflection coefficient on principal stress rp1 at point B of the dam
due to Koyna earthquake.
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Fig. 22. Effect of reflection coefficient on principal stress rp2 at point B of the dam
due to Koyna earthquake.
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Fig. 23. Effect of reflection coefficient on principal stress rp1 at point O of the dam
due to Koyna earthquake.
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Fig. 24. Effect of reflection coefficient on principal stress rp2 at point O of the dam
due to Koyna earthquake.
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Fig. 20. Effect of reservoir bottom absorption on hydrodynamic pressure coefficient
at point B due to Koyna earthquake.
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Fig. 19. Effect of reservoir bottom absorption on crest displacement of the dam due
to Koyna earthquake.

-0.3

-0.2

-0.1

0.0

0.1

0.2

0.3

0.4

0 1 2 3 4 5
Time (second)

c b

L = 3.0Hf
With STFT at L = 0.5Hf
Without STFT at L = 0.5Hf

Fig. 18. Hydrodynamic pressure at the bottom of the dam due to Koyna earthquake.
ble dam thus affects the hydrodynamic response due to seismic
excitation.

The principal stresses rp1 (maximum tensile and minimum
compressive) and rp2 (maximum compressive and minimum ten-
sile) at point B and O (Fig. 16) are plotted in Figs. 21–24 respec-
tively. It is observed from these graphs that the principal stresses
in the dam reduce significantly in the presence of the absorptive
reservoir bottom. It is interesting to note that the magnitudes of
stresses at the point O are higher than the stresses at point B be-
cause of development of stress concentration.
4. Conclusions

A novel procedure of seismic analysis in the time domain anal-
ysis is presented in this paper that accounts for the frequency
dependent boundary conditions at the reservoir bottom and trun-
cation surface. The algorithm proposed considers the frequency
content of earthquake excitation so that the damping parameters
at the reservoir bottom and truncation surface can be estimated
accurately. The non-stationary earthquake signal is divided into
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small time segments and the FFT of each time segment is ob-
tained to ascertain the frequencies that exist in it. The dominant
frequency at every time step is extracted and is used as an input
in the seismic analysis. The effectiveness of the developed far-
boundary condition has been increased with the incorporation
of Short Time Fourier Transform (STFT) for the analysis of dam–
reservoir system under seismic excitation. The proposed time-fre-
quency hybrid method is advantageous as the frequency depen-
dent responses of the dam–reservoir system can be obtained in
a time domain procedure. The implementation of this technique
is simple as the time domain procedure remains the same and
the algorithm can be modified to account for the dominant fre-
quencies at every time step. As the procedure is in time domain
and can efficiently account for different excitation frequencies
the transformation of frequency dependent dynamic stiffness ma-
trix as used in various time-frequency hybrid methods can be
avoided.

Appendix A

A.1. Finite element implementation for determination of
hydrodynamic pressure due to horizontal ground acceleration

By the use of Galerkin process, and assuming pressure to be the
nodal unknown the discretized form of Eq. (1) may be written in
two-dimension asZ

X
Nrj r2

X
Nripi �

1
c2

X
Nripi

	 

dX ¼ 0 ðA-1Þ

where Nrj is the interpolation function for the reservoir and X is the
region under consideration. Using Green’s theorem Eq. (A-1) may be
transformed to

�
Z

X

@Nrj

@x

X @Nri

@x
pi þ

@Nrj

@y

X @Nri

@y
pi

	 

dX

� 1
c2

Z
X

Nrj

X
Nri dX€pi þ

Z
C

Nrj

X @Nrj

@n
dCpi ¼ 0 ðA-2Þ

in which i varies from 1 to total number of nodes and C represents
the boundaries of the fluid domain. The last term of the above equa-
tion may be written as

fBg ¼
Z

C
Nrj

@p
@n

dC ðA-3Þ

The whole system of Eq. (A-2) may be written in a matrix form as

½H�f€pg þ ½G�fpg ¼ fBg ðA-4Þ

in which,

½H� ¼ 1
c2

PR
X½Nr �T ½Nr �dX

½G� ¼
PR

X
@
@x ½Nr �T @

@x ½Nr � þ @
@y ½Nr �T @

@y ½Nr �
h i

dX

fBg ¼
PR

C½Nr�T @p
@n dC ¼ fBf g þ fBfsg þ fBrg þ fBtg

9>>>=
>>>;

