Please use this identifier to cite or link to this item: https://idr.l3.nitk.ac.in/jspui/handle/123456789/12079
Full metadata record
DC FieldValueLanguage
dc.contributor.authorElias, L.
dc.contributor.authorCao, P.
dc.contributor.authorChitharanjan, Hegde, A.
dc.date.accessioned2020-03-31T08:38:38Z-
dc.date.available2020-03-31T08:38:38Z-
dc.date.issued2016
dc.identifier.citationRSC Advances, 2016, Vol.6, 112, pp.111358-111365en_US
dc.identifier.urihttp://idr.nitk.ac.in/jspui/handle/123456789/12079-
dc.description.abstractThe electrocatalytic efficiency of electrodeposited (ED) Ni-W alloy coatings for the hydrogen evolution reaction (HER) has been improved drastically through magnetoelectrodeposition (MED) approach. Ni-W alloy coatings have been developed under different conditions of magnetic field intensity 'B' (applied perpendicular in the range of 0.1-0.4 T), and their electrocatalytic activity for the HER has been tested using cyclic voltammetry (CV) and chronopotentiometry (CP) techniques in 1.0 M KOH solution. A drastic improvement in the electrocatalytic behavior of the MED coating, represented as (Ni-W)B=0.2 T was found as compared to its conventional Ni-W alloy coatings. Improved performance of the MED coatings was explained on the basis of differences in the process of electrocrystallization affected due to the applied magnetic field, supported by scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), transmission electron microscopy (TEM), X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS) analyses. A magnetic field has been used advantageously for the first time to increase the W content of the alloy. Increased activity of the MED coatings was attributed to the increased W content in the alloy, characterized by the unique (220) reflection, explained by the magnetohydrodynamic (MHD) effect due to Lorentz force. 2016 The Royal Society of Chemistry.en_US
dc.titleMagnetoelectrodeposition of Ni-W alloy coatings for enhanced hydrogen evolution reactionen_US
dc.typeArticleen_US
Appears in Collections:1. Journal Articles

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.