Please use this identifier to cite or link to this item: https://idr.l3.nitk.ac.in/jspui/handle/123456789/12061
Full metadata record
DC FieldValueLanguage
dc.contributor.authorParameswaran, A.P.
dc.contributor.authorAnanthakrishnan, B.
dc.contributor.authorGangadharan, K.V.
dc.date.accessioned2020-03-31T08:38:38Z-
dc.date.available2020-03-31T08:38:38Z-
dc.date.issued2015
dc.identifier.citationJournal of Sound and Vibration, 2015, Vol.345, , pp.18-33en_US
dc.identifier.urihttp://idr.nitk.ac.in/jspui/handle/123456789/12061-
dc.description.abstractThe current paper focuses on accurate mathematical modeling of a vibrating piezoelectric laminate cantilever beam theoretically as well as experimentally so as to obtain the best replication of the system dynamics on the software platform for simulation studies. The developed models were tested for accuracy in time as well as frequency domain by employing the sweep sine test. The focus of the study is on the flexural modes of vibrations of the cantilever beam. Here, modeling is focused on the first vibratory mode as it has been observed that the effects of felt vibrations would be maximum in terms of system stability and its operational efficiency when the excitation frequency matches with the first natural frequency of the system (fn1). This was validated by appropriate non-parametric modeling of the smart system by subjecting it to the Impact Hammer test. Development of accurate system models play an important role in designing and testing various control algorithms for reliable active vibration control (AVC). In the final stage, a real time active vibration robust controller was designed using a proportional derivative sliding mode control (PDSMC) technique and deployed on a Field Programmable Gate Array (FPGA) platform. The efficiency of the developed real time controller was proved in time as well as frequency domains by subjecting the closed loop system to harmonic excitations at first natural frequency as well as sweep sine test focussing on the first vibratory mode with the conclusion that the developed controller will function satisfactorily at higher modes of vibrations. 2015 Elsevier Ltd.en_US
dc.titleModeling and design of field programmable gate array based real time robust controller for active control of vibrating smart systemen_US
dc.typeArticleen_US
Appears in Collections:1. Journal Articles

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.