Please use this identifier to cite or link to this item:
https://idr.l3.nitk.ac.in/jspui/handle/123456789/9873
Title: | An efficient framework for segmentation and identification of tumours in brain MR images |
Authors: | Parameshwari, D.S. Aparna, P. |
Issue Date: | 2016 |
Citation: | International Journal of Advanced Media and Communication, 2016, Vol.6, 43923, pp.211-234 |
Abstract: | In this research work, two efficient textural feature extraction (TFE) algorithms (TFEA-I and TFEA-II) are proposed for a class of brain magnetic resonance imaging (MRI) applications. TFEA-I employs higher order statistical cumulant, namely, Kurtosis in order to generate a feature set based on the probability density function (PDF) of generalised Gaussian model that represents thewavelet coefficient energies of the sub-bands of decomposed image. TFEA-II derives a feature set employing cooccurrence matrix model for second order statistical characterisation of wavelet coefficients. In conjunction with TFEA-I and TFEA-II, we propose segmentation framework to compute coarse and smooth segmented boundaries for the tumour. When compared with the conventional TFEA methods reported in the literature, the use of proposed TFEA-I and TFEA-II results in two important advantages; considerable reduction in the feature set size and elimination of the need for using specialised feature selection/reduction algorithms thereby making them highly attractive for a class of brain MR imaging application. Copyright 2016 Inderscience Enterprises Ltd. |
URI: | 10.1504/IJAMC.2016.080970 http://idr.nitk.ac.in/jspui/handle/123456789/9873 |
Appears in Collections: | 1. Journal Articles |
Files in This Item:
There are no files associated with this item.
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.