ðA-5Þ

Here the subscript f, fs, r and t stand for the free surface, fluid–struc-
ture interface, reservoir bottom–fluid interface and truncation sur-
face respectively. According to the boundary conditions for the fluid
domain, if linearised surface wave condition is adopted (Eq. (2)), the
same may be written in finite element form as

fBf g ¼ �
1
g
½Rf �f€pg ðA-6Þ

in which,

½Rf � ¼
XZ

Cf

½Nr�T ½Nr�dC ðA-7Þ
At the dam–reservoir interface (Eq. (3)), if {a} is the vector of nodal
accelerations of generalized coordinates, {Bfs} may be expressed as

fBfsg ¼ �qf ½Rfs�fag ðA-8Þ

where,

½Rfs� ¼
XZ

Cfs

½Nr�T ½T�½Nd�dC ðA-9Þ

Here, [T] is the transformation matrix for generalized accelerations
of a point on the fluid–structure interface and [Nd] is the matrix of
shape functions of the dam used to interpolate the generalized
acceleration at any point on the fluid–structure interface in terms
of generalized nodal accelerations of an element. At the reservoir
bed (Eq. (5)), {Br} may be expressed as

fBrg ¼ ixq½Rr�fpg � qf ½Rr �fa0g ðA-10Þ

where,

½Rr � ¼
XZ

Cr

½Nr �T ½Nr�dC ðA-11Þ

From the condition specified by Eq. (18) at the truncation boundary,
the following expression emerges.

fBtg ¼ fm �
1
c

� �
½Rt �f _pg ðA-12Þ

where,

½Rt � ¼
XZ

Ct

½Nr �T ½Nr�dC ðA-13Þ

Substitution of all terms in Eq. (A-4) gives

½H�€pg þ ½A�f _pg þ ½G�fpg ¼ fFrg ðA-14Þ

Here, [H], [A], [G] and {Fr} can be expressed as

½H� ¼ ½H� þ 1
g ½Rf �

½A� ¼ 1
c � fm

� �
½Rt�

½G� ¼ ½G� � ixq½Rr�
fFrg ¼ �qf ð½Rfs�fag þ ½Rr �fa0gÞ

9>>>>=
>>>>;

ðA-15Þ

For any prescribed acceleration at the dam–reservoir interface and
reservoir bed interface, Eq. (A-14) is solved to obtain the hydrody-
namic pressure in the reservoir.

Appendix B

B.1. Theoretical formulation for dam–reservoir system

In the dam–reservoir interaction problems, the dam and the
reservoir do not vibrate as separate systems under external excita-
tions, rather they act together in a coupled way. Therefore, these
problems have to be dealt in a coupled way. An iterative scheme
is developed in the present study to achieve the coupled effect of
dam–reservoir system.

Initially, the dam is assumed to be rigid. The resulting hydro-
dynamic pressure is evaluated by solving the reservoir domain
using Eq. (A-10) with appropriate boundary conditions at any in-
stant of time t. However, since the objective is to achieve a solu-
tion for an elastic dam–reservoir interaction, the resulting
pressure is inaccurate. The developed pressures exert forces {Fr}
on the adjacent dam. Hence, at the same time instant, the con-
crete dam is analyzed with the forces {Fr}, developed due to
hydrodynamic pressures at the dam–reservoir interface, using
the equation

½M�f€dg þ ½C�f _dg þ ½K�fdg ¼ fFdg þ fFrg ðB-1Þ
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where {Fd} = �[M]ag. Due to these additional forces {Fr}, the dam
undergoes a displacement {d}t. As a result the dam–reservoir inter-
face boundary changes and hence the solution of the reservoir do-
main. The reservoir domain is solved again at the same time
instant with the changed conditions of displaced structural bound-
ary. Consequently the structural system is also analyzed with the
changed forces. Thus at time t, both the hydrodynamic pressure
{p}t and the structural displacement {d}t are iterated simulta-
neously till a desired level of convergence is achieved. Thus, the
iteration process is carried out till the conditions prescribed below
are satisfied simultaneously

fpiþ1gt � fpigt

fpigt

����
���� � e00; and

fdiþ1gt � fdigt

fdigt

����
���� � e00 ðB-2Þ

i being the number of iteration. e00 is a small preassigned tolerance
value. The most costly operation involved in the above algorithm
is to successively solve two linear equation systems at each itera-
tion. But in the present case, matrices involved in the solution of
the system equations are decomposed into triangular forms at the
beginning of the iteration, and thereby only two forward-elimina-
tions and back-substitutions are required at each iteration step.
Thus, the time required to obtain the coupled response for a partic-
ular time instant is minimized in the present iterative scheme.
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