Please use this identifier to cite or link to this item: https://idr.l3.nitk.ac.in/jspui/handle/123456789/15457
Full metadata record
DC FieldValueLanguage
dc.contributor.authorArgyros I.K.
dc.contributor.authorGeorge S.
dc.contributor.authorSahu D.R.
dc.date.accessioned2021-05-05T10:27:07Z-
dc.date.available2021-05-05T10:27:07Z-
dc.date.issued2020
dc.identifier.citationApplicationes Mathematicae Vol. 47 , 1 , p. 145 - 153en_US
dc.identifier.urihttps://doi.org/10.4064/AM2352-1-2018
dc.identifier.urihttp://idr.nitk.ac.in/jspui/handle/123456789/15457-
dc.description.abstractWe extend the applicability of Newton's method, so we can approximate a locally unique solution of a nonlinear equation in a Banach space setting in cases not covered before. To achieve this, we find a more precise set containing the Newton iterates than in earlier works. © Instytut Matematyczny PAN, 2020en_US
dc.titleExtensions of kantorovich-type theorems for Newton's methoden_US
dc.typeArticleen_US
Appears in Collections:1. Journal Articles

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.