Please use this identifier to cite or link to this item:
https://idr.l3.nitk.ac.in/jspui/handle/123456789/8083
Title: | Flow Properties of Cast Al-Zn-Mg Alloys Subjected to Equal Channel Angular Pressing |
Authors: | Manjunath, G.K. Preetham, Kumar, G.V. Udaya, Bhat, K. |
Issue Date: | 2018 |
Citation: | IOP Conference Series: Materials Science and Engineering, 2018, Vol.376, 1, pp.- |
Abstract: | Flow stress can be described as the stress necessary to continue deformation at any stage of plastic strain. The strength coefficient (K) and strain-hardening exponent (n) are the two important flow properties of the material. In the present work, flow properties of three different cast Al-Zn-Mg alloys processed by equal channel angular pressing (ECAP) were investigated. ECAP processing was carried out in a die having ? = 120� and ? = 30�. After ECAP processing, significant grain refinement and increase in the hardness was observed. Compression test was used to determine the flow properties of ECAP processed samples. Force-stroke data was recorded from the compression test. Flow curves were drawn by using force-stroke data. Strength coefficient and strain-hardening exponent were determined from the log-log plot of true stress-strain curves. Significant increase in the strength coefficient was observed after ECAP processing. Also, the strength coefficient is increased when the zinc content is increased in the alloy. Strain-hardening exponent was decreased with increase in the number of ECAP passes. � Published under licence by IOP Publishing Ltd. |
URI: | http://idr.nitk.ac.in/jspui/handle/123456789/8083 |
Appears in Collections: | 2. Conference Papers |
Files in This Item:
There are no files associated with this item.
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.