Please use this identifier to cite or link to this item: https://idr.l3.nitk.ac.in/jspui/handle/123456789/12661
Title: Probing the synergism of halloysite nanotubes and electrospinning on crystallinity, polymorphism and piezoelectric performance of poly(vinylidene fluoride)
Authors: Khalifa, M.
Mahendran, A.
Anandhan, S.
Issue Date: 2016
Citation: RSC Advances, 2016, Vol.6, 115, pp.114052-114060
Abstract: Poly(vinylidene fluoride) (PVDF) nanofibers have tremendous potential in nano-sensing and energy scavenging applications. In this study, uniaxially aligned nanofibers were developed from halloysite nanotubes (HNT)/PVDF nanocomposite using electrospinning technique. Incorporation of HNT into PVDF not only reduced the diameter of the electrospun nanofibers, but, also improved their morphology. Fourier transform infrared spectroscopy, wide angle X-ray diffraction and differential scanning calorimetry techniques were used to characterize the crystallinity, polymorphism and polymer-filler interaction in the nanocomposite nanofibers. A force sensor was indigenously designed to study the piezoelectric responses of the nanocomposite nanofibers. At 10 wt% of HNT loading, the sensor produced the highest voltage output, which can be ascribed to its highest ?-phase content. Incorporation of HNT and use of electrospinning synergistically enhanced the ?-phase content and hence the piezoelectric behavior of PVDF. Hence, these nanofibers could be promising and prominent materials in sensor and actuator applications. The Royal Society of Chemistry.
URI: http://idr.nitk.ac.in/jspui/handle/123456789/12661
Appears in Collections:1. Journal Articles

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.