Please use this identifier to cite or link to this item:
https://idr.l3.nitk.ac.in/jspui/handle/123456789/15906
Title: | Three-dimensional printed lightweight composite foams |
Authors: | H S B. Bonthu D. Prabhakar P. Doddamani M. |
Issue Date: | 2020 |
Citation: | ACS Omega Vol. 5 , 35 , p. 22536 - 22550 |
Abstract: | The goal of this paper is to enable three-dimensional (3D) printed lightweight composite foams by blending hollow glass microballoons (GMBs) with high density polyethylene (HDPE). To that end, lightweight feedstock for printing syntactic foam composites is developed. The blend for this is prepared by varying the GMB content (20, 40, and 60 volume %) in HDPE for filament extrusion, which is subsequently used for 3D printing. The rheological properties and the melt flow index (MFI) of blends are investigated for identifying suitable printing parameters. It is observed that the storage and loss modulus, as well as complex viscosity, increase with increasing GMB content, whereas MFI decreases. Further, the coefficient of thermal expansion of HDPE and foam filaments decreases with increasing GMB content, thereby lowering the thermal stresses in prints, which promotes the reduction in warpage. The mechanical properties of filaments are determined by subjecting them to tensile tests, whereas 3D printed samples are tested under tensile and flexure tests. The tensile modulus of the filament increases with increasing GMB content (8-47%) as compared to HDPE and exhibit comparable filament strength. 3D printed foams show a higher specific tensile and flexural modulus as compared to neat HDPE, making them suitable candidate materials for weight-sensitive applications. HDPE having 60% by volume GMB exhibited the highest modulus and is 48.02% higher than the printed HDPE. Finally, the property map reveals a higher modulus and comparable strength against injection-and compression-molded foams. Printed foam registered 1.8 times higher modulus than the molded samples. Hence, 3D printed foams have the potential for replacing components processed through conventional manufacturing processes that have limitations on geometrically complex designs, lead time, and associated costs. Copyright © 2020 American Chemical Society. |
URI: | https://doi.org/10.1021/acsomega.0c03174 http://idr.nitk.ac.in/jspui/handle/123456789/15906 |
Appears in Collections: | 1. Journal Articles |
Files in This Item:
There are no files associated with this item.
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.