Please use this identifier to cite or link to this item: https://idr.l3.nitk.ac.in/jspui/handle/123456789/12796
Full metadata record
DC FieldValueLanguage
dc.contributor.authorBhatt, S.R.J.
dc.contributor.authorBhatt, P.
dc.contributor.authorDeshmukh, P.
dc.contributor.authorSangala, B.R.
dc.contributor.authorSatyanarayan, M.N.
dc.contributor.authorUmesh, G.
dc.contributor.authorPrabhu, S.S.
dc.date.accessioned2020-03-31T08:42:09Z-
dc.date.available2020-03-31T08:42:09Z-
dc.date.issued2016
dc.identifier.citationJournal of Infrared, Millimeter, and Terahertz Waves, 2016, Vol.37, 8, pp.795-804en_US
dc.identifier.urihttp://idr.nitk.ac.in/jspui/handle/123456789/12796-
dc.description.abstractWe have demonstrated the possibility of employing a device, designed to operate at terahertz (THz) frequencies, for sensing materials. The device consists of a waveguide section with a pair of stubs located at the middle and oriented transversely to the waveguide axis. The two stubs function as a resonator and, hence, the device would behave as a filter in the THz domain. The device was fabricated by laser micromachining of InSb pellets and was characterized by THz time-domain transmission spectroscopy. For a waveguide width of 740 ?m and stub length of 990 ?m, a transmission minimum is seen to occur at 0.265 THz. We investigated the capability of the device to sense polystyrene, dissolved in toluene, loaded into the stubs. The consequent change in the refractive index in the stubs alters the transmitted signal intensity. Our results show that, a change in concentration of polystyrene even by 1 mol/L, leads to measurable change in the transmission coefficient close to the resonant frequency of the device. Thus, our device operating at THz frequencies shows promising potential as chemical and bio sensors. 2016, Springer Science+Business Media New York.en_US
dc.titleResonant Terahertz InSb Waveguide Device for Sensing Polymersen_US
dc.typeArticleen_US
Appears in Collections:1. Journal Articles

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.